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1. Introduction 

 
The simple YOULA parameterization [5], [6] is not so widely 
known than the YOULA-KUCZERA parameterization [4], [5]. 
The classical YOULA parameterization gives a very simple 
way for open-loop stable processes when the regulator can 
be analytically designed by explicit formulas. 
 
The YOULA parameter is, as a matter of fact, a stable (by 
definition), regular transfer function 
 

  

Q s( ) =
C s( )

1+ C s( ) P s( )
   or shortly   

  

Q =
C

1+ CP
 (1) 

 
where 

 
C s( )  is a stabilizing regulator, and 

 
P s( )  is the 

transfer function of the stable process. 
 
It follows from the definition of the YOULA parameter that 
the structure of the realizable and stabilizing regulator in the 
YOULA-parameterized control loop is fixed: 
 

  

C s( ) =
Q s( )

1! Q s( ) P s( )
or shortly

  

C =
Q

1! QP
 (2) 

 
The YOULA parameterized control loop is shown in Fig. 1. 
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Figure 1. YOULA-parameterized control loop 
 
The YOULA parameterization can be extended for two-
degree-of-freedom control systems and applying reference 
models for the tracking and noise rejection properties of the 

closed-loop simple design formulae can be developed for 
the regulator design [1], [2]. 
 

2. Uncertainties of process models and closed-loop 
parameters 

 
The process parameters are never known precisely and the 
process is subject to change. The environment can change, 
which can in turn change the parameters of the process in a 
given region. Negative feedback reduces the sensitivity of 
the system to parameter changes. Therefore regulator design 
needs to take possible parameter changes into account. The 
required behavior of the control loop must be fulfilled not 
only for the nominal parameters but also for the possible 
parameter changes. 
 
The knowledge of a process is never exact, independently of 
the method – whether measurement-based identification 
(ID) or physico-chemical theoretical considerations – by 
which its model is determined. The uncertainty of the plant 
can be expressed by the absolute model error 
 
 !P = P " P̂  (3) 
 
and the relative model error 
 

  

! =
!P

P̂
=

P " P̂

P̂
 (4) 

 
where  P̂  is the available nominal model used for regulator 
design and  P  is the real plant. 
 
Let us now investigate the behavior of the control system if 
the transfer function of the process changes from the (real) 
value 

 
P s( )  to the nominal (model) value

 
P̂ s( ) . The overall 

transfer function of the open loop is L = CP . For small 
changes in the process 
 

 

!L =
"L

"P
!P = C!P  (5) 

 
Applying the relative changes we obtain 
 

   

!L

L
= !

L
=

C!P

CP
=
!P

P
= !   ;  

 
!P s( ) = P s( ) " P̂ s( ) = ! (6) 

 



 

 

 

The overall transfer function of the negative feedback 
closed-loop is 
 

  

T =
CP

1+ CP
 (7) 

 
For small changes 
 

  

!T =
"T

"P
!P =

C

1+ CP( )
2
!P  (8) 

 
For relative changes: 
 

   

!T

T
= !

T
=

1

1+ CP

!P

P
= S

!P

P
= S!  (9) 

 
where  S  is the sensitivity function of the closed-loop 
 

  

S =
!T T

!P P
=

1

1+ CP
 (10) 

 
Consider the following three simple closed control loops 
which can be used in model-based regulator design. The 
first closed-loop can be seen in Fig. 2. Here it is assumed 
that the regulator  C  is computed from the theoretical real 
process  P  and is placed together with the real process in the 
closed-loop. Obviously this closed-loop is not realistic and 
represents an ideal case only. 
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Figure 2. The theoretical closed system 
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Figure 3. The nominal closed system 

 
The next version can be seen in Fig. 3, and is usually 
applied in design tasks, namely, when the regulator  Ĉ  is 
determined on the basis of the process model  P̂  and the 
whole closed-loop is model-based. This case is usually 
called the nominal system. This closed-loop depends only 
on the designer, on the knowledge of the process and the 
suggested regulator. The scheme can be used in simulation, 
optimization and design tasks. 
 
The third version of the closed system is what operates in 
the reality. A model-based regulator is used together with 
the real process in the closed-loop as in Fig. 4. Usually 
measurements, verifications and application of identification 

methods take place in this kinds of closed-loops. 
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Figure 4. The real closed system appearing in the practice  

 
Table 1. The sensitivity and complementary sensitivity 

functions of the three systems 
System ideal nominal real 
function    

 T  
  

T =
CP

1+ CP
 

  

T̂ =
ĈP̂

1+ ĈP̂
 

   

!T =
ĈP

1+ ĈP
 

 S  
  

S =
1

1+ CP    

Ŝ =
1

1+ ĈP̂     

!S =
1

1+ ĈP  
 
The sensitivity and complementary sensitivity functions for 
the above three closed systems are summarized in Table 1. 
The computation of each element is very different and they 
must not be mixed. Obviously, in the ideal case when 
 P̂ = P  the elements in the same rows are equal. 
 

Table 2. The sensitivity and complementary sensitivity 
functions for the YOULA-parameterized control loop 

System ideal nominal real 
function    

 T  
 

 
QP  

 

 
Q̂P̂  

   

Q̂P̂ 1+ !( )
1+ Q̂P̂!

 

 S  
 

  
1! QP

 

 

  
1! Q̂P̂

    

1! Q̂P̂

1+ Q̂P̂!  
 
It is easy to check that Table 1. for the YOULA-
parameterized control loop is changing to Table 2 if 

 
Ĉ = Ĉ P̂( )  is the model based YOULA regulator. They can 

be rewritten in another form, too (see Table 3). 
 
Table 3. The other forms of the sensitivity functions for the 

YOULA-parameterized control loop 
System ideal nominal real 
function    

 T  
 

 
T = QP  

 

 T̂  
   

T̂
1+ !

1+ T̂!
 

 S  
 

  
S = 1! QP  

 

  
Ŝ = 1! Q̂P̂  

   

Ŝ
1

1+ T̂!
 

 
Let us investigate how the real system approximates the 
nominal one, which is always the basis for the design. 
Compute the relative error 
 

   

! "T
=

T̂ ! "T

"T
= !

!

1+ !
1! T̂( ) = !

!

1+ !
Ŝ  (11) 

 



 

 

 

This is an excellent property, because  Ŝ  attenuates the 
relative model error at the low frequency domain. Usually 
the sensitivity function is a high pass filter. 
 
 

3. Introduction of the observer-based YOULA regulator 
 
It is well known that the model based YOULA-regulator 
corresponds to the Internal Model Control Structure (IMC), 
presented in Fig. 5. The equivalent IMC structure based 
YOULA-regulator performs the feedback from the model 
error

 
!

Q
. 
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Figure 5. The equivalent IMC structure of a YOULA-
regulator 

 
Similarly to the classical “State-Feedback-Observer” (SFO) 
scheme it is possible to construct an internal closed-loop 
performing the feedback by 

 
K̂

l
 from 

 
!

l
 (see Fig. 6, [3]) to 

reduce the model error using the classical observer principle. 
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Figure 6. The observer-based IMC structure 

 
With straightforward block manipulations the observer 
based IMC topology can be reduced to the two closed-loops 
system shown in Fig. 7. 

The relationship between the two errors in Figs. 5b and 6 is 
 

  

!
l
=

1

1+ K̂
l
P̂

y " P̂u( ) =
1

1+ L̂
l

!
Q
= Ĥ !

Q
  ;  

 
L̂

l
= K̂

l
P̂  (12) 

 
i.e., the observer principle virtually reduces the model error 
by Ĥ . Here 

 
L̂

l
 is the internal loop transfer function. 
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Figure 7. Equivalent closed-loops for the observer-based 
IMC structure 

 
The introduction of the observer feedback changes the 
YOULA-parameterized regulator to 
 

  

!Ĉ ˆ !P( ) =
Q̂

1" Q̂
P̂

1+ K̂
l
P̂

=
Q̂ 1+ K̂

l
P̂( )

1+ K̂
l
P̂ " Q̂P̂

 (13) 

 
The form of  !Ĉ  shows that the regulator virtually controls a 
fictitious plant ˆ !P , which is also demonstrated in Fig. 7. 
Here the fictitious plant is 
 

  

ˆ !P = ĤP̂ =
P̂

1+ L̂
l

=
P̂

1+ K̂
l
P̂

 (14) 

 
The error attenuating filter is 
 

   

Ĥ =
1

1+ K̂
l
P̂
= H

1+ !

1+ H!
    where    

  

H =
1

1+ K̂
l
P

 (15) 

 
The nominal complementary sensitivity function in the 
observer-based IMC structure is 
 

  
!T̂

ry
=

!Ĉ P̂

1+ !Ĉ P̂Ĥ
= Q̂P̂ = T̂  (16) 

 
so this is equal to the observer free case. 
Compute the complementary sensitivity function of the real 
loop now 



 

 

 

   
!!T

ry
=

!Ĉ P

1+ !Ĉ PĤ
=

T̂ 1+ "( )
1+ T̂Ĥ"

 (17) 

 
and the relative error 

  
!! " !T

 of 
   
! !T
ry

 is, similarly to (11) 
 

   

!! " !T
=

!T̂
ry
" " !T

ry

" !T
ry

= "
!

1+ !
1" T̂Ĥ( )  (18) 

 
Compute the complementary sensitivity function of the ideal 
loop 
 

  
!T

ry
=

!C P

1+ !C PH
= QP  (19) 

 
which follows from (16). The above results are summarized 
in Table 4. The most important result of this analysis is that 
the observer-based YOULA regulator gives the same nominal 
and ideal complementary sensitivity functions as the original 
YOULA regulator. 
 

Table 4. The complementary sensitivity functions with 
observer-based YOULA regulator 

System ideal nominal real 
function 

  
!T

ry
 

  
ˆ !T
ry

 
   
! !T
ry

 

 

  
!T

ry
 

 
 
QP  

 

 
Q̂P̂  

   

Q̂P̂ 1+ !( )
1+ Q̂P̂Ĥ!

 

 
 

4. Reference model based YOULA regulator design 
 
The simplest YOULA regulator based on reference model 
design [1], [2] is 
 

  

Ĉ =
Q̂

1! Q̂P̂
=

R
n

1! R
n

P̂
!1    ;   

  

C =
Q

1! QP
=

R
n

1! R
n

P
!1  (20) 

 
where the model based YOULA parameter 
 

   
!Q = Q̂ = R

n
P̂
!1      ;     

  
Q = R

n
P
!1  (21) 

 
was applied, because in practical design cases 

  
!Q = Q̂ ! Q . 

Here 
  
R

n
 is the desired reference model for the tracking. 

Applying this regulator, the Table 1 will be changed to 
Table 5. 
 
Calculate now the relative design error 

  
!

x
 obtained with the 

different complementary sensitivity functions. The obtained 
relationships are shown in Table 6, where 
 

   

!
x
=

R
n
! T

x

T
x

 (22) 

 

Table 5. The complementary sensitivity functions with 
YOULA regulator 

System ideal nominal real 
function    

 T  
 

  
R

n
 

 

  
R

n
 

   

R
n

1+ !( )
1+ R

n
!

 

 

 
Q  

  
R

n
P
!1  

  
R

n
P̂
!1  

  
R

n
P̂
!1  

 
Table 6. The relative design errors with YOULA regulator 

System ideal nominal real 
function    

  
!

x
 

 
0 

 
0 

   

!
!

1+ !
1! R

n( )  

 
Here 
 

   

! "T
= !

!

1+ !
1! R

n( ) = !
!

1+ !
S

o
 (23) 

 
and 

  
S

o
 is the sensitivity function of the ideal system. This is 

an excellent property, because 
  
S

o
 attenuates the relative 

model error at the low frequency domain, see (11). 
 
The advantage of the reference model based design is that 
the uncertainty in the YOULA parameter is reduced to 
uncertainty of the process model only. Therefore the relative 
design errors for the ideal and nominal system are zero. 
 
It is interesting to investigate how these system functions 
change using an observer-based YOULA regulator, when 
 

  

!Ĉ ˆ !P( ) =
R

n
1+ K̂

l
P̂( ) P̂

"1

1+ K̂
l
P̂ " R

n

=
R

n
P̂
"1
+ K̂

l( )
1+ K̂

l
P̂ " R

n

 (24) 

 
The obtained relationships are shown in Table 7. 
 

Table 7. The complementary sensitivity functions with 
observer-based YOULA regulator 

System ideal nominal real 
function    

 T  
 

  
R

n
 

 

  
R

n
 

   

R
n

1+ !( )
1+ R

n
Ĥ!

 

 

 
Q  

  
R

n
P
!1  

  
R

n
P̂
!1  

  
R

n
P̂
!1  

 
Table 8. The relative design errors with observer-based 

YOULA regulator 
System ideal nominal real 
function    

 
!!x  

 
0 

 
0 

   

!
!

1+ !
1! R

n
Ĥ( )  

 
Calculate now the relative design errors 

  
!!
x

 obtained for 



 

 

 

observer-based YOULA regulator, which are summarized in 
Table 8. 
 
 
5. Sensitivity reduction by different observer regulators 

 
Investigate the sensitivity reductions for three simple 
regulators for

 
K̂

l
. First select an integrating (I) regulator, 

when 
 

 

K̂
l
=

A
l

s
 (25) 

 
The error attenuating filter is 
 

  

Ĥ j!( ) =
1

1+ K̂
l
P̂
=

1

1+
A

l

j!
P̂

=
0 ; !" 0

1 ; !" #

$
%
&'

 (26) 

 
For a proportional integrating (PI) regulator 
 

  

K̂
l
= A

l

1+ T
l
s

s
 (27) 

 
and the error attenuating filter is 
 

  

Ĥ j!( ) =
1

1+ K̂
l
P̂
=

1

1+ A
l

1+ T
l
j!

j!
P̂

=
0 ; !" 0

1 ; !" #

$
%
&'

(28) 

 
The above limit values mean that I type observer regulators 
can provide zero sensitivity at the low frequency domain 
( !" 0 ), so they can tolerate large errors in the process 
gain. 
 
For a proportional (P) regulator 
 

 
K̂

l
= A

l
 (29) 

 
and the error attenuating filter is 

  

Ĥ j!( ) =
1

1+ K̂
l
P̂
=

1

1+ K̂
l
P̂ 0( )

; !" 0

1

1+ K̂
l
P̂ !( )

; !" #

$

%

&
&

'

&
&

 (30) 

 
This means that zero sensitivity at the low frequency domain 
( !" 0 ) can be reached by choosing large 

 
K̂

l
! "  

observer regulator gain within the stability domain. 
 
For a phase lead/lag regulator 
 

  

K̂
l
= A

l

1+ T
2
s

1+ T
1
s

 (31) 

and the error attenuating filter is 
 

  

Ĥ j!( ) =
1

1+ K̂
l
P̂
=

1

1+ A
l
P̂ 0( )

; !" 0

1

1+
T

2

T
1

A
l
P̂ #( )

; !" #

$

%

&
&
&

'

&
&
&

 (32) 

 
The above regulator types mean that no classical regulator 
can drastically reduce the model error in the important 
medium frequency domain. For such purpose special 
regulator loop-shaping methodology must be applied. 
 
 

6. Simulation example 
 
Consider a simple first order process and its model as 
 

  

P =
A

1+ sT
=

1

1+10s
     ;     

  

P̂ =
Â

1+ sT̂
=

1.5

1+ 20s
 (33) 

 
Select the design goal to spead up the oparation five times, 
i.e. select a reference model 
 

  

R
n
=

1

1+ sT
n

=
1

1+ 2s
 (34) 

 
The YOULA regulator based on reference model design [1], 
[2] is 
 

  

Ĉ =
Q̂

1! QP̂
=

R
n

1! R
n

P̂
!1

=
1+ sT̂

sT
n

=
1+ 20s

2s
 (35) 

 
where the model based YOULA parameter 
 

  

Q̂ = R
n
P̂
!1

=
1

Â

1+ sT̂( )
1+ sT

n

=
1

1.5

1+ 20s

1+ 2s
 (36) 

 
was applied. 
 
First select a PI-type observer regulator 
 

  

K̂
l
= A

l

1+ T
l
s

s
= 0.01

1+ 2s

s
 (37) 

 
The observer-based YOULA regulator is shown in Fig. 8. 
This scheme can be further simplified as Fig. 7 shows. 
 
It is interesting to show the step responses of the different 
elements in this scheme. Fig. 9 shows these functions for the 
true process, the model, the reference model and the 
observer-based closed control loop 

   
!!T

ry
. The reached error: 

   
R

n
! "!T

ry
 is also shown in the figure. 
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Figure 8. PI-type observer-based YOULA regulator 
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Figure 9. The most important step responses if the 

reference signal  r  is a unit step 
 
 

7. Conclusions 
 
The YOULA parameter based regulator design is an excellent 
tool for cases when the open-loop process is stable. This 
approach gives explicit analytical formulas for the design 
procedure. Unfortunately the different sensitivity measures 
for such regulators are missing from the control references. 
This paper tries to eliminate this gap giving a detailed 
analysis for the relative sensitivity measures of these 
regulators. 
 
The paper also includes the extension of the observer 
principle for YOULA regulators reducing the model error 
similar to the classical state feadback/observer topologies. 
 
The influence of the different observer regulators for the 
error attennuating filter is also shown. 
 
Finally a simple simulation result is shown where the model 
error is 100 % in the time constant and 50 % in the gain of 
the real process. The simulation clearly shows that very 
good result can be obtained combining the YOULA regulator 

and the observer principle. 
 
 

8. References 
 
[1] Keviczky, L. (1995). Combined identification and 

control: another way, (Invited plenary paper.) 5th IFAC 
Symp. on Adaptive Control and Signal Processing, 
ACASP'95, Budapest, H, 13-30. 

[2] Keviczky, L. and Cs. Bányász (2001). Generic two-
degree of freedom control systems for linear and 
nonlinear processes, J. Systems Science, Vol. 26, 4, pp. 
5-24. 

[3] Keviczky, L. and Cs. Bányász (2011). Model error in 
observer based state feedback and Youla-parametrized 
regulator, 19th Mediterranean Conf on Control and 
Automation MED2011, Corfu, GR, pp. 219-224. 

[4] Kučera, V. (1975). Stability of discrete linear feedback 
systems, 6th IFAC Congress, Boston, MA, USA. 

[5] Maciejowski, J.M. (1989). Multivariable Feedback 
Design, Addison Wesley. 

[6] Youla, D.C., Bongiorno, J.J. and C. N. Lu (1974). 
Single-loop feedback stabilization of linear multivariable 
dynamical plants, Automatica, Vol. 10, 2, pp. 159-173. 

 


