
Towards Automatic Application Migration to Clouds
Jorge Ejarque∗, Andras Micsik† and Rosa M. Badia∗‡

∗Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
†Computer and Automation Research Institute - Hungarian Academy of Sciences (SZTAKI), Budapest, Hungary

‡Artificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC)
E-mail: {jorge.ejarque, rosa.m.badia}@bsc.es micsik@sztaki.hu

Abstract—Porting applications to Clouds is one of the key
challenges in software industry. The available approaches to
perform this task are basically either services derived from
alliances of major software vendors and Cloud providers focusing
on their own products, or small platform providers focusing on
the most popular software stacks. For migrating other types of
software, the options are limited to Infrastructure-as-a-Service
(IaaS) solutions which require a lot of programming effort for
adapting the software to a Cloud provider’s API. Moreover,
if it must be deployed in different providers, new integration
procedures must be designed and implemented which could be
a nightmare. This paper presents a solution for facilitating the
migration of any application to the cloud, inferring the most
suitable deployment model for the application and automatically
deploying it in the available Cloud providers.

Index Terms—Service Deployment, Cloud Migration, Cloud
Computing, Platform-as-a-service, Cloud Interoperability.

I. INTRODUCTION

The Cloud Computing [1] paradigm has become a revolu-
tionary approach in distributed computing, providing comput-
ing and data resources in a dynamic and pay-per use model.
This paradigm is becoming more attractive for different types
of companies and institutions. We observe an increasing inter-
est in exploring the potential benefits of moving partially or
entirely their IT services and applications to Cloud infrastruc-
tures in order to decouple the provisioning and management of
computing resources from their core business process in order
to become more productive. However, migrating software to
Clouds is not an easy task, since it requires a deep knowledge
of the technology and the services offered by Cloud Providers.
Among others, developers need to design how to partition
the software into Virtual Machines (VMs), to develop how
to build the VM images and how to deploy VMs and how to
check the health status of the running VMs, and there are no
easy solutions for this. During the last years, a new market
of platform services has appeared to provide solutions to the
aforementioned problems. The available platform services in
the current Cloud market can be classified in two types: the
ones derived from big alliances among the most important soft-
ware vendors and major Cloud providers that offer software in
an exclusive way; or small platform providers which focus just
on well-known Model-View-Controller (MVC) frameworks.
However, for other type of software, the offer is limited to
simple platform services (such as simple batch job executions)
or to basic infrastructure services which are complex to use.
The adaptation of a tailored application to these services

requires a lot of programming effort and a deep knowledge of
Cloud technologies. Moreover, if the application requires to
work with multiple providers, various integration procedures
must be implemented, multiplying the effort. This could be a
big burden for companies where IT management is not part
of their core business.

The work presented in this paper aims to provide a platform
that facilitates and automates the integration of applications in
Cloud providers’ infrastructures, lowering the barrier of Cloud
adoption. To achieve this goal, our platform automatically
finds the most suitable distribution and placement of software
components on the different computing offerings. The key
for achieving this goal is to define applications in a general-
purpose and infrastructure-agnostic way, but providing the
required information (e.g. communication links, quality, etc.)
to automatically deduce how the different software compo-
nents can be grouped, which component can be replicated
or scaled and how they can be deployed to better adapt to
the underlying heterogeneous distributed computing infras-
tructure. Once the suitable deployment is found, the platform
automatically generates a plan to deploy it as a workflow of
different Cloud providers API invocations, data transfers and
process executions.

The paper is organized as follows. Section II presents the
architecture of the platform describing the common ontology
for application deployment and the different components in
detail. Then, Section III provides a usage example to validate
how a complex application can be described according the
proposed ontology, and performs an evaluation in terms of
the platform overhead and scalability. Section IV compares
our approach with the related work and Section V draws the
conclusions and propose guidelines for future work.

II. ARCHITECTURE

The automatic migration of applications to Clouds is per-
formed by the proposed system in two stages as depicted in
Figure 1. In the first stage, given an application description, the
system infers the most suitable deployment model and looks
for the best placement according to the application properties
and the available computing resources. The result of this stage
provides a ”what-if” scenario showing how the application will
be distributed in heterogeneous clouds. Users can evaluate this
solution, modify the application and repeat the process until
a suitable solution is found. In the second stage, the system
generates a workflow to provision the required resources and

Andras
Typewritten Text
Author version of paper accepted at 2015 IEEE 8th International Conference on Cloud Computing: http://dx.doi.org/10.1109/CLOUD.2015.14

2nd Stage

1st Stage
Application Description

QoS C3
QoS C3

C 1

QoS C3
C 2

C 3

n

n

1 m

Selected Deployment

VM 1

C1

VM 2

C 3C31

VM 3

C32

Application Model
Reasoner

Deployment Planner
Deployment Workflow

Deployment Placement

Classification Rules

Providers’ Resource

Providers’ API

Workflow Enactor

Cloud Providers

Application Deployment
Ontology

Fig. 1. Application Migration Framework Architecture

Fig. 2. Application Model

to deploy the application components according to the model
and placement obtained in the first stage. The aforementioned
migration processes are automatically performed by a com-
bination of different Artificial Intelligence (AI) techniques
detailed in the following paragraphs.

A. Application Deployment Ontology

The Application Deployment Ontology provides a common
and machine-understandable model for sharing knowledge
between the different components involved in the application
deployment. This model is divided in two parts: a first part,
which models the applications in an infrastructure-agnostic
way (Figure 2); and a second part, which models Cloud
providers describing their resources and the provided API to
manage them (Paragraph II-A.II-A2).

1) Application Model: An application is mainly described
as a component topology consisting of a set of components
related by a set of links which describe how the components
are intercommunicated. Each communication link is mainly
defined by the type of communication (one-to-one, one-to-
many, many-to-one or many-to-many) and the channel, which

Fig. 3. Installation, Configuration and Execution Model

can be memory (e.g. libraries sharing objects, arrays, etc.), disk
(e.g. processes which communicate by writing and reading
files) or network (e.g. web services interchanging messages).
Note, that communication links implicitly define a hierarchy, if
a component depends to another one, it will be because there
is component invocation by using one of the aforementioned
communication channels.

In addition to the component topology, developers also have
to define the required quality for the different components and
communication links. These are described in the proposed
Application Model as Quality Rules, where the required la-
tency, bandwidth, processors, memory, storage or the number
of component instances are inferred depending on the values
of certain application or infrastructure metrics.

To finalize the application description, developers have to
describe how the components and their dependencies are
installed and configured. For describing this part (Figure 3),
we have followed the resource state based model used by
dev-ops tools such as Puppet [2] or LCFG [3](Large Scale
Unix Configuration System). With this model, developers have
to describe the installation, configuration and execution of a
component as a set of resources (such as daemons, processes,
files, packages, etc.) with a desired status (set of property-
value pairs). They can also describe resource dependencies
which force an execution order (with the requires property) or
if a restart is required when a resource is updated (with the
subscribes property). Section III will provide an example of
how a complex application is described including the compo-
nent topology, Quality Rules and the installation, configuration
and execution descriptions.

In addition to the provided description, the Application
Model also defines a hierarchy of components and commu-
nication link types and a set of description logic rules which
enables the Application Model Reasoner to infer the best
deployment model for an application. More details about this
reasoning is described in Section II-B.

2) Infrastructure Model: Figure 4 gives an overview of
the Infrastructure Model, which focuses on describing the
computing resources offered by Cloud providers (VM types,
storage, network). In the literature, we can find several models
for describing computing resources such as [4], [5]. Therefore,

Fig. 4. Infrastructure Model

ec2:createInstance rdf:type owls:Action;
owls:hasInput “?instanceType xml:String” ,

“?location xml:String”;
owls:hasOutput “ ?instanceID xml:String” ;
owls:hasPrecondition “ ”;
owls:hasEffect “ ?vm rdf:Type infra:VMInstance” ,

“?vm instantiates ?instanceType” ,
“?vm location ?location”,
“?vm id ?instanceID”,
“?vm status created”;

Fig. 5. API Action Description Example

our contribution has focused on extending these models for
including the description of images and the Cloud providers’
APIs. In current approaches, these descriptions are provided
in plain text which are hard to be processed by machines. For
images, we propose to use the same resource state model used
for the component installation and configuration. It provides
a model for describing the current status of an image which
can be easily processed by computers in order to check if an
image totally or partially contains the resources required by
the application components. On the other hand, we propose to
model Cloud providers’ API following OWL-S [6] concepts
where different action are described by indicating the input
and output parameters and the prerequisites and effects on
the infrastructure state as variables and predicates. Figure 5
shows the description of the Amazon EC2 createInstance
action with the defined parameters, preconditions and effects.
This extended infrastructure model will be used by the De-
ployment Placer to compare the application requirements with
the computing resources and by the Deployment Planner to
describe the planning domain for the automatic generation of
deployment plans. These processes will be explained in detail
in Sections II-C and II-D.

B. Application Model Reasoner

Once a developer has described the application, the Ap-
plication Model Reasoner classifies components and infers
implicit affinity constraints. Applying description logic rules,
the reasoner classifies the components as: Singleton, if the
defined topology only allows a single component instance;
Replicable, if the topology allows to have multiple copies,
but the component and link configuration descriptions do not
allow a run-time reconfiguration; or Scalable, if the topology
allows multiple instances and a run-time reconfiguration is
allowed. Once the components have been classified, the Ap-

PlacementSolution calculatePlacement (Set<Group> groups,
Set<Providers> providers, long timeOutMillis) {

long initTimeMillis = System.currentTimeMillis();
PlacementSolution bestSolution = selectResources(groups, providers);
PlacementSolution oldSolution, newSolution;
boolean timedOut;
do{

Set<Group> nextEvalGroups;
oldSolution = bestSolution;
for(int i = 0; i<groups.length; i++){

for(int j = i+1; j<groups.length; j++){
Set<Group> newGroups = mergeGroups(i, j, groups);
newSolution = selectResources(newGroups, providers);
if (newSolution.cost <= bestSolution.cost){

bestSolution = newSolution;
nextEvalGroups = newGroups;

timedOut = checkTimeOut(initTimeMillis, timeOutMillis);
}

}
groups = nextEvalGroups;

}while (newSolution != null && oldSolution.cost <= bestSolution.cost
&& !timedOut);

return bestSolution;
}

Fig. 6. Placement algorithm code snippet.

plication Model Reasoner applies the Quality Rules defined
by inferring the communication quality for each link, the
processing requirements for each component, as well as the
number of instances in case the component is Replicable or
Scalable. Finally, the reasoner applies another set of rules
for inferring the component affinity constraints based on the
inferred quality and the type of communication channels.
These constraints will indicate which instances should be
deployed in the same VM, in the same location, or which
ones should share a disk. For instance, if the components
have a memory communication or the required bandwidth and
latency can be only achievable in a intra-host environment,
the Application Model Reasoner includes a sameVM property
between their components instances. In the case of required
bandwidth and latency can be only achievable in a local
environment, the Application Model Reasoner includes the
sameLocation property and if the communication channel
type is Disk, the Application Model Reasoner includes a
shared disk and attach it to component instances. Finally, the
Application Model Reasoner creates the deployment model for
the application by grouping the component instances according
to the sameVM and sameLocation properties and shared disks.
This deployment model is passed to the Deployment Placer in
order to assign these groups to the available provider resources.

C. Deployment Placer

The Deployment Placer aims at providing the best re-
source assignment for the application components according
to the components processing requirements and the affinity
constraints. In a first approach, we defined this problem as
a constraint-satisfaction problem and using a state-of-the art
solver we tried to get an optimal solution. However, the
complexity of this solution tends to be exponential, so they
are only tractable for a very small number of components
and provider resources. For that reason, we decided to find
the best sub-optimal solution which fulfills the application
requirements but in an assumable period of time.

Figure 6 shows the code for calculating the placement

solution. First, the placer looks for a first placement solution by
selecting: the cheapest VM for each atomic component group
defined by the affinity constraints; the cheapest required disks
and networks which have been derived from the communica-
tion links; and the suitable images available. This selection is
solved in linear time by applying simple comparisons. Then,
after getting the first solution, the placer tries to get a better
solution by merging the groups and selecting a new VM,
image, disk and network for this merge. If the merged solution
has a lower cost it is assigned as best solution and will be the
input for the next iteration. The same process is performed
until we do not find a solution with a lower cost, no more
VM groups can be merged or the search time-out has been
reached. The complexity of this second phase is polynomial,
because the maximum iterations in the loops is the number
of VM groups. Once the Placer has provided a deployment
solution, it can be evaluated by developers. In case they
want to see the deployment with a different communication
or configuration or quality level, they just need to modify
the application description accordingly and repeat the first
stage. Once a suitable deployment solution is found, it will
be automatically deployed in the Cloud providers during the
second stage.

D. Deployment Planner and Enactor

The Deployment Planner is in charge of finding a workflow
to provision the required resources (VMs, shared disks and
networks), configuring the communication links and installing,
configuring and running the components on the provisioned
resources. The deployment placement solution obtained in the
first stage can be represented as a desired infrastructure state,
and the providers’ actions can be modeled as state transitions.
Therefore, generating the deployment workflow can be ob-
tained as a solution of a state-space search performed by AI
planners. Applying this idea, the Planner generates a planning
domain from the Infrastructure Model and a planning problem
with an empty initial state and with the placement solution
as goal state. Then, the domain and problem are introduced
to a Partial Order Planner which performs the search and
provides a sequence of actions which produces the goal state
from the initial state. For the installation, configuration and
execution of components, the Planner will inspect the resource
status of the images assigned to each VM and compares
it with the description of the components assigned to these
VMs, generating a dev-ops manifest for automatically reaching
the missing resource states. Finally, the Workflow Enactor
executes the generated deployment workflow invoking the
required actions of the Cloud providers’ API for the resource
provisioning and applies the manifests to install, configure and
run the components on the cloud resources.

III. EVALUATION

A working prototype of the described system has been
implemented to validate the concepts presented in the paper.
The Application Deployment Ontology has been described
using OWL2 [7] and the inference rules has been described

Fig. 7. KOPI Application Overview

with SWRL [8]. Pellet [9] has been used to perform the
ontology and rule reasoning described in the Application
Model Reasoner. Planning4J [10] has been used to generate the
planning domain and problem, which is solved using the FF
planner [11]. The prototype has been deployed in an Intel i5
laptop with 8GB RAM and we have evaluated it in two parts.
In the first part, we use the prototype to migrate the KOPI
application to Amazon EC2 in order to validate the system
capabilities and to illustrate the system behavior. In the second
part, we evaluate the system overhead and its scalability.

A. Use Case

The KOPI application [12] is an On-line Plagiarism Search
Portal developed by SZTAKI which implements an innovative
cross-language plagiarism detection technique. It gives the
opportunity to compare a reference document to other indexed
collections of documents and search for potentially translated
parts. This new technique is costly in terms of processing and
data storage; therefore we sought the service is a potential
candidate to be migrated to the cloud. Figure 7 shows the
component topology of the KOPI application and Figure 8
shows a snippet of the application description. The application
contains five components: the KOPI Portal, where users upload
the documents to check; the KOPI Engine, which is in charge
of managing the document checking life-cycle; a Database
to store documents and plagiarism check results; and the
Fulltext Aggregator and Fulltext Engine to perform various
indexed search sub-tasks for KOPI Engines. For each of these
components, developers have to define the communications
with other components, the Quality Rules and the installation,
configuration and execution.

Figure 9 shows some examples of the communications
defined for the KOPI application. Each description includes
the type of communication (one-to-one, one-to-many, etc.), its
channel, the component which communicates with, and the
Quality Rules.

Quality Rules define how to infer the quantity of resources
consumed by a component or communication link according
to different metrics. In this case, the KOPI Quality Rules
are expressed as a function of the desired CharsPerSecond
(document processing speed), NumberOfDocs (the number
of simultaneous documents to be evaluated) and IndexSize
(number of documents to be compared) metrics. To describe
this functions, we have reused the approach described in [13]

:KOPIApplication rdf:type app:Application ;
app:hasComponent :FulltextEngine , :FulltextAgreegator ,

:KOPIDatabase , :KOPIEngine , :KOPIPortal .
:KOPIPortal rdf:type app:Component ;

app:hasCommunication :PortalDBCommunication ,
:PortalEngineCommunication ;

app:hasConfiguration :PortalConfig ;
app:hasInstallation :PortalInstall ;
app:hasExecution :PortalExec ;
app:hasQuality :PortalQuality .

:KOPIDatabase rdf:type app:Component ;
app:hasCommunication :MasterSlaveCommunication ;
app:hasInstallation :DBInstall ;
app:hasConfiguration :DBConfig ;
app:hasExecution :DBExec ;
app:hasQuality :DBQuality .

:KOPIEngine rdf:type app:Component ;
app:hasCommunication :EngineAgregatorCommunication ,

:EngineDBCommunication ;
...

:FulltextAgreegator rdf:type app:Component;
app:hasCommunication :FTAgregatorAgregatorCommunication ;

:FTAgragatorEngineCommunication ;
...

:FulltextEngine rdf:type app:Component ;
...

Fig. 8. Component Description Snippet.

:MasterSlaveCommunication rdf:type :CommunicationLink ;
app:numberDestinationInstances ”many” ;
app:numberSourceInstances ”one” ;
app:communicatesWithComponent :KOPIDatabase ;
app:hasChannel :Network ;
app:hasSourceConfiguration :MasterSlaveConfiguration ;
app:hasQuality :DBToDBQuality .
...

:FTAgragatorEngineCommunication rdf:type app:CommunicationLink ;
app:numberSourceInstances ”one” ;
app:numberDestinationInstances ”many” ;
app:communicatesWithComponent :FulltextEngine ;
app:hasChannel app:Memory ;
app:hasQuality :AggregatorToEngineQuality ;
app:hasSourceConfiguration :AggregatorToEngineConfig .
...

:FTAgregatorAgregatorCommunication rdf:type app:CommunicationLink ;
app:numberDestinationInstances ”many” ;
app:numberSourceInstances ”many” ;
app:communicatesWithComponent :FulltextAgreegator ;
app:hasChannel app:Disk ;
app:hasQuality :AggregatorToAggregatorQuality ;
app:hasSourceConfiguration :AggregatorToAggregatorConfig ;
app:hasDestinationConfiguration :AggregatorToAggregatorConfig .
...

Fig. 9. Component Communication Description Examples.

which embeds the mathematical formulas in RDF descriptions.
Figure 10 shows a Quality Rule example for the Fulltext
Engine, where the number of instances and their assigned
hardware (cpu, memory, disk) are expressed as functions of
the mentioned metrics. Following the same approach, users
can define Quality Rules for communication links to describe
bandwidth and latency requirements.

:FTEngineQuality rdf:type app:QualityRule ;
app:hasMetric :CharsPerSecond, :IndexSize, :NumberOfDocs ;
app:numberInstances ”(:NumberOfDocs * :CharsPerSecond)/200” ;
app:needsCores ”:CharsPerSecond/10” ; ## numCores
app:needsRAM ”4 * (:IndexSize/100) * :CharsPerSeconds” ; ## MB
app:needsDisk ”5 * :IndexSize/1024 ” . ## GB

:CharactersPerSecond rdf:type app:Metric ;
app:source”file://etc/fulltext/config.property?property=cps” ;
app:goalValue 20 .

:IndexSize rdf:type app:Metric ;
app:source”file://etc/fulltext/config?property=indexsize” .
app:goalValue 10000 .

:NumberOfDocuments rdf:type app:Metric ;
app:source ”http://:KOPIPortal[0].vm.ip/documents” .
app:goalValue 100 .

Fig. 10. Component Quality Description Examples.

:DBInstall rdf:type app:Installation ;
app:hasState :MySQLPackage, :DBFile .

:MySQLPackage rdf:type app:Package ;
app:name ”mysql” .
app:ensures ”installed” .

:DBFile rdf:type app:File ;
app:requires :MySQLPackage” .
app:location ”/usr/mysql/dbs/” ;
app:name ”kopi.db”.
app:source ”http://....”;
app:ensures ”exists” .

:DBConfig rdf:type app:Configuration ;
app:hasState :MySQLConfigFile .

:MySQLConfigFile rdf:type app:File ;
app:location ”file:///etc/mysql/” ;
app:source ”http://....”;
app:name ”mysql config” .
app:ensures ”exists” .

:DBExec rdf:type app:Execution ;
app:hasState :MySQLService .
app:requires app:MySQLPackage
app:subscribes app:MySQLConfigFile
app:ensures ”started” .

Fig. 11. Component Installation, Configuration and Execution Description
Example.

:MasterSlaveConfiguration rdf:type app:Configuration ;
app:hasState app:MySQLConfigFile .

:MySQLConfigFile rdf:type app:File ;
app:hasContent :MasterSlaveTemplate .

:MasterSlaveTemplate rdf:type app:Template ;
app:hasInput :MasterDBVariable ,

:SlavesDBVariable .
:MasterDBVariable rdf:type app:Variable ;

app:hasValue $:KOPIDatabase[0].host.ip$;
app:name ”master-node” .

:SlavesDBVariable rdf:type app:Variable ;
:hasValue $:KOPIDatabase[1...].host.ip$;
:name ”slaves-nodes” .

Fig. 12. Communication Configuration Description Example.

The application description is finalized by providing the
installation, configuration and execution states for component
and communication links. Figure 11 provides an example of
such descriptions for the Database component and its self-
communication link. The Database component requires to
have the mysql package and the database file installed, its
configuration requires a mysql config file defined, and its
execution requires the mysql service started. For the case
of the link configuration state (Figure 12), it requires to
have a mysql config file, whose content should match with a
template that contains the master and slave addresses as input
parameters. Note, that the subscribed property defined in the
DBExec, indicates that the mysql service must be restarted
each time the mysql config file is updated. So, if the number
of instances is modified, the file will be updated and the service
will be restarted. This patterns are searched by the Application
Model Reasoner to infer if a component is just Replicable or
dynamically Scalable.

Once the application is defined, the user submits the ap-
plication description in the system together with the desired
supported values for NumberOfDocuments, IndexSpace and
CharactersPerSecond. During the first step, the KOPI com-
ponents are classified as described in Section II-B. As a result
of the classification, the Application Model Reasoner classifies
the KOPI Portal as Singleton because the topology only allows
to have an instance. The rest can have several instances, but
the Application Model Reasoner classifies the Database as
Replicable because of the configuration-installation pattern

Fig. 13. KOPI Application Placement

sequence{
action{ ec2:createVolume

input{ size = 50; location = us-east;};
output{ volumeID = ?ID 2;};};

action{ ec2:createInstance
input{ type = m3.2xlarge; location = us-east;};
output{ instanceID = ?ID 4;};

action{ec2:attachVolume
input{volumeID = ?ID 2; instanceID= ?ID 4;};}

action{ec2:startInstance
input {instanceID= ?ID 4;};};

...}

Fig. 14. KOPI Deployment Workflow Snippet.

explained in the previous paragraph. As the rest of the com-
ponents do not follow the same pattern, they are classified as
Scalable. In this first step, the Application Model Reasoner
also applies the Quality Rules for the desired metric values
inferring the hardware, bandwidth and latency requirements
as well as the number of instances per component. Evaluating
these requirements and the communication channels types, the
Reasoner deduces that Fulltext Engines must be located in
the same VM as Fulltext Aggregators because of the memory
channel; and Aggregator instances must be located in the same
location because of the required bandwidth and latency of
the disk communication link is not assumable by a wide-area
network. In the second step, the Deployment Placer provides
a solution for placing the different components in the Amazon
EC2 resources as explained in Section II-C. As a result of this
part, the system provides the placement depicted in Figure 13,
and passing this placement to the Deployment Planner, it
returns a plan for deploying the KOPI application in EC2.
This plan is composed by a sequence of provider API calls to
provision the computing resources (Figure 14), and a set of
Puppet manifests for deploying the components in each VM.

B. Overhead and Scalability

Table I, shows the time spent by the system to get the
solution for the KOPI use case, distributed as follows: 12 ms
for the work performed by the Application Model Reasoner
where is has evaluated the 6 components descriptions, 30 ms
for getting a placement solution of the required component
solution of 24 instances in 6 VMs and 1 Shared disk, and

TABLE I
TIME TO GET THE MIGRATION SOLUTION FOR KOPI APPLICATION

Main Action Time
Application Model Reasoning 12 ms
Placement Solution 30 ms
Deployment Planning 65 ms
Total 112 ms

65 ms for getting the workflow which deploys the planning
solution. To evaluate how the system performs for larger appli-
cations, we have generated synthetic application descriptions
with different number of components, instances and providers
with different number of resources, capabilities and costs.
We have measured the time spent by our system in each
phase. Figure 15(a) shows the time spent by the Application
Model Reasoner for performing the reasoning with different
number of components. As we can see in the image, the
overhead grows linearly with the number of components, and
the overhead is low even for large number of components and
can be neglected compared to the overhead introduced by the
Placer and Planner (Figures 15(b) and 15(c)). These Placer
and Planner processing times grow polynomially with the
number of instances and VMs which are closely related to the
number of components defined in the application. Moreover,
in the case of the Placer, the time grows slower or faster
depending on the number of providers and VM types. In terms
of time scale, inferring the deployment for large applications
whose deployment requires hundreds of instances and VMs is
obtained in several seconds or few minutes. This is acceptable
for the users compared to the time for deploying applications
in the Cloud.

IV. DISCUSSION AND RELATED WORK

In the current market place we can found several options
to facilitate the application deployment at multiple providers.
A first group of solutions are based on common interface,
which could be used by developers, and a set of plug-ins which
implements the access to different Cloud providers. There are
several examples of this approach such as Apache jClouds
[14] or OCCI [15]. These solutions work quite well for expe-
rienced developers migrating simple applications, but not for
common software developers migrating complex applications.
The learning curve for using IaaS is slow and a complex
application deployment requires to learn how to do several
provisioning and configuration tasks. Moreover, maintaining
these solutions is also complex, because a change in the Cloud
providers’ API requires at least a change in the interface plug-
ins and potentially a change in the common interface definition
and all its plug-ins.

Another option to deploy applications are platform ser-
vices, such as Heroku [16], Google App Engine [17] or
Amazon CloudFormation [18]. These platform services have
two limitations: first, they focus on a set of applications,
traditionally MVC applications developed with J2EE, Django,
Ruby on Rails, etc. If the application is not using any of the
predefined stacks, the user is not able to use the platform; and

0 250 500 750 1000
0

200

400

600

800

1000

Components

T
im

e
 (

m
ili

se
co

n
d

s)

(a) Application Model Reasoner

0 250 500 750 1000
0

50

100

150

200

250

300

5 Providers – 10 Types

5 Providers – 50 Types

10 Providers – 10 Types

10 Providers – 50 Types

Instances

T
im

e
 (

se
co

n
d

s)

(b) Deployment Placer

0 250 500 750 1000
0

50

100

150

200

250

300

350

400

450

500

Application VMs

T
im

e
 (

se
co

n
d

s)

(c) Deployment Planner

Fig. 15. Overhead introduced by the system for different number of components, instances, and VMs

secondly, they also hide the underlying infrastructure, binding
to work only with the Cloud provider that the platform has
an agreement with. So, at the end, developers have again a
provider lock-in but in another layer of abstraction. Regarding
platforms for multi-cloud deployment, we can find two types
of solutions: open platforms such as Cloud Foundry [19] or
Cloudify [20], which provide a set of core capabilities and
services to enable the deployment of applications to different
Cloud providers; or a broker solution such as CloudPier [21],
proposed by the Cloud4SOA project, which allows users
to find platform services, which are compatible with their
application stack. The common problem in both types of
solutions is that, at the end, they only provide easy deployment
and adaptation functionality for the same type of MVC appli-
cations as other platforms. In the open-platform cases, users
could try to extend the platform to support their application
stack but it will be similar than trying to use directly a common
interface. This option also inherits the problem of having to
change the implementation of the upper layer services as a
consequence of a change in the Cloud providers’ API.

Other solutions proposed to improve Cloud interoperability
are based on extensible and machine-processable models to
describe cloud resources and applications. The main idea
behind it, is the use of these models to inter-operate with
the cloud services and resources in the different phases of
the application life-cycle. The benefits of this idea are that
models are not bound to a specific implementation and can
be easily extended and used to automate processes. The most
popular Cloud application model is the Open Virtualization
Format (OVF) [22]. This format is supported by several
hypervisors and cloud middleware. It defines an application
as a set of Virtual Systems which is very close to the
infrastructure details. Therefore, it is attractive for experienced
cloud developers and system administrators, but not productive
for general software developers. The mOSAIC project [5]
proposed an application model based on design patterns for
parallel applications. For each pattern or application, devel-
opers must define a set of rules which map the application
to infrastructure level resources, and these rules are used to
deploy the application. The most extensive model for Clouds
is the CloudML [23] which is developed in conjunction by the

projects REMICS [24], MODAClouds [25] and PaaSage [26].
The difference with mOSAIC is that instead of matching the
application with rules, they define a language to specify the
deployment of the application in the cloud resources. The
common drawback in those approaches is that developers
must explicitly specify the details of how the application is
deployed in the cloud according to the infrastructure model.
Describing this deployment model is better than implementing
the adaptations to the Cloud, but it is still too complex and
remains as a main barrier to achieve a productive migration
to Clouds.

Comparing these solutions with our system, it automates the
full deployment process from a generic infrastructure-agnostic
application description which supports any type of application
or software stack. Developers do not need to specify the cloud
deployment and placement, it is automatically inferred for any
Cloud provider without user-intervention. So, it could be a per-
fect complement for model-based solutions such as CloudML,
because it can generate the deployment model description
from any application description. In addition, our proposal
improves the current infrastructure models by including image
descriptions as well as the component installation, configura-
tion and execution descriptions in a machine-understandable
way. These descriptions are then required to automatically
infer how the provider VM images must be modified to include
the application components. These are complex concepts and
they are not tackled by the models mentioned above. Finally,
in our approach, changes in the Cloud providers API will not
require changing neither applications nor system services. As
mentioned before, the deployment workflow is automatically
generated on-demand according to the API description. So,
a change in the provider services will be considered by the
system the next time a deployment is requested, generating a
new workflow which includes the new version of the API.

V. CONCLUSIONS AND FUTURE WORK

We have presented an approach which combines different
Artificial Intelligence techniques for performing automatic
migration of distributed applications to the Cloud. Starting
from a generic application model which defines components
and their communication links, the system applies ontology

and rule reasoning to classify components and infer their
affinity. After the first step, the system also searches for
the best components-to-VMs assignment which fulfills the
affinity constraints and resource requirements. Finally, from
the deployment placement solution and the providers’ API
description, the system builds a planning problem whose
solution will provide the workflow for provisioning the virtual
resources as well as installing, configuring and executing
the components assigned to each VM and setting up the
communication links.

We have implemented a prototype and we have validated the
concept with the KOPI application, which provides a portal
for plagiarism detection. We have measured the overhead
introduced by the system to perform the aforementioned tasks.
We have seen the overhead is acceptable compared to the cloud
deployment time and it is considerably smaller than the time
spent by a developer to perform the same tasks. Finally, we
have discussed the differences with the current deployment
approaches and the benefits that our system provides compared
to other solutions.

As future work, we see several points of improvement.
For simplicity, we have made Quality Rule descriptions per
component or communication, but it would also be interesting
to support application-wide non-functional Quality Rules such
as the availability and reliability which are closely related
with the number of instances the application topology and
the affinity constraints. Extending the current rules, we could
infer the effect that a required availability and reliability has on
the deployment model by setting extra affinity constraint or a
minimum number of instances. Also regarding Quality Rules,
developers have to currently provide the rules to infer number
of instances and their computing requirements depending on a
system load and quality metrics. However, some of these rules
could be automatically deduced by applying machine learning
methods, as we did in [27] and [28], to estimate the number
of instances and computing requirements from historical data
which monitored the quality metrics for different resource
usage and system load.

Finally, another point of improvement is extending the
automatic workflow creation. It is currently limited to pro-
vide the resource provisioning and to create the manifests
for the component installation and configuration. However,
recent cloud solutions also offer advanced services such as
monitoring and scalability, image management and software
licensing. The current Deployment Planner could be easily
extended to include the workflow to setup these services on the
deployment plan, enabling run-time adaptation and automatic
management of software licenses.

VI. ACKNOWLEDGMENT

This work has been supported by the Spanish Government
under contract TIN2012-34557 and grant SEV-2011-00067
and Generalitat de Catalunya under contract 2009-SGR-980.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: Towards a cloud definition,” ACM SIGCOMM Computer
Communications Review, vol. 39, no. 1, pp. 50–55, 2009.

[2] PuppetLabs, http://puppetLabs, last access May 2015.
[3] Large Scale Unix Configuration System, http://www.lcfg.org, last access

May 2015.
[4] Distributed Management Task Force, “Common Information Model

v.3.0,” DSP0004, 2013.
[5] mOSAIC Project, http://www.mosaic-cloud.eu/, last access May 2015.
[6] D. Martin, et al, “OWL-S: Semantic markup for web services,” W3C

Submission, 2004.
[7] B. Motik, et al, “OWL 2 Web Ontology Language,” W3C Recommen-

dation, 2012.
[8] I. Horrocks, et al, “SWRL: A Semantic Web Rule Language Combining

OWL and RuleML,” W3C Submission, 2004.
[9] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A

practical owl-dl reasoner,” Web Semantics: science, services and agents
on the World Wide Web, vol. 5, no. 2, pp. 51–53, 2007.

[10] Planning4J - A Java API for planning,
http://code.google.com/p/planning4j, last access May 2015.

[11] B. Nebel, “The FF Planning System: Fast Plan Generation Through
Heuristic Search,” Journal of Artificial Intelligence Research, vol. 14,
pp. 253–302, 2001.

[12] A. Micsik, P. Pallinger, and D. Siklósi, “Scaling a plagiarism search
service on the bonfire testbed,” in Proceedings of the 5th IEEE Interna-
tional Conference on Cloud Computing Technology and Science, vol. 2,
2013, pp. 57–62.

[13] K. Wenzel and H. Reinhardt, “Mathematical Computations for Linked
Data Applications with OpenMath,” in Proceedings of the 24th Work-
shop on OpenMath, 2012, pp. 38–48.

[14] Apache jCloulds, http://jclouds.apache.org/, last access May 2015.
[15] Open Cloud Computing Interface, http://occi-wg.org/, last access May

2015.
[16] Heroku, http://www.heroku.com/, last access May 2015.
[17] Google App Engine, http://appengine.google.com/, last access May

2015.
[18] Amazon Cloud Formation,

http://aws.amazon.com/cloudformation/, last access May 2015.
[19] Cloud Foundry, http://cloudfoundry.org, last access May 2015.
[20] Cloudify, http://getcloudify.org/, last access May 2015.
[21] Cloud Pier, http://www.opencloudpier.org, last access May 2015.
[22] Distributed Management Task Force, “Open Virtualization Format Spec-

ification,” DSP0243, 2013.
[23] Cloud ML, http://cloudml.org/, last access May 2015.
[24] Remics Project, http://www.remics.eu/, last access May 2015.
[25] MODAClouds Project, http://www.modaclouds.eu/, last access May

2015.
[26] PaaSage Project, http://www.paasage.eu/, last access May 2015.
[27] J. Ejarque, A. Micsik, R. Sirvent, P. Pallinger, L. Kovacs, and R. Badia,

“Semantic resource allocation with historical data based predictions,” in
Proceedings of the 1st International Conference on Cloud Computing,
GRIDs, and Virtualization, 2010, pp. 104–109.

[28] X. J. Collazo-Mojica, S. M. Sadjadi, J. Ejarque, and R. M. Badia, “Cloud
application resource mapping and scaling based on monitoring of qos
constraints.” in Proceedings of the 24th International Conference on
Software Engineering and Knowledge Engineering, 2012, pp. 88–93.

