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Scientific workflows are data and compute intensive thus 

may run for days or even for weeks on parallel and 

distributed infrastructures such as HPC systems and cloud. 

In HPC environment the number of failures that can arise 

during scientific workflow enactment can be high so the use 

of fault tolerance techniques is unavoidable. The most 

frequently used fault tolerance techniques are job 

replication and checkpointing. While job replication is 

based on the assumption that the probability of single 

failures is much higher than of simultaneous failures, the 

checkpointing saves certain states and the execution can be 

restarted from that point later on. The effectiveness of the 

checkpointing method depends on the checkpointing 

interval. Common technique is to dynamically adapt the 

checkpointing interval. In this work we give a brief overview 

of the different checkpointing techniques and propose a new 

provenance based dynamic checkpointing method. 

I. INTRODUCTION 

Scientific workflows being data and compute intensive 
may require long execution time, which can even last for 
weeks. During such long intervals it is inevitable to adapt 
to the dynamically changing environment which can be 
caused by unwanted input data, crash faults or network 
problems. In of our earlier works [4] we defined the main 
requirements of dynamic workflow execution systems as: 
the ability to react to or to handle unforeseen scenarios 
raised during the workflow enactment phase, to adapt to 
new situations, to change the abstract or concrete 
workflow model or to give faster execution and higher 
level performance according to the actual environmental 
conditions and intermediary results. In our other work [2] 
we have defined the three main areas of dynamism which 
are optimization of the workflow execution according 
some criteria, user-steering (user or administrator 
interaction during execution) [3] and fault tolerance 
behavior. In this work we investigated fault tolerance 
behavior. 

Fault tolerance is the ability of a system to perform its 

functions even in the presence of a failure. There are two 

main groups of failures that could arise during enactment. 

The first group includes the crash faults or fail-stop faults 

which may come with faulty system components that 

result in complete data loss. The other group consists of 

byzantine faults which result the system components to 

behave unpredictably and maliciously. Byzantine failures 

can occur, e.g., due to software bugs, (transitional or 

permanent) hardware malfunction, or malicious attack. In 

our work we consider only crash faults where the 

complete state of the actual task and environment must be 

restored. 
Fault tolerance policy can be reactive and proactive. 

While the aim of proactive techniques is to avoid 
situations caused by failures by predicting them and 
taking the necessary actions, reactive fault tolerance 
policies reduce the effect of failures on application 
execution when the failure effectively occurs. There are 
several solutions in the literature for fault tolerant 
behavior and other complementary methods in its 
connected fields [1]. 

To achieve fault tolerant behavior the most widely 

adopted methods are:  

 Checking and monitoring which is a key factor 

in failure detection.  

 Checkpointing and resubmission where the 

system state is captured and saved based on 

predefined parameters (i.e.: time interval, 

number of instructions) and when the system 

undergoes some kind of failure the last 

consistent state is restored and computation is 

restarted from that point on.  

 Replication where critical system components are 
duplicated using additional hardware or with 
scientific workflows critical tasks are replicated 
and executed on more than one processor. We 
can differentiate active and passive replication. 
Passive replication means that only one primary 
processor is invoked in the execution of a task 
and in the case of a failure the backup ones take 
over the task processing. In the active form all 
the replicas are executed at the same time and in 
the case of a failure the replica can continue the 
execution without intervention. The idea behind 
task replication is that replication size r can 
tolerate r-1 faults while keeping the impact on the 
execution time minimal. We call r the replication 
size. While this technique is useful for time-



critical tasks its downsides lies in the large 
resource consumption, so our attention is focused 
on mainly checkpointing methods in this work. 

We propose a new checkpointing algorithm, that 
monitors the resources and dynamically adjust the 
checkpointing interval based on the task’s dependency 
Factor and the already occurred failures.  

In the proposed algorithm there is no need to take 
global checkpoints of the workflow, and therefore there is 
no need of synchronization of any kind (based on time or 
based on communication channels between the 
processors). The parallel threads of the workflow may run 
on different type of computing infrastructures (for 
example on virtual machines of different cloud providers) 
therefore it would be a complex challenge to solve the 
synchronization between them. The new proposal is based 
on provenance support. Provenance carries information 
about the source, origin and processes that are involved in 
producing data. The main target of collecting provenance 
support is to provide reusability and reproducibility 
among a scientist’s community but provenance support 
can provide users, scientists, workflow developers and 
administrators with wide range of services. For example 
provenance can also support fault tolerant behavior by 
providing statistics about historical executions, such as 
failure rates or distribution and by storing the intermediary 
results generated by each tasks of the workflow. 

Our paper is organized as follows. After the 
introduction we give a brief overview about existing 
checkpointing methods, and in chapter III we introduce 
our checkpointing method. After a brief conclusion the 
bibliography closes our work. 

 

II. RELATED WORK 

Concerning dynamic workflow execution fault 

tolerance is a very important issue and checkpointing is 

the most widely used methods to achieve fault tolerant 

behavior. We investigated the different algorithms in 

order to give a brief overview of them.  

 

According to the level where the checkpointing 

occurs we differentiate application level checkpointing, 

library level checkpointing and system level 

checkpointing methods.  Application level checkpointing 

means that the application itself contains the 

checkpointing code. The main advantage of this solution 

lies in the fact, that it does not depend on auxiliary 

components however it requires a significant 

programming effort to be implemented while library level 

checkpointing is transparent for the programmer. Library 

level solution requires a special library linked to the 

application that can perform the checkpoint and restart 

procedure. System level solution can be implemented by 

a dedicated service layer that hides the implementation 

details from the application developers but still give the 

opportunity to specify and apply the desired level of fault 

tolerance [5]. 

From another perspective we can differentiate 

coordinated and uncoordinated methods. With 

Coordinated checkpointing (synchronous) the processes 

will synchronize to take checkpoints in a manner to 

ensure that the resulting global state is consistent. This 

solution is considered to be domino-effect free. With 

uncoordinated checkpointing (independent) the 

checkpoints at each process are taken independently 

without any synchronization among the processes. 

Because of the absence of synchronization there is no 

guarantee that a set of local checkpoints result in having a 

consistent set of checkpoints. It may lead to the initial 

state due to domino-effect.  

The frequency of the checkpointing interval also 

imposes many opportunities in checkpointing algorithms. 

Young in [6] has already in 1974 defined his formula for 

the optimum periodic checkpoint interval which is based 

on the checkpointing cost and the mean time between 

failures (MTBF) with the assumption that failure intervals 

follow an exponential distribution. 

Sheng et al in [7] has also derived a formula to compute 

the optimal number of checkpoints for jobs executed in 

the cloud. His formula is generic in a sense that it does 

not use any assumption on the failure probability 

distribution.  

The drawback of these solutions lies in the fact that 

the checkpointing cost can change during the execution if 

the memory footprint of the job changes, or depending on 

network reachability issues or when the failure 

distribution changes. Thus static intervals may not lead to 

the optimal solution. By dynamically assigning 

checkpoint frequency we can eliminate unnecessary 

checkpoints or where the danger of a failure is considered 

to be severe it can introduce extra state savings. 

Meroufel and Belalem [8] proposed an adaptive time-

based coordinated checkpointing technique without clock 

synchronization on cloud infrastructure. Between the 

different VMs jobs can communicate with each other 

through a message passing interface. One VM is selected 

as initiator and based on timing it estimates the possible 

time interval where orphan and transit messages can be 

created. There are several solutions to deal with orphan 

and transit messages, but most of them solve the problem 

by blocking the communication between the jobs during 

this time interval. However blocking the communication 

increases the response time and thus the total execution 

time of the workflow which can lead to SLA violation. In 

Meroufel’s work they avoid blocking the communication 

by piggybacking the messages with some extra data so 

during the estimated time intervals it can be decided 

when to take checkpoint or logging the messages can 

resolve the transit messages problem.  

 

The initiator selection is also investigated in Meroufel 

and Belalem’s another work [9] and they found that the 

impact of initiator choice is significant in term of 

performance. They also propose a simple and efficient 

strategy to select the best initiator. 

 



Sheng at al also propose a new adaptive algorithm to 

optimize the impact of checkpointing regarding the 

checkpointing or restarting costs in [7]. 

Theresa et al in their work [10] propose two dynamic 

checkpoint strategies: Last Failure time based Checkpoint 

Adaptation (LFCA) and Mean Failure time based 

Checkpoint Adaptation (MFCA) which takes into account 

the stability of the system and the probability of failure 

concerning the individual resources.  

 

To the best of our knowledge there does not exist an 

adaptive algorithm that takes into account the effect of 

the failure occurring on a task on the execution time of 

the whole workflow. 

 

 

III. PROPOSED MODEL 

A. Environmental Conditions 

 the system resources are monitored and failures 
can be detected as soon as possible, therefore the 
fault detection time (tf ) does not add high latency 
to the overall makespan of the workflow 
execution. (tf=0) 

 Task Aj cannot be started before it has received 
the output from all its predecessors and the results 
of Task Ai can only be sent to its successor tasks 
after the task has been finished. 

 There is an ideal case so that tasks can be 
executed as soon as the results from the 
predecessor tasks are ready and available. The 
system resources are inexhaustible in number, so 
the system can allocate the required number of 
resources to execute all the tasks parallel that are 
independent from each other. 

 The system supports the collection of provenance 
data, therefore the intermediary results generated 
by the individual tasks are saved and in case of 
failure they can be easily retrieved. Thus there is 
no need to take checkpoints at the end of the 
tasks, and there is no need to take global 
checkpoints, since in the case of failure only the 
effected task should be rolled back. 

 The system also support provenance data about 
failure statistics, so the probability of failures for a 
certain period of time is available for each 
resource component taking into account the aging 
factor as well. 

B. General notation 

Workflows in general and also scientific workflows 

are represented as directed acyclic graphs (DAG) W = (N, 

E), where the nodes (N) represent the computational tasks 

or jobs and the directed edges (E) represent the 

dependency between them. The dependency can be data 

dependency, and control dependency. In the former case 

the output of a Task gives the input of a Task Aj if there 

exists an AiAj ϵ E directed edge in the workflow. The 

control dependency describes the precedence of the tasks: 

If an AiAj directed edge exists in the workflow, then the 

execution of task must precede the execution of task Aj 

in time. Here follows a list of the most frequently used 

symbols in this paper: 

  

Tc the optimal checkpointing interval,  

C is the checkpointing cost  

X is optimal number of checkpoints during the execution 

of a task 

T(Ai) is the execution time of task  

 Tf is the mean time between failures (MTBF) 

E(Y) is the expected number of failures during the 

execution of a task 

 
 
is the loading time, to restore the last saved checkpoint 

state, 

tf  is the fault detection time, the time to detect the failure
 

A0 is the first or entry task of the workflow. 

C. Algorithm 

The primary goal of this algorithm is to minimize the 

effect of the checkpointing overhead (time, resource) 

while still keeping to the soft-deadline of the workflow 

and the performance level at a satisfactory level.  

 

Young [6] and Sheng [7] have already proved that the 

optimal checkpointing interval can be computed by (1) 

and (2). In both cases the fault detection time is 

considered tf=0. Equation (2) is a more general form of 

Young’s formula, because it does not depend on any 

probability distribution, unlike Young’s (1) formula 

which needs to assume that failure intervals follow an 

exponential distribution. 

   (1) 

 

  (2) 

 
In our proposed algorithm we use (2) as a starting 

point to compute the checkpointing intervals. The main 
idea is that there is a dependency factor between the tasks. 
Namely if a failure occurs during the execution of a task  

then it not only has a local effect on the task itself, but 
has a global effect also on the whole workflow concerning 
the execution time. Since if a failure occurs during the 
execution of task  then it has to be re-executed from the 
last checkpoint. It means the execution of the task ends 
later, so it may cause all of the successor tasks of task  
to wait for the results. This can result the whole workflow 
execution to last longer.  

We define local cost (3) of a failure on task Ai which is 
the execution time overhead of a task when during 
execution one failure occurs. 



  (3) 

We define global failure cost (4) of a task Ai: which is 
the execution time overhead of the whole workflow, when 
one failure occurs during Task Ai 

  (4) 

where (5) and (6) are classic formulas that are used in 

tasks scheduling [12] [11].  Basically the rank() function 

is the critical path from task  Ai to the last task, and can be 

computed recursively backward from the last task. The 

brank() value is the backward  rank value from task Ai 

backward to the entry task A0. It is the longest distance 

from the entry task to task Ai excluding the computation 

cost of the task itself. 

 (5) 

   (6) 

It can also be calculated recursively downward from task 

A0.  

 

Before executing a task Ai , Cglobal  can be evaluated. 

If  Cglobal < 1 then one failure occurring during execution 

of task  Ai  does not add extra latency to the total execution 

time of the workflow so in that case Tc can be increased 

until  Cglobal =1. From that we get:  

    (7) 

Based on the global failure cost and using the assumption 

that when faults occur during a checkpoint interval 

(between two consecutive checkpoints) the expected 

average time loss is half of the checkpointing interval. 

This is the average time to re-execute the task from the 

latest checkpoint. 

If there occurred already failures during the actual task, 

or during the predecessors of the actual task, then it may 

be possible, that default checkpointing intervals cannot be 

increased, because the cumulative overhead of the 

occurred faults can negatively affect the whole workflow 

execution time.  

To take earlier faults into account we need information 

about the realistic execution time of the tasks. With 

provenance support the real execution time can be 

obtained and it can be substituted in (7) in place of the 

brank value. The  Cglobal < 1 inequality gives the answer 

whether the checkpointing interval can be increased 

without lengthening the whole workflow execution time. 

IV. CONLUSION 

In this paper we investigated the different 
checkpointing techniques, which are the most widely used 
proactive fault tolerant methods. We gave a brief 
overview of the different checkpointing perspectives with 
special attention on those solutions where the 
checkpointing intervals are periodic or it changes 
adaptively during execution. We proposed a provenance 
based dynamic algorithm that takes into account the 
global cost of a failure occurring during the execution of a 
task, and depending on this value can adjust the 
checkpointing interval in order to eliminate blind 
checkpoints while still maintaining soft deadlines. In our 
future work we would like to deeper investigate the 
various fault tolerant methods for crash faults or even for 
byzantine faults.  
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