
Achieving dynamic workflow management

system by applying provenance based

checkpointing method

E. Kail
1
, P. Kacsuk

2,3
 and M. Kozlovszky

1,2

1
 Óbuda University, John von Neumann Faculty of Informatics, Biotech Lab

Bécsi str. 96/b., H-1034, Budapest, Hungary
2
 MTA SZTAKI, LPDS, Kende str. 13-17, H-1111, Budapest, Hungary

3
 University of Westminster, 115 New Cavendish Street, London W1W 6UW

{kail.eszter, kozlovszky.miklos}@nik.uni-obuda.hu,

kacsuk@sztaki.mta.hu

Scientific workflows are data and compute intensive thus

may run for days or even for weeks on parallel and

distributed infrastructures such as HPC systems and cloud.

In HPC environment the number of failures that can arise

during scientific workflow enactment can be high so the use

of fault tolerance techniques is unavoidable. The most

frequently used fault tolerance techniques are job

replication and checkpointing. While job replication is

based on the assumption that the probability of single

failures is much higher than of simultaneous failures, the

checkpointing saves certain states and the execution can be

restarted from that point later on. The effectiveness of the

checkpointing method depends on the checkpointing

interval. Common technique is to dynamically adapt the

checkpointing interval. In this work we give a brief overview

of the different checkpointing techniques and propose a new

provenance based dynamic checkpointing method.

I. INTRODUCTION

Scientific workflows being data and compute intensive
may require long execution time, which can even last for
weeks. During such long intervals it is inevitable to adapt
to the dynamically changing environment which can be
caused by unwanted input data, crash faults or network
problems. In of our earlier works [4] we defined the main
requirements of dynamic workflow execution systems as:
the ability to react to or to handle unforeseen scenarios
raised during the workflow enactment phase, to adapt to
new situations, to change the abstract or concrete
workflow model or to give faster execution and higher
level performance according to the actual environmental
conditions and intermediary results. In our other work [2]
we have defined the three main areas of dynamism which
are optimization of the workflow execution according
some criteria, user-steering (user or administrator
interaction during execution) [3] and fault tolerance
behavior. In this work we investigated fault tolerance
behavior.

Fault tolerance is the ability of a system to perform its

functions even in the presence of a failure. There are two

main groups of failures that could arise during enactment.

The first group includes the crash faults or fail-stop faults

which may come with faulty system components that

result in complete data loss. The other group consists of

byzantine faults which result the system components to

behave unpredictably and maliciously. Byzantine failures

can occur, e.g., due to software bugs, (transitional or

permanent) hardware malfunction, or malicious attack. In

our work we consider only crash faults where the

complete state of the actual task and environment must be

restored.
Fault tolerance policy can be reactive and proactive.

While the aim of proactive techniques is to avoid
situations caused by failures by predicting them and
taking the necessary actions, reactive fault tolerance
policies reduce the effect of failures on application
execution when the failure effectively occurs. There are
several solutions in the literature for fault tolerant
behavior and other complementary methods in its
connected fields [1].

To achieve fault tolerant behavior the most widely

adopted methods are:

 Checking and monitoring which is a key factor

in failure detection.

 Checkpointing and resubmission where the

system state is captured and saved based on

predefined parameters (i.e.: time interval,

number of instructions) and when the system

undergoes some kind of failure the last

consistent state is restored and computation is

restarted from that point on.

 Replication where critical system components are
duplicated using additional hardware or with
scientific workflows critical tasks are replicated
and executed on more than one processor. We
can differentiate active and passive replication.
Passive replication means that only one primary
processor is invoked in the execution of a task
and in the case of a failure the backup ones take
over the task processing. In the active form all
the replicas are executed at the same time and in
the case of a failure the replica can continue the
execution without intervention. The idea behind
task replication is that replication size r can
tolerate r-1 faults while keeping the impact on the
execution time minimal. We call r the replication
size. While this technique is useful for time-

critical tasks its downsides lies in the large
resource consumption, so our attention is focused
on mainly checkpointing methods in this work.

We propose a new checkpointing algorithm, that
monitors the resources and dynamically adjust the
checkpointing interval based on the task’s dependency
Factor and the already occurred failures.

In the proposed algorithm there is no need to take
global checkpoints of the workflow, and therefore there is
no need of synchronization of any kind (based on time or
based on communication channels between the
processors). The parallel threads of the workflow may run
on different type of computing infrastructures (for
example on virtual machines of different cloud providers)
therefore it would be a complex challenge to solve the
synchronization between them. The new proposal is based
on provenance support. Provenance carries information
about the source, origin and processes that are involved in
producing data. The main target of collecting provenance
support is to provide reusability and reproducibility
among a scientist’s community but provenance support
can provide users, scientists, workflow developers and
administrators with wide range of services. For example
provenance can also support fault tolerant behavior by
providing statistics about historical executions, such as
failure rates or distribution and by storing the intermediary
results generated by each tasks of the workflow.

Our paper is organized as follows. After the
introduction we give a brief overview about existing
checkpointing methods, and in chapter III we introduce
our checkpointing method. After a brief conclusion the
bibliography closes our work.

II. RELATED WORK

Concerning dynamic workflow execution fault

tolerance is a very important issue and checkpointing is

the most widely used methods to achieve fault tolerant

behavior. We investigated the different algorithms in

order to give a brief overview of them.

According to the level where the checkpointing

occurs we differentiate application level checkpointing,

library level checkpointing and system level

checkpointing methods. Application level checkpointing

means that the application itself contains the

checkpointing code. The main advantage of this solution

lies in the fact, that it does not depend on auxiliary

components however it requires a significant

programming effort to be implemented while library level

checkpointing is transparent for the programmer. Library

level solution requires a special library linked to the

application that can perform the checkpoint and restart

procedure. System level solution can be implemented by

a dedicated service layer that hides the implementation

details from the application developers but still give the

opportunity to specify and apply the desired level of fault

tolerance [5].

From another perspective we can differentiate

coordinated and uncoordinated methods. With

Coordinated checkpointing (synchronous) the processes

will synchronize to take checkpoints in a manner to

ensure that the resulting global state is consistent. This

solution is considered to be domino-effect free. With

uncoordinated checkpointing (independent) the

checkpoints at each process are taken independently

without any synchronization among the processes.

Because of the absence of synchronization there is no

guarantee that a set of local checkpoints result in having a

consistent set of checkpoints. It may lead to the initial

state due to domino-effect.

The frequency of the checkpointing interval also

imposes many opportunities in checkpointing algorithms.

Young in [6] has already in 1974 defined his formula for

the optimum periodic checkpoint interval which is based

on the checkpointing cost and the mean time between

failures (MTBF) with the assumption that failure intervals

follow an exponential distribution.

Sheng et al in [7] has also derived a formula to compute

the optimal number of checkpoints for jobs executed in

the cloud. His formula is generic in a sense that it does

not use any assumption on the failure probability

distribution.

The drawback of these solutions lies in the fact that

the checkpointing cost can change during the execution if

the memory footprint of the job changes, or depending on

network reachability issues or when the failure

distribution changes. Thus static intervals may not lead to

the optimal solution. By dynamically assigning

checkpoint frequency we can eliminate unnecessary

checkpoints or where the danger of a failure is considered

to be severe it can introduce extra state savings.

Meroufel and Belalem [8] proposed an adaptive time-

based coordinated checkpointing technique without clock

synchronization on cloud infrastructure. Between the

different VMs jobs can communicate with each other

through a message passing interface. One VM is selected

as initiator and based on timing it estimates the possible

time interval where orphan and transit messages can be

created. There are several solutions to deal with orphan

and transit messages, but most of them solve the problem

by blocking the communication between the jobs during

this time interval. However blocking the communication

increases the response time and thus the total execution

time of the workflow which can lead to SLA violation. In

Meroufel’s work they avoid blocking the communication

by piggybacking the messages with some extra data so

during the estimated time intervals it can be decided

when to take checkpoint or logging the messages can

resolve the transit messages problem.

The initiator selection is also investigated in Meroufel

and Belalem’s another work [9] and they found that the

impact of initiator choice is significant in term of

performance. They also propose a simple and efficient

strategy to select the best initiator.

Sheng at al also propose a new adaptive algorithm to

optimize the impact of checkpointing regarding the

checkpointing or restarting costs in [7].

Theresa et al in their work [10] propose two dynamic

checkpoint strategies: Last Failure time based Checkpoint

Adaptation (LFCA) and Mean Failure time based

Checkpoint Adaptation (MFCA) which takes into account

the stability of the system and the probability of failure

concerning the individual resources.

To the best of our knowledge there does not exist an

adaptive algorithm that takes into account the effect of

the failure occurring on a task on the execution time of

the whole workflow.

III. PROPOSED MODEL

A. Environmental Conditions

 the system resources are monitored and failures
can be detected as soon as possible, therefore the
fault detection time (tf) does not add high latency
to the overall makespan of the workflow
execution. (tf=0)

 Task Aj cannot be started before it has received
the output from all its predecessors and the results
of Task Ai can only be sent to its successor tasks
after the task has been finished.

 There is an ideal case so that tasks can be
executed as soon as the results from the
predecessor tasks are ready and available. The
system resources are inexhaustible in number, so
the system can allocate the required number of
resources to execute all the tasks parallel that are
independent from each other.

 The system supports the collection of provenance
data, therefore the intermediary results generated
by the individual tasks are saved and in case of
failure they can be easily retrieved. Thus there is
no need to take checkpoints at the end of the
tasks, and there is no need to take global
checkpoints, since in the case of failure only the
effected task should be rolled back.

 The system also support provenance data about
failure statistics, so the probability of failures for a
certain period of time is available for each
resource component taking into account the aging
factor as well.

B. General notation

Workflows in general and also scientific workflows

are represented as directed acyclic graphs (DAG) W = (N,

E), where the nodes (N) represent the computational tasks

or jobs and the directed edges (E) represent the

dependency between them. The dependency can be data

dependency, and control dependency. In the former case

the output of a Task gives the input of a Task Aj if there

exists an AiAj ϵ E directed edge in the workflow. The

control dependency describes the precedence of the tasks:

If an AiAj directed edge exists in the workflow, then the

execution of task must precede the execution of task Aj

in time. Here follows a list of the most frequently used

symbols in this paper:

Tc the optimal checkpointing interval,

C is the checkpointing cost

X is optimal number of checkpoints during the execution

of a task

T(Ai) is the execution time of task

 Tf is the mean time between failures (MTBF)

E(Y) is the expected number of failures during the

execution of a task

is the loading time, to restore the last saved checkpoint

state,

tf is the fault detection time, the time to detect the failure

A0 is the first or entry task of the workflow.

C. Algorithm

The primary goal of this algorithm is to minimize the

effect of the checkpointing overhead (time, resource)

while still keeping to the soft-deadline of the workflow

and the performance level at a satisfactory level.

Young [6] and Sheng [7] have already proved that the

optimal checkpointing interval can be computed by (1)

and (2). In both cases the fault detection time is

considered tf=0. Equation (2) is a more general form of

Young’s formula, because it does not depend on any

probability distribution, unlike Young’s (1) formula

which needs to assume that failure intervals follow an

exponential distribution.

 (1)

 (2)

In our proposed algorithm we use (2) as a starting

point to compute the checkpointing intervals. The main
idea is that there is a dependency factor between the tasks.
Namely if a failure occurs during the execution of a task

then it not only has a local effect on the task itself, but
has a global effect also on the whole workflow concerning
the execution time. Since if a failure occurs during the
execution of task then it has to be re-executed from the
last checkpoint. It means the execution of the task ends
later, so it may cause all of the successor tasks of task
to wait for the results. This can result the whole workflow
execution to last longer.

We define local cost (3) of a failure on task Ai which is
the execution time overhead of a task when during
execution one failure occurs.

 (3)

We define global failure cost (4) of a task Ai: which is
the execution time overhead of the whole workflow, when
one failure occurs during Task Ai

 (4)

where (5) and (6) are classic formulas that are used in

tasks scheduling [12] [11]. Basically the rank() function

is the critical path from task Ai to the last task, and can be

computed recursively backward from the last task. The

brank() value is the backward rank value from task Ai

backward to the entry task A0. It is the longest distance

from the entry task to task Ai excluding the computation

cost of the task itself.

 (5)

 (6)

It can also be calculated recursively downward from task

A0.

Before executing a task Ai , Cglobal can be evaluated.

If Cglobal < 1 then one failure occurring during execution

of task Ai does not add extra latency to the total execution

time of the workflow so in that case Tc can be increased

until Cglobal =1. From that we get:

 (7)

Based on the global failure cost and using the assumption

that when faults occur during a checkpoint interval

(between two consecutive checkpoints) the expected

average time loss is half of the checkpointing interval.

This is the average time to re-execute the task from the

latest checkpoint.

If there occurred already failures during the actual task,

or during the predecessors of the actual task, then it may

be possible, that default checkpointing intervals cannot be

increased, because the cumulative overhead of the

occurred faults can negatively affect the whole workflow

execution time.

To take earlier faults into account we need information

about the realistic execution time of the tasks. With

provenance support the real execution time can be

obtained and it can be substituted in (7) in place of the

brank value. The Cglobal < 1 inequality gives the answer

whether the checkpointing interval can be increased

without lengthening the whole workflow execution time.

IV. CONLUSION

In this paper we investigated the different
checkpointing techniques, which are the most widely used
proactive fault tolerant methods. We gave a brief
overview of the different checkpointing perspectives with
special attention on those solutions where the
checkpointing intervals are periodic or it changes
adaptively during execution. We proposed a provenance
based dynamic algorithm that takes into account the
global cost of a failure occurring during the execution of a
task, and depending on this value can adjust the
checkpointing interval in order to eliminate blind
checkpoints while still maintaining soft deadlines. In our
future work we would like to deeper investigate the
various fault tolerant methods for crash faults or even for
byzantine faults.

REFERENCES

[1] Bala, Anju, and Inderveer Chana. „Fault tolerance-challenges,

techniques and implementation in cloud computing”. IJCSI
International Journal of Computer Science Issues vol. 9, 2012

[2] Kail, E., Bánáti, A., Kacsuk, P., Kozlovszky, M.: Provenance
based adaptive and dynamic workflows. In: 15th IEEE
International Symposium on Computational Intelligence and
Informatics, pp 215-219, IEEE Press, Budapest, 2014

[3] E. Kail, P., Kacsuk, M. Kozlovszky.: “A Novel Aproach to User-
steering in Scientific Workflows” In Proceedings of CGW’14,
2014

[4] E. Kail, A. Bánáti, K. Karóczkai, P. Kacsuk, M. Kozlovszky,
Dynamic workflow support in gUSE, MIPRO, 2014 Proceedings
of the 37th International Convention

[5] Jhawar, Ravi, Vincenzo Piuri, and Marco Santambrogio. „Fault
Tolerance Management in Cloud Computing: A System-Level
Perspective”. IEEE Systems Journal 7, vol 2, 2013
doi:10.1109/JSYST.2012.2221934

[6] J.W. Young. “A first order approximation to the optimum
checkpoint interval” in Comminications ACM, 1974

[7] S. Di, Y. Robert, F. Vivien, D. Kondo, Cho-Li Wang, and F.
Cappello. „Optimization of Cloud Task Processing with
Checkpoint-Restart Mechanism”, 1–12. ACM Press, 2013.
doi:10.1145/2503210.2503217.

[8] B. Meroufel, G. Belalem: “Adaptive time-based coordinated
checkpointing for cloud computing workfl ows”. in Scalable
Computing: Practice and Experience, Vol 15, No 2, 2014

[9] B. Meroufel, B. Ghalem: „Policy Driven Initiator in Coordination
Checkpointing Strategies”. http://www.wseas.us/e-
library/conferences/2014/Istanbul/TELEDU/TELEDU-20.pdf.

[10] Antony Lidya Therasa.S, Sumathi.G, Antony Dalya.S.: “Dynamic
Adaptation of Checkpoints and Rescheduling in Grid Computing”
in International Journal of Computer Applications vol. 3, 2010

[11] Laiping Zhao; Yizhi Ren; Yang Xiang; Sakurai, K., "Fault-
tolerant scheduling with dynamic number of replicas in
heterogeneous systems," High Performance Computing and
Communications (HPCC), 2010 12th IEEE International
Conference on , vol., no., pp.434,441, 1-3 Sept. 2010, doi:
10.1109/HPCC.2010.72.

[12] Topcuoglu, H.; Hariri, S.; Min-You Wu, "Performance-effective
and low-complexity task scheduling for heterogeneous
computing," Parallel and Distributed Systems, IEEE Transactions
on , vol.13, no.3, pp.260,274, Mar 2002,

