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Abstract – The paper presents a family of identification 
methods for linear dynamic systems. The key point is that 
the structure of the proposed algorithm can be scaled. The 
trade-off between calculation complexity and estimation 
performance is investigated. The paper demonstrates the 
performance improvement from LS to ML estimation. It is 
also shown that the efficiency of the algorithms 
significantly depends on the selected sampling time. 
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1. Introduction 
 
Identification of dynamic systems is a deconvolution 
problem in essence, namely knowing the driving input and 
the measured output a model of the system is to be set up. 
Several books and papers give excellent reviews on various 
identification algorithms (Ljung 1999), (Söderström 1989).  
 
Noises corrupting the signals available for the identification 
have certainly a strong impact on the identification results. 
The influence of the noise can be decreased by appropriately 
averaging or weighting the noisy signals. This way 
identification can be considered as a science of „averaging 
and weighting”. A well-known example is the fact that the 
expected value can be estimated by arithmetic mean in case 
of independent samples of identical distribution (IID 
samples). For single output systems corrupted by IID noise a 
frequently used approach is to apply  
 
 𝜃∗ = argmin! !

!𝑛
! 𝜃 𝑛(𝜃)  (1) 

 
to minimize the sum of the error squares. In Eq. (1) 𝜃 stands 
for the vector of parameters to be estimated, while  𝑛(𝜃) 
represents an error vector calculated from the noisy 
observations and the parametric model to be determined. 

The error components can be weighted. In case of known 
noise covariance an efficient weighting matrix is the inverse 
of the covariance matrix cov(n), leading to the estimation 
strategy  
 
 𝜃∗ = argmin! !

!𝑛
! 𝜃 𝑐𝑜𝑣!! 𝑛 𝑛(𝜃) (2) 

 
substantially reducing the impact of the noise effect. Here 
the noise is assumed to have zero mean and cov(n)   
covariance.  
 
If cov(n) is of strip/block structure, then the above 
estimation can be extended according to   

   
𝜃∗ = argmin! !

! !!! ! !"#!! !! !! !   (3) 
 
where 𝑛! ∈ 𝑅!, and further on 𝐶! = 𝑐𝑜𝑣(𝑛!). Introducing 
  𝑁! = 𝑛! 𝑛! …   Eq.(3) takes a more compact form by 
 
 𝜃∗ = argmin! !

!!"(!!
!!!!!!!) = argmin! !

!!"(!!
!! !!!!! ) (4) 

 
Note that the complexity of this problem is less than that of 
the original problem, consequently less calculation leads to a 
more precise result. This estimation can serve as an initial 
estimation for a more complex estimation algorithm 
deriving even more accurate results.  
 
Considering a general algebraic approach, identification 
frequently leads to solve an overdetermined set of equations 
in the form of   𝐹(𝑋) ≈ 0, where the dimension of F exceeds 
the dimension of the X vector/matrix to be determined. The 
simplest models are affine in nature. In this case 
identification needs to solve an 𝐴𝑋 ≈ 𝐵 overdetermined set 
of linear equations, where 𝑋 ∈ 𝑅!×! is to be determined 
given 𝐴 ∈ 𝑅!×! and 𝐵 ∈ 𝑅!×!. Various estimation 
algorithms apply different interpretations for the notation 
„≈”, resulting in diverse fitting properties. Just to mention a 

 



 

 

 

few variants (Markovsky et al. 2007): 
 

• Least Squares method (LS) 

 min∆!,! ∆𝐵 !     s.t.   𝐴𝑋 = 𝐵 + ∆𝐵 (5) 
 

• Total Least Squares method (TLS) 

 min∆!,∆!,! ∆𝐴  ∆𝐵 !    
                                  s.t. (𝐴 + ∆𝐴)𝑋 = 𝐵 + ∆𝐵     (6) 
 

• Structured Total Least Squares method (STLS) 

 min∆!,! ∆𝑝 ! (7) 
          s.t. 𝐴 𝑝 + ∆𝑝 𝑋 = 𝐵 𝑝 + ∆𝑝  where 𝐴 𝑝 ,𝐵 𝑝  affin 
 
All the above methods aim at identifying models linear in 
parameters, however, they can be realized via algorithms 
different in complexity. While the TLS and STLS models 
are linear separately both in parameters and error terms, they 
are bilinear in the joint space of the parameters and error 
terms. As far as the LS method is concerned, to find the 
optimum needs a matrix inversion, while TLS leads to an 
eigenvalue/singular value calculation. STLS exhibits a POP 
type problem, i.e. a global optimum problem. Application of 
usual numerical optimization techniques (e.g. Levenberg-
Marquard algorithm) results in only local optimum points. 
Excluding special cases identification of linear dynamic 
systems turns to a POP problem.  

 
All the three problems discussed above can be rewritten as  
 
 min∆!,! ∆𝑝 !  s.t.  𝐺 𝑋   ∆𝑝 = 𝑟(𝑋)  (8) 
 
Solutions can be expressed as 
 
 min! 𝑟(𝑋)! 𝐺 𝑋 𝐺! 𝑋

!
𝑟(𝑋)       (9) 

 
In all cases, however, the solutions are different from each 
other in terms of complexity. If the structure of 𝐺 𝑋  
specifically follows the structure of a block Toeplitz/Hankel 
matrix, then similarly to (Eq.4) an estimation algorithm by  
 

 min! 𝑡𝑟 𝐺! 𝑋 𝐺!! 𝑋
!
𝑟!(𝑋)𝑟!!(𝑋)   (10) 

 
is obtained. As it has been shown, various conceptual 
considerations may lead to similar identification algorithms. 
Later on in this paper it will be shown the application of 
these techniques to identify dynamic systems. 
 
The rest of the paper is organized as follows. Session 2 is 
devoted to study the description of linear dynamic systems. 
Relationships introduced in this Session will be utilized as 
constraints along the optimization procedures aiming at the 
identification. Session 3 presents a family of identification 
methods scalable regarding the calculation complexity. It 
will be also shown here that using a projection type solution, 
the solution of the global maximization problem can be 

avoided. Session 4 presents a simulation example to 
demonstrate the properties of the scalable identification 
algorithms, as well as the relation between complexity and 
effectiveness of the estimation. The paper will be terminated 
by Conclusion.  
 
 

2. Modeling of dynamic systems 
 
In this session three linear models will be discussed. 
 
One step model 
 
Linear dynamic systems are typically modelled in discrete 
form: 
 
 𝑦! = 𝑔! ∗ 𝑢! + ℎ! ∗ 𝑒! (11) 
 
where 𝑦! is the sample of the process output taken at time 
instant k, 𝑢! is the process input applied, 𝑒! is the error 
term, 𝑔! and ℎ! are the discrete-time impulse responses of 
the process and noise models, respectively. The notation ∗ 
represents convolution. In general, the error term is assumed 
to be IID with zero mean.  Note that the paper discusses 
SISO systems; however, the results can be extended for 
MISO or MIMO systems in a straightforward way. 
 
Instead of the nonparametric description by Eq. (11) mostly 
parametric models are used. State-space descriptions use the 
following relations: 
 
 𝑥!!! = 𝐴(θ)𝑥! + 𝐵(θ)𝑢! + 𝐸(θ)𝑒! (12) 
 𝑦! = 𝐶(θ)𝑥! + 𝐷(θ)𝑢! + 𝑒! (13) 

where 𝑥! ∈ 𝑅!  is the state vector of the dynamic system, 
while A, B, C, D and E are matrices or vectors with 
appropriate size involving the system parameters. The above 
state-space description can be considered as a multi input 
system with u and e, and with a single output y. It is well 
known that a state-space description is not unique, it is 
determined up to a linear matrix transformation. In Eqs. (12-
13) θ denotes the vector involving the parameters to be 
identified. In most cases the parametrization is affine in 
nature. 
 
The state-space description by Eqs. (12-13) can be 
transformed to transfer function form: 

 𝐴 𝑞 𝑦! = 𝐷 𝑞 𝑥! + 𝐵 𝑞 𝑢! + 𝐶 𝑞 𝑒!  (14) 
 
where A(q), B(q), C(q) and D(q) are polynomials of the shift 
operator q. A(q) and C(q) are monic polynomials: 
 

𝐴 𝑞 = det 𝐼𝑞 − 𝐴 θ  
𝐵 𝑞 = 𝐶 θ 𝑎𝑑𝑗 𝐼𝑞 − 𝐴 θ 𝐵 θ + det 𝐼𝑞 − 𝐴 θ 𝐷(θ) 
𝐶 𝑞 = 𝐶 θ 𝑎𝑑𝑗 𝐼𝑞 − 𝐴 θ 𝐸 θ + det 𝐼𝑞 − 𝐴 θ  

 𝐷 𝑞 = 𝐶 θ 𝑎𝑑𝑗 𝐼𝑞 − 𝐴 θ  (15) 



 

 

 

 
Cumulative model 
 
If the number of samples is N, then the number of 
constraints of equation type to be taken into account for the 
identification is 2N-1: 
  
𝑦! = 𝐶𝑥! + 𝐷𝑢! + 𝑒! 
𝑥! = 𝐴𝑥! + 𝐵𝑢! + 𝐸𝑒! 
𝑦! = 𝐶𝑥! + 𝐷𝑢! + 𝑒! = 𝐶𝐴𝑥! + 𝐶𝐵𝑢! + 𝐷𝑢! + 𝐶𝐸𝑒! + 𝑒! 
𝑥! = 𝐴𝑥! + 𝐵𝑢! + 𝐸𝑒!

= 𝐴!𝑥! + 𝐴𝐵𝑢! + 𝐵𝑢! + 𝐴𝐸𝑒! + 𝐸𝑒! 
… 
𝑦! = 𝐶𝑥! + 𝐷𝑢! + 𝑒! = 
𝐶𝐴!!!𝑥! + 𝐶𝐴!!!𝐵𝑢! +⋯+ 𝐷𝑢! + 𝐶𝐴!!!𝐸𝑒! +⋯+ 𝑒! 

(16) 
In the above relations the dependency of the matrices and 
vectors from the parameters has been avoided. The 
equations can be rearranged into matrix form: 
 
 𝑦 = Γ𝑥! + 𝐻!𝑢 + 𝐻!𝑒 (17) 
 
where  
 

𝑦 = 𝑦! 𝑦! … 𝑦! ! 
𝑢 = 𝑢! 𝑢! … 𝑢! ! 
𝑒 = 𝑒! 𝑒!   … 𝑒! !  

 

 Γ =

𝐶
𝐶𝐴
…

𝐶𝐴!!!
 (18) 

 

 𝐻! =

𝐷 0 … 0
𝐶𝐵 𝐷 … 0
… … … …

𝐶𝐴!!!𝐵 𝐶𝐴!!!𝐵 … 𝐷

 (19) 

 

 𝐻! =

1 0 … 0
𝐶𝐸 1 … 0
… … … …

𝐶𝐴!!!𝐸 𝐶𝐴!!!𝐸 … 1

 (20) 

The relation (17) clearly shows that in case of linear 
dynamic systems both Γ𝑥! and  𝐻!𝑒 are bilinear functions of 
the unknown variables. Eq. (17) can further be transformed 
into  
 

 𝑦 = Γ A, C 𝐺! 𝐴,𝐶, 𝑢
𝑥!
  𝐵
  𝐷

+ 𝐺! 𝐴,𝐶, 𝑒
  𝐸
1  (21) 

 
to indicate that the model is linear in 𝑥!, B, D and E. 
 
Multiply Eq. (17) with the following square Toeplitz matrix 
from the left: 
 

 𝒜 =

1 0 0 … 0 0
𝑎! 1 0 … 0 0
𝑎! 𝑎! 1 … 0 0
… … … … … …
0 0 0 … 1 0
0 0 0 … 𝑎! 1

 (22) 

 
where 𝑎! is the i-th coefficient of the polynomial 𝐴 𝑞 . Then 
the multiplication gives: 

 𝒜𝑦 = 𝒜Γ𝑥! +𝒜𝐻!𝑢 +𝒜𝐻!𝑒 (23) 
 
According to the Caley-Hamilton theorem all square 
matrices satisfy their own characteristic polynomial. This 
allows us to rewrite Eq. (23) as 

 𝒜𝑦 = z + ℬ𝑢 + 𝒞𝑒 (24) 
 
where ℬ and 𝒞 are both Toeplitz matrices identically 
structured as 𝒜, except the elements of the ℬ and 𝒞  
matrices are constructed by the polynomials 𝐵 𝑞  and 𝐶 𝑞 , 
respectively. Excluding the first m entries, vector z has only 
entries with value 0. Formally z = 𝒵𝑧! can be written, 
where 
 𝒵 = 𝐼

0 .  (25) 
 
Hankel generalized model 
 
Construct Hankel matrices using the vectors y, u and e:  
 

𝑌! = 𝐻𝑎𝑛𝑘𝑒𝑙(𝑦, 𝑞) 
𝑈! = 𝐻𝑎𝑛𝑘𝑒𝑙(𝑢, 𝑞) 
𝐸! = 𝐻𝑎𝑛𝑘𝑒𝑙(𝑒, 𝑞) 

 
where 

𝐻𝑎𝑛𝑘𝑒𝑙 𝑥, 𝑞 = !
!!!!!

𝑥! 𝑥! 𝑥! … 𝑥!!!!!
𝑥! 𝑥! 𝑥! … 𝑥!!!!!
… … … … …
𝑥! 𝑥!!! 𝑥!!! … 𝑥!

 (26) 
Signals just introduced allow us to write expressions similar 
to Eq. (17) and Eq. (24): 
 
 𝑌! = Γ!𝑋!! + 𝐻!,!𝑈! + 𝐻!,!𝐸! (27) 
 
 𝒜!𝑌! = 𝒵!𝑍!! + ℬ!𝑈! + 𝒞!𝐸! (28) 
 
Matrices Γ!, 𝐻!,!, 𝐻!,!,  𝒵!, 𝒜!, ℬ! and 𝒞! in the above 
equations  have identical structure with matrices Γ, 𝐻!, 𝐻!, 
𝒵, 𝒜,   ℬ and 𝒞 introduced earlier. The only difference is 
manifested in the size of the matrices. Further on N is to be 
replaced by q in the relations. As matrix 𝒵! involves 0 
elements excluding its first m rows, omitting the first m rows 
Eq. (28) can be reformulated as 
 
 𝒜!𝑌! = ℬ!𝑈! + 𝒞!𝐸! (29) 
 



 

 

 

Here the symbol  denotes matrices obtained after omitting 
the first m rows. When reformulating, 𝒜!𝛤! = 0 has been 
taken into account. Note that matrix  [𝒜!

! Γ!]  is non-
singular. 
 
In case of output error noise a model is looked for, where 𝐻! 
is a unity matrix and 𝒞! = 𝒜!. 
 
 

3. A family of identification methods 
 

From mathematical point of view identification of dynamic 
systems can be considered as a constrained optimization 
problem. Using state-space system description the object of 
the optimization is  
 
 min!,!!! 𝐸! !

  s.t.  𝑌! = Γ!𝑋!! + 𝐻!,!𝑈! + 𝐻!,!𝐸! (30) 
 
If transfer functions are used for system description the 
optimization takes the following form: 

 
 min!,!!! 𝐸! !

 s.t.  𝒜!𝑌! = 𝒵!𝑍!! + ℬ!𝑈! + 𝒞!𝐸! (31) 
 
i.e. the constraints follows Eq. (28). The most frequently 
used norm in the objective functions to characterize the 
measure of the fitting is the Frobenius norm. Other norms 
can also be used, however, easy mathematical handling of 
the expressions required by Frobenius norms makes it a 
popular choice. The outlined method is scalable, it will be 
shown that increasing size q the estimation can be improved, 
but at the same time the complexity required by the 
necessary calculations will grow. The maximum value of q 
is limited by the number of the measured input/output pairs. 
The minimum value of q is determined by the dimension of 
the state-space dimension of the system to be identified: 
𝑞!"# = 𝑚 + 1. 
 
In the sequel identification of dynamic systems involving 
output error type noise will be discussed. The method to be 
developed can be generalized for ARMAX models, as well.  
 
In the course of the optimization procedure projections will 
be used several times. In this respect the following notations 
will be used:  𝑃! = 𝐴 𝐴!𝐴 !𝐴!, and 𝑃!┴ = 𝐼 − 𝐴 𝐴!𝐴 !𝐴!. 
respectively, where ! denotes Moore-Penrose pseudo 
inverse. 
 
The fitting error by 𝐸! !

 depends on the initial value of the 
variables and on the parameters to be estimated. First find 
the minimum of the objective function with respect to the 
initial values.    
 
Minimization w.r.t. the initial values 
 
According to the derived relationships the initial values are 
linear in the constraints, thus  
 
 min!!! 𝐸! !

 s.t.  𝑌! = Γ!𝑋!! + 𝐻!,!𝑈! + 𝐸! (32) 

 
can be obtained by the following projection: 
 
 min!!! 𝐸! !

= 𝑃!!
┴𝐸!

!
= 𝑃!!

┴ (  𝑌! − 𝐻!,!𝑈!)
!

 (33) 

 
Now find the QR factorized form of the Hankel matrices 
built by the measured signals: 
 

 
𝑈!
𝑌!

= 𝑅!𝑄! =
𝑅!,! 0
𝑅!",! 𝑅!,!

𝑄! (34) 

 
In the above decomposition 𝑅! is a lower triangular matrix. 
Using the QR factorization the objective function takes the 
following form: 
 
 min!!! 𝐸! !

= 𝑃!!
┴ −𝐻!,! 𝐼 𝑅!

!
 (35) 

 
Note that in Eq. (33) the Frobenius norm should be 
calculated with matrix size 2𝑞  ×(𝑁 − 𝑞 + 1), while in Eq. 
(35) the norm calculation should be calculated with matrix 
size 2𝑞  ×2𝑞. The adantages of introducing the QR 
factorization are as follows:  
1. QR factorization ensures more favourable numerical 

conditions than the original problem. 
2. While the objective function should be evaluated several 

times in the course of the optimization, the 𝑅! matrix 
derived from the QR factorization should just once be 
determined. 

 
Finding the optimal value for the initial condition using 
transfer function approach also requires a minimization 
procedure subject to equation constraint:   
 
 min!!! 𝐸! !

 s.t.  𝒜!𝑌! = 𝒵!𝑍!! + ℬ!𝑈! +𝒜!𝐸! (36) 
 
Minimization can be performed via projection in this case, 
as well and the procedure leads to  
 
 min!!! 𝐸! !

= 𝑃𝒜!
!𝐸!

!
= 𝒜!

!(𝒜!𝑌! − ℬ!𝑈!) !
(37) 

 
Using QR factorization the value of the minimized objective 
function becomes 
 
 min!!! 𝐸! !

= 𝒜!
! −ℬ! 𝒜! 𝑅! !

 (38) 
 
Eq. (35) clearly shows that in case of transfer function 
approach the minimum is only a function of the matrices 
with reduced size (denoted by  ). This means that the (31) 
problem reduces to    
 
min!,!!! 𝐸! !

= min! 𝐸! !
  s.t.  𝒜!𝑌! = ℬ!𝑈! +𝒜!𝐸! 

(39) 
Functions given by Eqs. (35) and (38) depend only on the 
parameters stored in θ. The value of the objective function 
can be calculated in a relatively cheap way. The low and 
restricted dimension of the parameter vector offers the way 
to find the minimum via numerical optimum seeking 



 

 

 

procedures. As the identification problem exhibits a global 
optimization problem, local optimum seeking procedures 
(e.g. MATLAB fminsearch rutin) need to be supported by 
appropriate initial value selection. 
 
Subspace estimation 
 
Beyond the direct minimization of the objective function the 
subspace based identification offers another alternative. 
Here the minimization of the fitting error is accomplished in 
two steps: 
1. The first step can be interpreted as a data compression. 

The goal here is to generate the best fitting subspace via 
the following minimization problem: 
 

 𝛤!"# ,𝐻!"# = 𝑎𝑟𝑔min!!,!!,! 𝑃!!
┴ −𝐻!,! 𝐼 𝑅!

!
 (40) 

 
subject to the following constraint 

 
 𝑟𝑎𝑛𝑔 𝛤! ≤ 𝑚. (41) 
 
2. The second step is a parameter estimation performed in 

the reduced  Γopt and 𝐻!"#  or in their complement 
subspace: 
 

𝛤!"#~𝛤!(𝜃)  and  𝐻!"#~𝐻!,!(𝜃)  (42) 
 
A definite advantage of the method is that if appropriate 
special parametrization is used, no iterations are necessary 
for the parameter estimation. A large corpus of theoretical 
and practical results about the subspace identification is 
available (Pillonetto et al. 2015; Qin 2006; Van Overschee 
et al. 1996; Vajk 2003). 
 
In the optimization problem exhibited by Eq. (40) it is 
assumed that 𝐻!,! has arbitrary entries and no structural 
restrictions exist. Under such assumptions the objective 
function is linear in 𝐻!,!, thus the minimum by 𝐻!,! can be 
calculated by the following projection: 
 
min
!!,!

𝑃!!
┴ −𝐻!,! 𝐼 𝑅!

!
= 𝑃!!

┴𝑌!𝑃!!! !
= 𝑃!!

┴𝑅!,!
!

 

(43) 
Now determine the minimum of the objective function 
according to 𝛤!. It is still assumed that there is no structural 
restriction regarding the selection of 𝛤!. Take 𝛤! as a left 
singular vector of matrix 𝑅!,!, then  
 

 𝑃!!
┴𝑅!,!

!

!
= 𝜎!!!∈!!

 (44) 
 
where 𝐼! forms a set of left singular vectors not belonging to  

𝛤!. Consequently, 𝑃!!
┴𝑅!,!

!

!
 is minimized if 𝛤! is set up 

by left singular vectors of dominant singular values.  
 
So far it has been shown that minimizing 𝐻!,! leads to LS, 
while minimizing 𝛤! leads to TLS parameter estimation. 
When estimating matrices 𝛤! and 𝐻!,!, respectively, the 

internal structure of the matrices have not been taken into 
account. Structural restrictions are only utilized when  𝛤! 
and 𝐻!,! are estimated.  
 
Similar results are obtained if the Frobenius norm of 
𝐸! = 𝑌! − 𝑌!  is minimized first by 𝐻!,! without utilizing 
structural restrictions: 
 
 min!!,! 𝑌! − 𝑌! !

!
= 𝑌!" − 𝑌!" !

!
 (45) 

 
where  𝑌!" = 𝑌!𝑃!!! and 𝑌!" = 𝛤!𝑋!𝑃!!!; then the 
optimization 
 min!!" 𝑌!" − 𝑌!" !

!
   (46) 

 
subject to  𝑟𝑎𝑛𝑔 𝑌!" ≤ 𝑚 is performed. 
 
The optimization problem by Eq. (38) composed with 
transfer functions  
 
 minℬ! 𝒜!

! −ℬ! 𝒜! 𝑅! !
 (47) 

 
will also lead to an LS problem if no structural restrictions 
are introduced for ℬ!. The minimum can be calculated as 
follows: 
 
 minℬ! 𝒜!

! −ℬ! 𝒜! 𝑅! !
= 𝑃𝒜!

!   𝑅!,!
!

 (48) 

 
Minimization of this expression with respect to  𝒜!

!  can 
also be performed by the singular decomposition of 𝑅!,! . 
Singular vectors belonging to the (q-m) non-dominant 
singular values result in the minimum of the function.  
 
The left singular vectors belonging to the m highest singular 
values can produce the 𝛤!"# matrix, which can also be 
considered as an estimation of the extended observability 
matrix. The 𝒜!"#

!  matrix is constructed by the rest of the left 
singular vectors. The above derivation of the matrices 
implies that the product of the two matrices is zero. Apart 
from special singular value arrangements the two subspaces 
can be derived unambiguously. Derivation of 𝛤!"# and 𝒜!"#

!  
shows that these matrices are not unique. Assume 𝑇! and 𝑇! 
are invertible matrices of appropriate size. Then if 𝛤!"# is a 
solution of the problem, then 𝛤!"#𝑇! is a solution, too. 
Similarly, if 𝒜!"#

!  is a solution, then 𝒜!"#
! 𝑇!!   delivers the 

same value for the objective function.  
 
Parameter estimation in the subspaces 
 
Depending on the parametrization of the system description 
applied, various strategies can be used for the parameter 
estimation. In known subspaces, e.g.  𝛤!"#𝑇! ≈ 𝛤!(𝜃)  or 
𝑇!  𝒜!"# ≈ 𝒜! (𝜃) can be used for the parameter estimation.  
 
Just as an example, utilizing the special built up of the 
extended observability matrix the A and C matrices can be 
estimated. The first row of the observability matrix can be 



 

 

 

taken as C. Introduce matrices U1 and Uq by simply leaving 
the first and last row in 𝛤!"#. The special built up of the 
observability matrix allows us to write 𝑈! ≈ 𝑈!𝐴. Thus the 
state matrix can be estimated as 𝐴 = 𝑈!!𝑈!.  
 
Now as we know A and C finding the B and D parameters in 
the state model leads to an LS problem minimizing the 
objective function by Eq.(35), as the error is linear in 
parameters and the objective function is quadratic. As far as 
the transfer function description is concerned, minimizing 
the objective function by Eq. (38) w.r.t. the coefficients of 
the B(q) polynomial is another LS problem to be solved  
given the A(q) polynomial.  
	
  
	
  

4. Performance improvement  
	
  
The identification methods discussed in the paper have been 
investigated in a Monte Carlo simulation study using the 
following linear, continuous-time, second order process: 

  
𝑦 = !

! !!"#!!    !!  !!.!!"#!!    !  !!
  𝑢 (49) 

 
Also, assume additive white noise with variance of 0.05 
acting on the output. The total observation time is 36 sec. 
Numbers of samples processed by the identification 
algorithms are 500, 1000, 2000 and 4000, respectively. As 
far as the excitation is concerned, the input is lowered from 
1 to -1, then raised from -1 to 1 periodically in every 6 sec. 

 
Using the same simulation environment several 
identification runs over the same samples have been 
evaluated. For each identification run the q scaling factor 
(essentially the size of the Hankel matrices used) sweeps the 
range from q=m+1=3 to q=30. As an overall measure for 
the effectiveness of the parameter estimation the empirical 
standard deviation have been calculated: 

 ∑
=

−=
L

j
kjqkk aa

L
qs

1

2
,, )ˆ(1)(  (50) 

where j denotes the index of the simulation run, L=100 
stands for the number of simulation runs performed, while 
ka  (k=1,2) are the discrete time system coefficients. 

 
Results of the simulation study related to the 𝑎! coefficient 
are shown in Fig. 1. Similar results have been obtained for 
𝑎!. The results are in harmony with the expectations, 
namely the more information is used by a parameter 
estimation procedure, the less variance in the estimation can 
be achieved. Consequently, the TLS algorithm working with 
the smallest amount of information delivers the most modest 
results. On the other hand, q=N requires the highest amount 
of calculation and results in an estimation with the smallest 
variance. If the noise distribution is of normal iid, then the 
minimization of the functions (30) and (31) gives maximum 
likelihood estimation. Fig. 1 shows that the useful choice of 
the tuning parameter q is significantly affected by the 
dynamics of the investigated system.  The efficiency of the 

estimation is inversely proportional to the used sampling 
time.  

 
Fig.1. Variation of the standard deviation of the 1a  
parameter estimation with respect to the size of the Hankel 
matrices applied and the number of the samples used for 
identification 
 
 

5. Conclusions 
 
The paper is about the identification of dynamic systems. 
An effective way has been shown to solve the related 
deconvolution problem. The presented family of estimation 
methods allows the introduction of a trade-off between the 
computational complexity and the estimation performance. 
Details discussed in this paper have been restricted to 
involve only SISO systems with output error model. The 
presented method can be generalized to ARMAX MIMO 
systems in a direct way.  
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