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ABSTRACT

In this paper we introduce a new approach on gait analysis
based on data streams of a Rotating Multi Beam (RMB) Lidar
sensor. The gait descriptors for training and recognition are
observed and extracted in realistic outdoor surveillance sce-
narios, where multiple pedestrians walk concurrently in the
field of interest, while occlusions or background noise may
affects the observation. The proposed algorithms are embed-
ded into an integrated 4D vision and visualization system.
Gait features are exploited in two different components of
the workflow. First, in the tracking step the collected char-
acteristic gait parameters support asbiometric descriptorsthe
re-identification of people, who temporarily leave the fieldof
interest, and re-appear later. Second, in the visualization mod-
ule, we display moving avatar models which follow in real
time the trajectories of the observed pedestrians with synchro-
nized leg movements. The proposed approach is experimen-
tally demonstrated in eight multi-target scenes.

Index Terms— Lidar, gait recognition, 4D reconstruction

1. INTRODUCTION

Efforts on analyzing dynamic 3D (i.e. 4D) scenarios with
multiple moving pedestrians receive great interest in vari-
ous application fields, such as intelligent surveillance, video
communication and augmented reality. A critical issue is the
assignment of broken trajectory segments during the person
tracking process, which problem can be caused by frequent
occlusions between the people in the scene, or simply by the
fact that the pedestrians may temporarily leave the Field of
View (FoV) and re-appear later. People re-identification [1]
needs the extraction of biometric descriptors, which may be
weak featuresin the sense that we should only focus here
on a relatively small group of people, instead of identifying
someone from a large database. On the other hand, the targets
are non-cooperative and they have to be recognized during
their natural behavior.

Gait has been extensively examined as a biometric fea-
ture in the recent decades [2]. A video-based gait recogni-
tion module may be integrated into surveillance systems in a
straightforward way, since it does not need additional instru-
mentation, and it does not require that the people contact with

a special equipment: they may naturally walk distant from
the cameras. Although several studies on gait based person
identification have been published in literature, most existing
techniques have been validated in strongly controlled envi-
ronments, where the gait prints of the test subjects have been
independently recorded one after another, and the assignment
has been conducted as an offline process. On the other hand,
in a surveillance scenario, the gait features should be observed
in an arbitrary scene, where multiple pedestrians are concur-
rently present in the field, and they may partially occlude each
other. To preserve the online analyzing capabilities of thesys-
tem, the person assignment should also be performed during
the action.

A key difficulty with optical camera-based solutions is
that view-invariant gait features should be extracted, since it
cannot be ensured usually that the subjects are always visible
from side view [3]. Multi-camera systems may be utilized to
incorporate 3D information in gait analysis [4], however their
quick temporary installation is difficult for applicationsmon-
itoring customized events. Velodyne’s Rotating Multi-Beam
(RMB) Lidar system is able to provide point cloud sequences
from large outdoor scenes with a frame-rate of 15 Hz,360◦

FoV, point cloud sizes of around 65K points/frame with 120m
radius. The RMB Lidar sensor does not need any installation
or calibration process after being placed into a new environ-
ment. However, the spatial density of the point cloud is quite
sparse, showing a significant drop in the sampling density at
larger distances from the sensor, and we can also see a ring
pattern with points in the same ring much closer to each other
than points of different rings.

Further challenges are related to the efficient visualiza-
tion of spatio-temporal measurement sequences. Obtaining
realistic 4D video flows of real world scenarios may result
in a significantly improved visual experience for the observ-
er compared to watching conventional video streams, since a
reconstructed 4D scene can be viewed and analyzed from an
arbitrary viewpoint, and virtually modified by the user. The
integrated4D (i4D) vision and visualization system proposed
in [5] offers a semi-online reconstruction framework for dy-
namic 3D scenarios by integrating two different types of data:
outdoor 4D point cloud sequences recorded online by a rotat-
ing multi-beam (RMB) Lidar sensor, and 4D models of mov-
ing actors obtained in an indoor 4D Reconstruction Studio [6]
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Fig. 1. Workflow of the i4D system

in advance (offline). The system is able to automatically de-
tect and track multiple moving pedestrians in the field of in-
terest, and it provides as output a geometrically reconstructed
and textured scene with moving 4D studio avatars, which fol-
low in real time the trajectories of the observed pedestrians.

The basic i4D system [5] has two main limitations.First
only the short time tracking process is implemented, there-
fore after loosing the trajectories the re-appearing people are
always marked as new persons. Although some Lidar based
personal identifiers have been adopted in [7] featuring the
measured height and the intensity histogram of the people’s
point cloud segments, experiences showed that these descrip-
tors may confuse the targets, if their heights and clothes are
similar. Thesecondlimitation is connected to the visualiza-
tion module: although the avatars follow the real person tra-
jectories, turning always according to the trajectory tangent,
the animated leg movements are not synchronized with the
real walk cycles, causing some visual depreciation. There-
fore, gait analysis may also contribute to the improvement
of the existing animation framework, so that the actual gait
phases are extracted from the Lidar measurements at each
time frame, and the phase information is exploited in realistic
walking model animation.

In this paper, we aim at overcoming the above mentioned
limitations, by supporting the re-identification and animation
steps of the i4D system with gait-based features. We will
demonstrate that despite the sparseness and inhomogeneity
of the provided point clouds, efficient gait analysis can be re-
alized using RMB Lidar sensors, which configuration offers
various advantages versus earlier camera based solutions.

2. LIDAR BASED GAIT ANALYSIS

The integrated 4D (i4D) system [5] is a pilot system for recon-
struction and visualization of complex spatiotemporal scenes,
using a RMB Lidar sensor and a 4D Reconstruction Studio.
As shown in the workflow of Fig. 1, the Lidar monitors the
scene from a fixed position and provides a dynamic point
cloud. This information is processed to build a 3D model of

(a) Bird’s view (b) Top view

Fig. 2. Silhouette projection: (a) a tracked person and its pro-
jection plane in the point cloud from bird’s view (b) projec-
tion plane from top view, taken as the tangent of the smoothed
person trajectory.

the environment and detect and track the pedestrians. Each of
them is represented by a point cluster and a trajectory. A mov-
ing cluster is then substituted by a detailed 4D model created
in the studio. The output is a geometrically reconstructed and
textured scene with avatars that follow in real time the trajec-
tories of the pedestrians.

In the paper we focus on point cloud based gait analysis,
supporting the i4D system with two new components:

• In the tracking module (box 2 in Fig. 1), we aim at com-
pleting implement a long-term re-identification function
with additional gait-based biometric features,

• In the 4D scene visualization module (box 5 in Fig. 1)
we intend to synchronize the steps of the moving pedes-
trians measured in the point cloud sequence, and the leg
movements of the animated walking studio objects.

For gait investigation, we follow a 2D silhouette based ap-
proach. Several earlier methods rely on the analysis of the
measuredor interpolatedside view projections of the 3D
human silhouettes. Using the considered RMB Lidar point
cloud sequences, the side view silhouettes can be estimated
in a straightforward way (see Fig. 2). Henceforward, we use
the assumption that the people walk forwards in the scene,
always turning towards the tangent direction of the trajectory.
At each time frame, we project the point cloud segment of
each person to the plane, which intersects the actual ground
position, it is perpendicular to the local ground plane, andit
is parallel to the local tangent vector of the Fourier-smoothed
trajectory from top view (see Fig. 2(a),(b)). The projected
point cloud consists of a number of separated points in the
image plane, which can be transformed into a connected 2D
foreground region by morphological operations (Fig. 4(b)).

However, the silhouette extraction step is affected by sev-
eral practical limitations, as demonstrated in Fig. 4(b).First,
the point sets of people located far away from the sensor con-
tain less points, therefore the silhouettes may have disconti-
nuities (see Person 2 and Person 4 in Fig. 4(b).)Second,
for people walking in the direction of the sensor, the 2.5D
measurement provides a frontal or back view, where the legs
may be partially occluded by each other (see Person 5).Third,
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some silhouette parts may be occluded by other people or field
objects in a realistic surveillance scene.

In our proposed model, we adopted the idea of Gait Ener-
gy Image (GEI) based person recognition to the Lidar surveil-
lance environment. The original GEI approach was intro-
duced by Hahn and Bhanu [8] for conventional optical video
sequences, and GEIs were derived by averaging the normal-
ized binary person silhouettes over the gait cycles:

G(x, y) =
1

n

N∑

t=1

Bt(x, y),

hereBt(x, y) ∈ {0, 1} is the (binary) silhouette value of pixel
(x, y) on time framet, andG(x, y) ∈ [0, 1] is the (continu-
ous) GEI value. Thus in [8] a person was represented by a
set of different GEI images corresponding to the different ob-
served gait cycles, which were compressed by Principal Com-
ponent Analysis (PCA) and Multiple Discriminant Analysis
(MDA). Therafter person recognition was achieved by com-
paring the gallery (training) and probe (test) features.

In our environment, a number of key differences had to be
implemented compared to the reference model [8], leading to
a new concept calledLidar-based Gait Energy Image(LGEI)
representation. First, since the RMB Lidar measurement se-
quences have a significantly lower temporal resolution (15 f-
ps), than the standard video flows (≥25 fps), samples from a
single gait cycle provide too sparse information. For this rea-
son, we do not separate the individual gait cycles before gait
print generation, but we selectk = 100 randomseed frames
from each person’s recorded observation sequence, and for
eachseedwe average the 60 consecutive frames to obtain a
given LGEI sample. In this way,k LGEIs are generated for
each individual, which are compressed using a global PCA
transform calculated for the whole dataset. Thereafter, the
100 dominant PCA components of the LGEIs are used to train
a Multi Layer Perceptron (MLP) for each person. During the
training, the LGEIs of the selected person are used as positive
samples, while the LGEIs of the others as negative ones. The
output of each MLP is a real numberf ∈ [−1, 1], where high-
erf values correspond to high quality matches. In the recog-
nition phase the LGEIs obtained from the test sequences are
matched to the MLP model of each trained person, and the
decision is taken by comparing the outputs of the different
classifiers.

The above sample training and test collection scheme is
fully automated and it proved to be notably robust, since in
contrast to [8] it is not effected by prior gait cycle estimation.
The appearing low quality silhouette frames can be consid-
ered as noise in the training data.

Thesecond partof the proposed workflow is the synchro-
nization of the observed and animated leg movements in the
visualization module. This step needs indeed an approxima-
tion of the gait cycles from the Lidar measurement sequence,
however the accuracy is not critical here, only the viewer has
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Fig. 3. Silhouette width sequences for three selected persons
from theWalk patterns/1 sequence - used for gait step
synchronization during visualization

to be visually convinced that the leg movements are correct.
The cycle estimation is implemented by examining the time
sequence of the 2D bounding boxes, so that the box is on-
ly fitted to the lower third segment of the silhouette. After
a median filter based noise reduction, the local maxima of
the bounding box width sequence are extracted, and the gait
phases between the key frames are interpolated during the an-
imation. Although as shown in Fig. 3, the width sequences
are often notably noisy, we experienced that the synthesized
videos provide realistic walk dynamics for the users.

3. EXPERIMENTS

We have tested the proposed method ineight outdoor se-
quences captured in a courtyard by a Velodyne HDL 64-E
RMB Lidar sensor (sequence names are in Fig. 6). All the
sequences have 15 fps frame rate, their length varies between
2:20 and 3:20 minutes, and each one contains 5-7 people
walking simultaneously in the scene. In all videos, the test
subjects circulate in the scene, then they leave the FoV for
a while, and re-appear later in a different order. The goal is
to match the corresponding gait patterns collected in the first
and second parts of each test scenario.

In the firstthreesequences calledWalk patterns , the
test subjects were asked to follow different characteristic mo-
tion types, such as normal walk, jogging or paddling; while
in the remaining test walks, calledSpring/1, Spring/2,
Summer/1, Summer/2 andWinter the subjects moved
naturally, therefore we were able to test the separating abil-
ities of the gait descriptors in realistic surveillance situations.
Since the sequences were recorded in different seasons, we
could also investigate the robustness of the descriptor against
the effects on different clothing styles (such as winter coats or
t-shirts) on the relevance of the observed gait feature.

Next we provide quantitative evaluation results of people
assignment based on LGEIs. For each test sequence, we have
trained a MLP for each test subjects in the initial part of the
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Fig. 4. Demonstration of the (a) 3D multi-target scenario (b) projected silhouettes in a single frame (c) gait prints extracted over
a sequence part (60 frames)

scenario. After the re-appearance of the people, we collected
LGEI samples for re-identification and calculated the MLP
matching scoresfij ∈ [−1, 1] between theith trained MLP
and thejth extracted test LGEI. The obtainedF = {fij}
values are displayed in the assignment matrices of Fig. 6,
where the rows of the matrices are sorted so that the optimal
match is expected in the main diagonal.

We have analyzed the observed results of Fig. 6 at three
stages.First, considering theF matrix, we have calculated
the optimal assignment between the rows and columns with
the Hungarian matching [9] algorithm. This process gave
perfect assignment in 7 out of the 8 test sequences, while
in theSpring/2 test scenario 5 gait patterns were correct-
ly matched, while 2 test subjects were confused, since their
available training data were short and had a low quality. Al-
though the above test confirms the efficiency of the LGEI
approach, the assignment process requires all training and
test samples as input at the same time, which might be not
available in online systems. In thesecondtest stage, in 6
sequences (exceptSpring/2 andSummer/2) the optimal
matches can also be obtained by a greedy algorithm, i.e. the
jth test sample is assigned to thei⋆th MLP model where
i⋆ = argmaxi fij . If the greedy model works correctly, the
recognition can be done immediately after the re-appearance
of each test subject, without waiting for the remaining people.
In the third stage, in 5 out of the 8 sequences the decision of
the match between theith MLP and thejth test sample can
be done by simply binarizing thefij value with a threshold
f0 = 0.1. The fulfillment of the later criterion implies the
strongest recognition ability, since in this way disappeared or
newly appearing people may also be correctly classified in the
re-identification phase of the surveillance process. The above
tests indicate that the LGEI provides efficientweak biometric
featuresfor a Lidar based tracker, which can be used together
with structural and intensity descriptors [7].

In the visualization module of the i4D system the synchro-
nization of the measurements and the steps of the animated
avatars has been implemented. A sample sequence part is

Fig. 5. Demonstration of the dynamic scene reconstruction
process, with gait step synchronization.

displayed in Fig. 7, showing simultaneously the processed
Lidar point clouds, the reference optical video frames and the
animated 4D studio object with synchronized steps with the
observation. A summarizing figure of the complete recogni-
tion and visualization process is displayed in Fig. 5, and the
Reader may find demonstrating videos at the following web-
site:http://vimeo.com/user32136096/videos.

4. CONCLUSION

In this paper, we proposed algorithms for gait analysis based
on the measurements of a RMB Lidar sensor, in realistic out-
door environments with the presence of multiple and partially
occluded walking pedestrians. We have exploited the gait fea-
tures for person re-identification and 4D visualization tasks.
We provided quantitative evaluation results in eight different
measurement sequences, and demonstrated the advantages of
the approach in future possible 4D surveillance systems.
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Fig. 6. Quantitative evaluation of LGEI based matching between the gallery (columns) and probe (rows) samples. Rectangles
demonstrate the MLP outputs, the ground truth match is displayed in the main diagonal.

(a) Point cloud sequence (used for recognition)

(b) Video images sequence (not used, only visual reference)

(c) Synthetic 4D walk, gait phases synchronized with the Lidar observation

Fig. 7. Sample consecutive frames from the recorded (a) Lidar
and (b) video sequences, and the synthesized 4D scene with
leg movements synchronized with the observation
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