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Abstract – The intention of the paper is to demonstrate the 
beauty of geometric interpretations in robust control. We 
emphasize Klein’s approach, i.e., the view in which 
geometry should be defined as the study of transformations 
and of the objects that transformations leave unchanged, or 
invariant. We demonstrate through the example of the basic 
control task of feedback stabilization that a natural 
framework to formulate different control problems is the 
projective world that contains as points the equivalence 
classes determined by the stabilizable plants and whose 
natural motions are the Möbius transforms. In this context 
the controller blending problem is placed in a more general 
setting: an operation is given under which well-posedness 
is a group while stability is a semigroup. Moreover, an 
operation is given that makes controllers with strongly 
stable property a group. 
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1.  Introduction and motivation 
 
Geometry is one of the richest areas for mathematical 
exploration. The visual aspects of the subject make 
exploration and experimentation natural and intuitive. At the 
same time, the abstractions developed to explain geometric 
patterns and connections make the approach extremely 
powerful and applicable to a wide variety of situations. 
 
In the nineteenth century development of the Bolyai-
Lobachevsky geometry, as the first instance of non-
euclidean geometries, had a great impact on the evolution of 
mathematical thinking. Non-Euclidean geometry has turned 
out to be more than just a logical curiosity, and many of its 
basic features continue to play important roles in several 
branches of mathematics and its applications. 
 
In many of Euclid’s theorems, he moves parts of figures on 
top of other figures. Felix Klein, in the late 1800s, 
developed an axiomatic basis for Euclidean geometry that 
started with the notion of an existing set of transformations 
and he proposed that geometry should be defined as the 
study of transformations (symmetries) and of the objects 
that transformations leave unchanged, or invariant.  
 

 
This view has come to be known as the Erlanger Program. 
The set of symmetries of an object has a very nice algebraic 
structure: they form a group.  In [10] the authors emphasize 
Klein's approach to geometry, i.e., to relate geometric 
properties to different groups, and demonstrate that a natural 
framework to formulate specific control problems is the 
world that contains as points equivalence classes determined 
by stabilizable plants and whose natural motions are the 
Möbius transforms.  
 
By studying this algebraic structure, we can gain deeper 
insight into the geometry of the figures under consideration. 
Another advantage of Klein’s approach is that it allows us to 
relate different geometries. In this paper we put an 
emphasize on this concept of the geometry and its direct 
applicability to control problems related to feedback 
stabilization. 
 
Section 2 gives the basic definition of feedback stability. 
Then Section 3 presents the Klein view through the 
projective matrix space. The material is based on [5], [6]. 
The relevance of this model to control problems is detailed 
in Section 4. Despite the fact that the stable plants does not 
form a subgroup of this group, the operation is suitable for 
controller blending, since preserves stability. Section 5 
presents the surprising fact that for strongly stable 
controllers it is possible to define a group structure 
(provided that the set is not empty). We conclude the paper 
by an illustrative example. 
 

2.  Basic settings 

  
A central concept of control theory is that of the feedback 
and the stability of the feedback loop. In this context 
causality plays a definite role. For practical reasons our 
basic objects, the systems, i.e., plants and controllers, are 
causal. As a consequence continuity is formulated as a 
property of boundedness and causality of the corresponding 
map. Boundedness here involves some topology. In what 
follows we consider linear systems, i.e., the signals are 
elements of some normed linear spaces and an operator 
means a linear map that acts between signals. Thus, 
boundedness of the systems is regarded as boundedness in 
the induced operator  norm. 

 

 



 

 

 

 
Figure  1: Feedback connection 

 
To fix the ideas let us consider the feedback-connection 
depicted on Figure 1. Suppose that the signals are elements 
of the Hilbert space !!! !! (e.g., !! ! !!!!!!!!) endowed 
by a resolution structure defined by a nest algebra which 
determines the causality concept on these spaces. For more 
details on nest algebras and causality, see [4]. 
 
According to the feedback connection of Figure 1 we can 
introduce an ambient signal space (the Hilbert space !) 
with a natural splitting ! ! !! !!!. It is convenient to 
consider the signals  
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 When !! ! !" and !! ! !", where ! and ! are linear 
operators, then ! is the graph subspace !

!"  of ! while 

!!! is the inverse graph subspace !"
!  corresponding to 

!, respectively. 
 
The feedback connection is called well-posed if for every 
! ! ! there is a unique ! ! ! and ! ! !!! such that 
! ! ! ! ! (causal invertibility) and it is called stable if the 
map ! ! ! is a bounded causal map. 
 
Basically two questions are related to feedback connections: 
stabilizability, i.e., whether there is any controller that 
makes the feedback loop stable and, if it the case, to provide 
a characterization of the stabilizing controllers. 
 
Unbounded operators on a given space do not form an 
algebra, nor even a linear space, because each one is defined 
on its own domain. At this point the association of the 
operator with a linear space – its graph subspace – turns to 
be fruitful. Observe that stability of the feedback loops 
implies that the operator matrix  
 

! !
! !
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! ! !

! !  
 
 should be stable, i.e., all the block elements are stable. It 
follows that  
! ! !!!!! ! !!!!! and ! ! !!!!! ! !!!!!.  

 
 
Thus, even the system ! is unbounded, through its 
factorization – we will call it stable factorization – the 
associated graph is formulated in terms of bounded 
operators. 
 
It is known that the existence of a double coprime 
factorization implies feedback stabilizability. In most of the 
usual model classes actually there is an equivalence. Given a 
double coprime factorization the set of the stabilizing 
controllers is provided through the well-known Youla 
parametrization:  
 
 !!"#$ ! !!!!!!!! ! !! ! !"!!! ! !"!!!! 
 !!!!"#$%&! !! ! !"!!!!"#$%$!! 
 
In what follows we provide a geometric view of this result 
by showing how elementary considerations leads to an 
exhaustive characterization of the problem. As a starting 
point of Euclidean and non-Euclidean worlds the most 
fundamental geometries are the projective and affine-ones.  
 
Perhaps it is not very surprising that feedback stability is 
related to such geometries. Following the Kleinian project 
we have to identify the proper mathematical objects and the 
groups associated to these objects that are related to the 
concept of stability and stabilizing controllers. 
 

3.  Projective Matrix Space 

  
Projective geometry become a fundamental area of modern 
mathematics with far reaching applications both in the 
mathematical theory, as algebraic geometry, and also in 
different applications fields, such as art, computer vision or 
even control theory, see, e.g., [3]. For a thorough treatment 
of the subject the interested reader might consult [2] or [1]. 
The extension of the projective ideas used in this context is 
based on [5], [6]. 
 
Considering the block operator matrices, we can define the 
equivalence relation in the following way:  
!!
!!

! !!
!!

 if and only if there exists an invertible ! such 

that !!!!
! !!

!!
!.  

 
Then the equivalence classes ! are considered as the points 
of the projective space !. Introduce the map ! such that  
 

! ! ! !!
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   and     !!
!!

! !!!!!!. 

 

Then, ! is called finite if, for any !!
!!

! !!!!!! the 

operator !! is invertible and !! denotes the set of these 
finite points. Finite points are related to graph subspaces 
!
!  of the linear operators !. 



 

 

 

 

 
Figure  2: Finite points 

 
 
The action (projectivity) of invertible block matrices  
 

! ! ! !
! !  

 
 on ! ! ! are defined through !! ! !!!!! where 

!! ! ! !!
!!

. The projectivities of ! form a group under 

composition. 
 
Then the Möbius transformation  
 

!!!!! ! !! ! !"!!! ! !"!!!!!!!!!!!!!!!!!!!!!!!!!!!(1) 
 
 is the restriction of the projectivity ! to the finite points of 
the space, i.e., !! operates on !!.  
 
Analogously one can define the Möbius transformation that 
corresponds to the inverse graph subspaces as  
 

!!!!! ! !! ! !"!!! ! !"!!!!!!!!!!!!!!!!!!!!!!!!!!!(2) 
 
 Note that while the linear transformation ! acts on the 
geometric, projective level and it is defined everywhere, the 
Möbius transformation acts on a coordinate level, it is 
nonlinear (rational) and it is defined only on the domain 
! ! !" invertible. 
 

4.  Feedback stabilization 

  
The common tool in formulating robust feedback control 
problems is to use system interconnections that can be 
described as linear fractional transforms (LFTs), as a general 
framework to include the rational dependencies that occur. It 
is apparent that Möbius transformations are special LFTs.  
 
The set of stabilizing controllers for a given plant and the set 
of all suboptimal !! can be expressed by using certain 
Möbius transformations. In what follows the common 

background of these transformations and their relations with 
the hyperbolic geometries will be highlighted. 
 
Even the system ! is unbounded, through its coprime 
factorization ! ! !!!!, with !! ! suitable bounded causal 
operators, the associated graph ! ! !! ! !

! ! is 
formulated in terms of bounded with ! ! !! (a suitable 
Hilbert space) operators.  
 
We are not very restrictive if it is assumed that there exists a 
double coprime factorization, i.e., ! ! !!!! ! !!!! and 
causal bounded !! !! ! and ! such that  
 

 ! !!
!! !

! !
! ! ! ! !

! ! !!!!!!           (3) 
 
 an assumption which is often made when setting the 
stabilization problem, see, e.g., [8]. Recall that !

!  and 
!
!  are determined only up to outer, i.e., stable with stable 

inverse, factors ! and !!. 
 
It is not hard to make the connection with the construction 
presented in the previous section: plants !, represented by 
! ! ! !! !, are the finite points !! while the controllers 
! ! !!!! in a feedback connection are described by the 
inverse relation (inverse graph), i.e., ! ! ! !! !.  
 
Well-posedness (feedback stability) of the pair !!! !! means 
that the matrix !! !

! !
! !  has a bounded causal inverse. 

Stable plants ! form a subset of the finite points, i.e., those 

for which !! ! !!!!!!.  
 
It is obvious that the zero plant is stabilized by the entire 
stable set, and only by that set. Since the image of ! under 
the projectivity defined by !! is the plant !, it follows that 
the stabilizing controllers are described by by 
!!

!
! ! !

! , i.e.,  
 
 !!"#$ ! !!!!!!!! ! ! !!"!!! ! !"!!!! !!!!"#$%&! 
 
 which is the well-known Youla parametrization 
 
To emphasize this point we reformulate the standard 
stability result as follows:  
 
Proposition 4.1  The plant ! has a double coprime 
factorization if and only if there is a projectivity defined by 
an outer ! with !!! invertible such that !!!!! ! !.  
Then all stabilizing controllers are given by 
 ! ! !!!!!!!!!!, ! stable , where ! ! ! !

! ! .  
 
 The proof is straightforward and it is omitted for brevity. 
 



 

 

 

 
Figure  3: Projectivity vs. controller parametrization 

 

5.  Group of stabilizing  controllers 

  
In order to design efficient algorithms that operate on the set 
of controllers that fulfil a given property, e.g., stability or a 
prescribed norm bound, it is important to have an operation 
that preserves that property, i.e., a suitable blending method.  
 
Available approaches use the Youla parameters in order to 
define this operation for stability in a trivial way. As these 
approaches ignore the well-posedness problem by assuming 
strictly proper plants, they do not provide a general answer 
to the problem. 
 
This paper places the blending problem in a more general 
context: an operation is given under which well-posedness is 
a group while stability is a semigroup. Moreover, an 
operation is given that makes controllers with strongly 
stable property a group. This operation will be used in the 
next section to construct the sensor group. 
 
Considering the zero plant, i.e., ! ! !!, one has that mere 
addition preserves well-posedness and stability. Moreover, 
the set of these controllers form a group. In the general case, 
however, addition of controllers does not ensure well-
posedness.  
 
As a remedy, let us start from the observation that  
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! ! ! ! !
! !

! !
! ! ! !" ! 

 
 which suggests to define the controller blending through  
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It turns out that on controllers the corresponding operation is  
 
 ! ! !!!! ! !!!! ! !! ! !! !! !!!                  (4) 
 
 Under this operation well-posed controllers form a group 
!!!!!!!.  
 
The unit of this group is the zero controller ! ! !! and the 
corresponding inverse elements are given by  
 

!!! ! !!!! ! !"!!!. 
 
While clearly not all elements of !! are stabilizing, e.g., !! 
is not stabilizing for an unstable plant, !!!!!!! is still a 
semigroup, where we have denoted by !! ! !! the set of 
stabilizing controllers. 
 
Indeed if ! ! !! !! !! with !!!!! ! !!, then  
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! !
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 and we have 
  

 ! !
! !
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!
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Thus ! is a stabilizing controller. 
 
This semigroup does not have a unit, in general. However, if 
there is a stabilizing controller !! such that  
 
 !!

!! ! !!!!! ! !!!!!! 
  
is also a stabilizing controller, then !!!!!!!! with  
 
 !! !! !! ! !! !! !!

!! !! !! 
 
is a semigroup with a unit (!!). This may happen only if the 
plant is strongly stabilizable. 
 
If a plant is stabilizable in general it is not obvious whether 
there exists a stable controller as a stabilizing one. If such a 
controller exists, then we call it a strongly stabilizing 
controller. 
 
For a general characterization of strong stability one can 
observe that strongly stabilizing controller exists if and only 
if there is a stable ! such that ! ! !" is unimodular, or, 
equivalently, if there is a stable ! such that  
 
 !!! ! ! ! !!! ! !"! 
 
is unimodular. Here we considered the double coprime 
factorization of !, i.e., ! ! !!!! ! !!!!. 
 
If we denote by !!!! the set of strongly stabilising 
controllers, then if this set is not empty, then: 



 

 

 

Theorem 5.1  !!!!!!!!! with the operation (blending) 
defined as  
 
 ! ! !!!! !! ! !! !! !!

!! !! !! ! 
 
 ! !! ! !!! ! !!!!! ! !!!!!!!! ! !!!! (5) 
 
is the group of strongly stable controllers, where !! ! !!!! is 
arbitrary. The corresponding inverse is given by  
 
!!!

!!
! !! ! !! ! !!!!! ! !"!!!!! ! !!!!! (6) 

  
Observe that the operation (motion) introduced above 
defines a certain symmetry around the fixed element !! of 
the set !!!!. 
 
We end this paper by illustrating the effect of the group 
action on a simple configuration, when the plant can be 
stabilized through state feedback. In this case all the facts 
derived in this section can be easily verified, see also the 
formulae listed in the Appendix. 
 

6.  Example: state feedback 

  
As an example let us consider the plant  
 

! ! ! !
! !  

 
parametrized by its state space description, with two 
stabilizing (state feedback) controllers given by:  
 

 !! !
! !
! !!

!!!!!!"#!!!!!! !
! !
! !!

! 
 
respectively. 
 
It is easy to check that applying operation (4) leads to the 
dynamic controller  
 

! ! ! !!!
!!! !! ! !!

. 
 
The corresponding closed loop matrix in the usual basis 
(!!!!! ! !!!) is 
 

!!" !
! ! !!! !!!
! ! ! !!!

, 
 
i.e., ! is a stabilizing controller, as expected. 
 
Taking a stabilizing feedback 
 

!! !
! !
! !!

 

 
and computing !!

!! gives 
 

!!
!! ! ! ! !!! !!!

!!! !!!
. 

 
The corresponding closed loop matrix taking the basis 
!!!! ! !! !! is 

 
!!" !

! !!!
! ! , 

 
i.e., the closed loop system is not stable, in general. 
 
Computing a controller leads to  
 

 ! !
! ! !!! !!!! ! !!!
!!!! ! !!! !! ! !! ! !!

! 

 
 which is clearly stable.  
 
Note that the degree of the controller (!) is less than the 
expected one (!!).  This is due to the elimination of the 
unobservable and uncontrollable modes,  for details see the 
Appendix. 
 
The matrix of the closed loop in the usual basis (!!!!! ! !!!) 
is  

!!" !
! ! !!! !!!! ! !!!
! ! ! !!!

! 

 
 i.e., ! is a stabilizing controller, as expected. 
 
Taking a stabilizing feedback  
 

! ! ! !
! !  

 
and computing !!!

!!
 according to (6) leads to  

 

!!!
!!
!

! ! !" !!! ! !!!
!!! ! !!! !! ! !!!

! 

 
 which is clearly stable.  
 
The corresponding closed loop matrix taking the basis 
!!!!! ! !!! is 
 

!!" !
! ! !!! !!!! ! !!!
! ! ! !!!

, 

 
i.e., the closed loop system is stable, as we have already 
expected.  
 

7.  Conclusions 

  
The paper emphasizes Klein’s approach to geometry and 
demonstrates that a natural framework to formulate different 
control problems is the projective world that contains as 
points equivalence classes determined by stabilizable plants 
and whose natural motions are the Möbius transforms.  
 



 

 

 

In order to solve the controller blending problem an 
operation was defined under which well-posedness is a 
group while stability is a semigroup. Moreover, an operation 
was given that makes controllers with strongly stable 
property a group. 
 
The proposed framework  provides a common background 
of robust control design techniques and suggests a unified 
strategy for problem solutions. Similar techniques can be 
used to handle robust control problems, too. The 
corresponding group action in that case is given by the 
hyperbolic group while the relevant  geometry is the non-
euclidean geometry. 
 
Besides the educative value a merit of the presentation for 
control engineers might be a unified view on the robust 
control problems that reveals the main structure of the 
problem at hand and give a skeleton for the algorithmic 
development. 
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9.   Appendix 
  
If a state space realization of the plant and of the controller 
is given, then one can easily derive an expression for the 
resultant of the operation defined by the product rule.  
 
The computations are based on the following observations: 
the state space realization for the sum of systems is given by  
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 while the product of the systems can be expressed as:  
 

 
!! !!
!! !!

!! !!
!! !!

! 

 

 !
!! !!!! !!!!
! !! !!
!! !!!! !!!!

! 

 
 Note that these realizations are not necessarily minimal. As 
an example, for the state feedback case shown in the paper 
one can eliminate the unobservable/uncontrollable modes 
and obtain the reduced order expressions.   
 
If the matrix  ! is invertible then the system is invertible, 
and a realization of the inverse system is provided by 
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!!!! !!!
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