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Abstract—This paper proposes an approach for building de-
tection from single, very-high-resolution (VHR) optical satellite
images by fusing the knowledge of shadow and urban area
information. One of the main contributions of this work is in the
integration of urban area information: unlike previous works,
we use such information to substantially revise and improve the
initial shadow mask. Additionally, we present an effective way
to discriminate dark regions from cast shadows, a task that has
continuously been reported to be very difficult. In this study, we
benefit from graph-cuts to produce a comprehensive solution for
automatic building detection: a flexible multi-label partitioning
procedure is proposed, in which the number of optimized classes
is automatically selected according to the contents of a scene
of interest. The results of the evaluation of 14 demanding test
patches confirm the technical merit of the proposed approach,
and its superiority over three recently developed state-of-the-art
methods.

Index Terms—Automated building detection, urban area detec-
tion, graph-cuts, flexible multi-label partitioning, satellite images.

I. INTRODUCTION

BUILDINGS, while being one of the easier object classes
for automatic detection, present a major challenge when

they need to be detected in monocular images.
Lately, various building detection approaches based on local

features have been introduced: four different local feature
descriptors were tested and two fusion methods were intro-
duced in [1] to improve the results of detection; a graph-
based strategy was developed in [2] utilizing corners and edges
of buildings; a Marked Point Process framework was built
in [3], [4] using lower and higher level features to find the
locations of buildings; an automatic approach was introduced
in [5] combining the strength of energy-based approaches with
the distinctiveness of corner features. In [6] it was shown
that shadow information can be efficiently used for building
localization, introducing a new fuzzy landscape strategy to
uncover the relation between buildings and shadows and using
iterative graph-cuts for automated building detection. In [7] an
original approach was proposed based on shadow information
and graph-cuts, utilizing multi-label graph partitioning for
building detection in an unsupervised manner. More recently,
a higher order conditional random field was integrated for
building detection [8], in which an unsupervised segmentation
strategy was also utilized for shadow detection.
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In certain cases, a coarse classification of images into
urban and non-urban areas is the only option. Harris and
SUSAN corner detectors were analyzed in [9] and found
to be efficient for distinguishing between different structures
in a scene (urban / non-urban). In [10] the scale-invariant
feature transform (SIFT) was combined with graph theory
for the joint detection of urban areas and buildings. Gabor
feature points were extracted in [11], followed by a voting
matrix construction to represent the probability of urban areas.
[12] showed that the Modified Harris for Edges and Corners
(MHEC) method [13] is able to represent urban areas more
precisely; moreover, the main direction of the gradients in the
close proximity of feature points is an important feature during
the detection of urban (i. e. built-in) areas.

The method presented in this letter aims to detect buildings
from single optical VHR satellite images by integrating the
information of built-in areas, as this information may help to
achieve more accurate detection in complex and challenging
cases. Handling urban area and separate buildings jointly and
combining detection results has been introduced in [10], where
SIFT keypoints were utilized both for urban area and building
extraction purposes. However, the approach is designed to
handle relatively non-dense urban areas. The same authors
proposed a sequential combination of both approaches in [1],
first detecting urban areas, then searching for buildings within
such regions. However, because of the sequential process, the
performance of the building detection will always be limited
by the performance of the urban area detector.

In this letter we introduce a novel framework for building
detection in monocular VHR images, based on knowledge of
urban environments, using graph-cuts (Fig. 1). We assess the
presented approach on 14 test patches of two different space-
borne sensors (QuickBird and IKONOS-2), and the results
prove the quality and reliability of the framework proposed
for the detection of buildings. We also made comparison with
three other state-of-the-art approaches to confirm the proposed
method’s superiority.

The structure of this paper is as follows: we state the
contributions of this study in Section II, we describe the
method in detail in Section III followed by the description
of the dataset and parameter analysis in Section IV, Section V
presents the experimental evaluation results and we conclude
with Section VI.

II. CONTRIBUTIONS

The main contribution of this paper is developing a building
detection approach that takes advantage of information of
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Fig. 1. Diagram of the proposed method

urban areas in an embedded manner. Unlike previous methods
that search for buildings within image regions labeled as built-
in areas, therefore limited by the performance of the applied
built-in area detectors, our approach integrates the information
of urban areas and solar angles to revise and improve the
shadow mask. With this step, we are able to not only eliminate
improperly detected shadow regions, but we can also handle
the unbalanced distribution of built-in / not built-in areas (e.g.,
large water surfaces in the image). The latter in turn provides
the opportunity to automatically identify and separate dark,
but non-shadow regions from cast shadows. In this sense, we
propose a flexible multi-label partitioning procedure in which
the number of classes to be optimized is automatically defined
by the contents of the scene of interest. The dark regions
are defined as a separate class before the partitioning, which
makes their separation from shadows more efficient after the
partitioning step, resulting in better building region extraction
and a better overall performance.

III. PROPOSED METHOD

The proposed approach uses orthorectified multi-spectral
images (Fig. 1). Metadata1 including the Sun angle at the time
of the acquisition, is attached to the image. Firstly, two masks,
a vegetation mask and an initial shadow mask, are extracted.
Then, the Modified Harris for Edges and Corners (MHEC)
approach is applied to detect urban areas, which is based on the
modification of the Harris detector’s characteristic function,
which describes urban areas more accurately than other point
detectors [12]. With the aid of the solar information and the
built-in area mask, the shadow mask is evolved and fuzzy
landscapes are generated. The approach consists of two levels
of graph partitioning to detect building regions. The first level
uses iterative graph-cuts to recognize initial building regions,
whereas the second level is devoted to multi-label graph
optimization to finally distinguish building regions. The final
verification step aims to identify and label building regions,
whose directional neighborhood reveals shadow evidence.
Some of these stages are already described in detail in [7]
and [12], therefore, we only concentrate on new contributions
in the following sub-sections.

1The solar angles (azimuth and elevation [6]) are assumed to be fixed during
the period of image acquisition.

A. Revised shadow information

To identify the initial shadow map (MIS), first we apply a
shadow detection technique presented in [14], which computes
a ratio map using saturation and intensity components of the
Hue-Saturation-Intensity (HSI) space. This step is followed
by the well-known Normalized Differential Vegetation Index
(NDVI) calculation to subtract regions belonging to the veg-
etation cover and finally, a constrained region-growth process
is applied (see [7] for details). The MIS map is then revised
based on the estimated built-in area map (MBA), which is
calculated by an orientation selective voting matrix based on
MHEC feature points. The effects of the MBA map, by testing
weight spreading parameters in the voting matrix (see [12] for
details), is shown in Table I.

The built-in area mask MBA is used for two purposes: (i)
revising the shadow mask MIS , and (ii) excluding dark non-
shadow evidence in MIS from true shadow evidence. The for-
mer helps to better detect cast shadows in a scene of interest,
wherein a large portion is covered by a region whose spectral
reflectance resembles shadow regions. A typical example is
given in Fig. 2, where a large water body is visible in a
scene. In such a case, the MIS map (Fig. 2(b)) is poor for
the cast shadows of buildings, due to the spectral similarities
between the water surface and shadows. In this study, the
built-in area information (Fig. 2(c)) is used to mitigate these
problems. First, we search for connected shadow components
(8-neighborhood connectivity) in the shadow mask MIS , and
overlay each component with the built-in area mask MBA: if
more than half of a component is found to be outside of the
built-in area, we discard all pixels of that component from the
precomputed HSI-based ratio map and regenerate the revised
shadow map MRS (Fig. 2(d)). After this step, the detected
shadows cast by buildings are significantly improved in MRS

compared to the MIS mask. However, the revised shadow
mask may still incorrectly label dark surfaces as shadow.
Therefore, once again, we overlay each shadow component
ver the built-in area mask MBA and only accept shadow
components with more than half of the pixels in the built-
in area. Finally, as a post-processing step, we perform a
morphological opening over each shadow component, using
a specific directional flat structuring element, generated from
the known solar information [7]. The goal of this latter step is
to eliminate cast shadows of short objects (e.g., cars, garden
walls and fences, etc.) to obtain the final shadow mask MPS

(Fig. 2(e)).

B. Detection of dark regions

The other purpose of the built-in area mask is to detect non-
shadow, dark regions. Therefore, components rejected from the
shadow mask MRS are supplied to generate a new mask that
represents dark regions (MDR) (Fig. 2(f)). After this step, if
the evidence in mask MBA defines the built-in areas perfectly,
we expect to have an exact separation between the two cases
(cast shadow vs. dark region). Unfortunately, this is rarely
possible because of the problems associated with the detection
of built-in areas (for example, see the separated building on
the small island in the center of Fig. 2(a)). To compensate



3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Main pre-processing steps: (a) Test patch #12 (RGB); (b) initial
shadow map MIS ; (c) detected built-in area map MBA; (d) revised shadow
map MRS ; (e) post-processed shadow map MPS ; (f) dark regions detected
MDR; (g) initial building regions; (h) final building regions.

for these drawbacks, we propose to use solar information to
evaluate the regions belonging to dark regions in the mask
MDR. As an improvement over [7], we expand the approach to
impose a maximum height threshold (TmaxH ) for objects that
cast shadows. We generate a flat structuring element (νL,λ+π)
that maintains the solar azimuth angle A and the directional
information λ (λ = A − π/2) with a minimally connected
single edge segment L, where the length of the edge segment
(l) in the image space can be computed on the condition that
the surface on which shadows fall is flat:

l =

⌈
TmaxH

tanϕ . c

⌉
, (1)

where ϕ denotes the solar elevation angle, c denotes the
resolution of the image, and the operator ⌈.⌉ rounds to the
next-larger integer. Once the structuring element is generated,
we label each component in MDR with an 8-neighborhood
connectivity analysis and apply morphological erosion to each
component independently. We keep track of the components
that do not entirely disappear after the erosion, and finally
label all pixels of those components as dark region (Fig. 2(f)).

C. Fuzzy landscapes and detection of initial building regions

Given a shadow object and a non-flat line-based structuring
element, the fuzzy landscape around the shadow object along
a given direction can be defined as a fuzzy set of membership
values in image space. The generated landscape for each
shadow object provides an indication of a surface discontinuity
near the shadow region (e.g. buildings, walls, vegetation
canopies etc.). Therefore, an automated fuzzy pruning step
[6] is applied to consider only the landscapes belonging to
building regions.

In this stage, we consider the building detection task as a
two-class partitioning problem where a given building region
has to be separated from the background (building vs. others).
A region-of-interest (ROI) is determined for each shadow
object, and pixels corresponding to foreground/building (TF ),
background/non-building (TB), and unknown classes (TU ) in
the ROI are automatically labeled using shadow object and
fuzzy landscapes [6] (Fig. 2(g)). To solve the partitioning, we
model TF and TB using Gaussian Mixture Models (GMMs)
and use the GrabCut approach [15] with the following energy
formula:

E(f) =
∑
n∈P

Dn(fn) + γ1
∑

(m,n)∈N

e−β∥zm−zn∥2

, (2)

where Dn(fn) favors the label preferences (fore-
ground/background) for each pixel n based on the observed
pixel values z and eventually depend on the results of
mixture modeling. N defines the set of neighboring pixel
pairs computed in the 8-neighborhood, and β and γ1 are the
constants that determine the degree of smoothness, where
β = (2

⟨
∥zm − zn∥2

⟩
)−1 with ⟨.⟩ expectation operator. To

complete the partitioning and to estimate the final labels
of all pixels in the bounding box, a minimum-cut/max-flow
algorithm is applied.

D. Flexible multi-label graph partitioning and verification of
building regions

The goal at this stage is to uncover final building locations
using a multi-label graph partitioning strategy initialized by
the information collected in previous stages. For a similar
purpose, a rigid four-label energy minimization was proposed
in [7]. However, unlike in that work, we have to take into
account the diversity of urban areas and the environmental-
illumination conditions during imaging. In this respect, the
classes vegetation and dark region can be considered optional,
and their presence principally depends on the contents of a
scene and the season/date of imaging (assuming that there are
buildings in the images and shadows cast by buildings are not
entirely occluded). Therefore, in this study, we propose a flex-
ible multi-label partitioning strategy with at most five classes:
building, vegetation, shadow, dark region and others. Given
the existence of the classes vegetation and dark region, the
number of classes in the multi-label optimization are adopted
automatically (varying between three and five). Thus, given a
set of pixels z = (z1, z2, . . . , zN ), and a set of class labels
L ∈ {1, . . . , l} where l depends conditionally on the number
of observed classes, our aim is to find the optimal mapping



4

γ1 Precision Recall
1 85.8 74.1
5 83.5 84.4
10 82.5 83.1
20 81.2 76.7

σi,x σi,y σi Precision Recall
1 2 1 82.1 85
2 4 2 83.2 84.9
3 6 3 83.5 84.4
4 8 4 82.7 84.3

TABLE I
PARAMETER TESTS FOR γ1 AND MBA WEIGHT SPREADS (SEE [12]).

from the data z to the class labels L. We utilize the energy
function in Eq. 2 and initialize a GMM for each observed class.
To minimize the energy E(f) for multi-label optimization
using graph cuts, we use the standard α-expansion move
algorithm [16], [17], [18]. After the partitioning, we extract the
regions labeled as building from the results of the optimization.
For verification, we first extract the shadow class after the
multi-label partitioning, and generate a new shadow mask
MNS . Then, we remove building regions which do not have
any shadow evidence around their directional neighborhoods.
Finally, we employ an area threshold to remove small artifacts
mislabeled as building (Fig. 2(h)).

IV. DATASET AND PARAMETERS

The test patches used in this study consist of 14 originally
orthorectified and pansharpened images selected from two
different well-known and well-issued VHR satellite sensors,
IKONOS-2 (1 m), and QuickBird (0.60 m). The used imagery
includes four multi-spectral bands (R, G, B and NIR) with a
radiometric resolution of 11 bits per band. All test patches are
purposefully selected to uncover the potential of the proposed
approach, emphasizing weaknesses of state-of-the art methods
and including different urban area characteristics at the same
time. Additionally, patches with a variety of dark regions are
chosen, e.g., pools, lakes, sea surface, roads, burnt areas, as
well as cast shadows due to topographic discontinuities.

The already investigated parameters from [7] are kept the
same. The results for testing γ1 of flexible multi-label parti-
tioning and weight spreading parameters σi,x, σi,y and σi for
calculating MBA map are presented in Table I, showing the
overall precision and recall rates (bold text marks the applied
settings). As it is shown, performance may slightly decrease
with other settings, however, the algorithm is not very sensitive
to the parameters.

In fact, there are only two new parameters to be set,
the maximum height threshold for buildings (TmaxH ) and
the number of GMM components for class dark region. In
this study, the threshold TmaxH is fixed to 50 m, which
is a practical value for buildings. For the number of GMM
components of class dark region, we use the same value as
for shadow regions, setting it to 2, because of the similar
radiometric characteristics.

V. EXPERIMENTS

The reference data consisting of building regions were pro-
duced manually by a qualified human operator. To evaluate the
pixel-level performance, we use the well-known P precision,
R recall and F-measure values.

Previous approaches like [6] and [7] suffer from errors
caused by newly installed asphalt pavements, water bodies,
burnt areas or simply discontinuities, which are incorrectly

detected as shadows in the preprocessing step (examples are
shown in Figure 3). These errors result in large false positive
areas, reducing detection accuracy significantly. With our in-
troduced contributions, misdetections caused by such problems
are successfully mitigated, improving detection results. The
MPP [3] method assumes rectangular buildings based on color,
shadow and gradient evidences, and the absence of these
evidences has crucial effects on detection accuracy. Therefore,
weak color evidence (grey rooftops) or varying building shapes
(curved structures) cause poor detection results. However,
this method copes with asphalt pavements and water bodies
successfully.

Quantitative pixel-level detection results are presented in
Table II, where the method is also compared to three state-
of-the-art approaches MPP [3], GrabCut [6] and Multi-label
Partitioning [7]. Test patches #4 and #13 are shown row-by-
row in Figure 3 along with the pixel-level detection results: the
colours green, red and blue represent TP (true positive), FP
(false positive) and FN (false negative) pixels, respectively.
Detection results of all test patches indicate that most of the
building regions are correctly detected due to the proposed
contributions. At the pixel-level (shown in Table II) an overall
F-score is computed to be almost 84%. Thus, despite the
complexities and difficulties in the test images, the results are
encouraging and prove the proposed method’s viability.

VI. CONCLUSION

In this letter, the built-in area evidence is exploited to revise
and post-process the shadow mask in a unique fashion. The
evidence allows us to detach regions belonging to dark objects
from cast shadows with the aid of the solar information using
a flexible multi-label graph partitioning strategy. The proposed
approach is tested for 14 image patches of two optical VHR
sensors, and the evaluation indicates that the proposed ap-
proach achieves quite promising results and outperforms three
state-of-the-art methods chosen for comparison.

In the future, we plan to focus more on buildings whose cast
shadows are completely occluded, and on cases where snow
or haze affects the detection. Novel features could be inte-
grated to solve these challenges: by exploiting the orientation
information of the feature points, edges from such cases could
be investigated. Also, the probabilistic results after fusing
the voting matrices could be directly integrated into graph
partitioning, which might result in further improvements. The
present method cannot discriminate cloud and terrain shadows
from building shadows, therefore worldwide available DSM
data may be integrated in the framework. Concerning the
increasing ground sampling distances (GSD) of images, we
plan to test our approach on WorldView-3 images with 30 cm
GSD. However, it might not be possible to obtain complete
shadow regions with images having significantly better GSD
(e.g. 10 cm).
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Fig. 3. Results of building detection for test patches #4 and #13. (first column) Test patches, (second column) the results achieved by the MPP [3],
(third column) the results achieved by the GrabCut [6], (fourth column) the results achieved by the Multi-label Partitioning [7], and (fifth column) the results
achieved by the proposed approach. The colours green, red and blue represent TP , FP and FN pixels, respectively. The entire dataset and their results are
provided in the following website: http://biz.nevsehir.edu.tr/ozgunok/en/378.

Database Pixel-based Performance (%)
MPP [3] GrabCut [6] Multi-label Partitioning [7] Proposed method

Test Image (size) Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score
#1(560× 367) 35.1 48.8 40.8 59.1 58.6 58.8 36.5 56.8 44.4 81.2 75.0 78.1
#2(554× 483) 41.0 75.7 53.2 70.8 49.8 58.5 76.8 78.9 77.8 74.3 86.4 79.9
#3(468× 304) 40.3 63.7 49.4 60.4 76.3 67.4 60.1 90.2 72.1 69.2 89.0 77.9
#4(896× 600) 39.2 36.1 37.6 54.6 64.8 59.3 52.4 76.7 62.3 86.6 78.8 82.5
#5(1213× 958) 46.2 82.2 59.2 71.5 61.7 66.2 70.2 89.5 78.7 91.0 88.1 89.6
#6(922× 634) 41.9 59.2 49.1 46.3 80.0 58.7 23.8 74.4 36.1 87.4 68.2 76.7
#7(928× 639) 56.1 69.8 62.2 77.5 83.2 80.3 77.2 87.3 81.9 81.7 88.8 85.1
#8(1009× 695) 49.9 49.7 49.8 72.2 69.4 70.8 68.1 86.9 76.4 86.4 83.6 85.0
#9(1615× 1209) 37.8 67.7 48.5 47.4 62.3 53.9 40.6 74.6 52.6 89.9 90.2 90.0
#10(1656× 1240) 32.3 43.7 37.1 30.6 71.5 42.8 20.0 71.4 31.3 61.0 73.0 66.4
#11(1222× 915) 63.9 53.7 58.4 70.1 92.2 79.6 77.9 95.9 86.0 83.7 87.0 85.3
#12(1311× 848) 70.8 56.7 62.9 46.5 17.3 25.2 41.1 32.2 36.1 84.4 81.0 82.7
#13(1193× 772) 67.9 60.2 63.9 62.6 52.3 57.0 67.6 86.0 75.7 86.2 85.1 85.6
#14(1193× 771) 76.7 66.5 71.2 61.1 43.1 50.5 66.6 71.3 68.8 84.3 85.9 85.1

Average 52.7 59.9 56.1 57.5 61.9 59.6 53.1 78.1 63.2 83.5 84.4 83.9

TABLE II
PIXEL-LEVEL QUANTITATIVE RESULTS FOR MPP [3], GRABCUT [6], MULTI-LABEL PARTITIONING [7] AND THE PROPOSED METHOD.
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