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Abstract 

 

One dominant feature of the modern manufacturing chains is the movement of goods. Manufacturing companies would remain an unprofitable 
investment if the supplies/logistics of raw materials, semi-finished products or final goods are not handled in an effective way. 
Both levels of a modern manufacturing chain –actual production and logistics- are characterized by continuous data creation at a much faster 
rate than they can be meaningfully analyzed and acted upon manually. Often, instant and reliable decisions need to be taken based on huge, 
previously inconceivable amounts of heterogeneous, contradictory or incomplete data. 
The paper will highlight aspects of information flows related to business process data visibility and observability in modern manufacturing 
networks. An information management platform developed in the framework of the EU FP7 project ADVANCE will be presented. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the “8th International Conference on Digital Enterprise Technology - DET 
2014. 
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1. Introduction 
 

In the present business landscape, manufacturing 
companies are not simple independent entities anymore, but 
parts of value-adding networks. When companies are adding 
value to physical goods, they become parts of multi-echelon 
networks (i.e. supply-chains, delivering goods and related 
services to the final customer [1, 2]. Operations management 
theory claims that controlling these multi-echelon networks of 
companies integrally can provide significant benefits [3, 4, 5]. 
Material flow transparency, specifically the visibility to 
inventories and deliveries in the whole supply network, is 
considered an imperative requirement for successful supply- 
chain management, and has been associated with significant 
efficiency and quality improvements [6, 7]. 

One dominant feature of the modern manufacturing chains 
is the movement of goods. Manufacturing companies would 
remain  an  unprofitable  investment  if  the  logistics  of  raw 

materials,  semi-finished  products  or  final  goods  are  not 
handled in an effective way. 

Both levels of a modern manufacturing chain –actual 
production and logistics- are characterized by continuous data 
creation at a much faster rate than they can be meaningfully 
analyzed and acted upon manually. Often, instant and reliable 
decisions need to be taken based on huge, previously 
inconceivable amounts of heterogeneous, contradictory or 
incomplete data. As highlighted by S. Bertolo [8], there is an 
emerging need to develop intelligent knowledge management 
systems that allow “to progressively integrate an 
organization’s implicit knowledge into its formal business 
processes and to be able to expose both to third parties in the 
dynamic creation of virtual organizations as required by 
common business objectives.” 

The paper will highlight aspects of information flows 
related to business process data visibility and observability in 
modern manufacturing networks, and will present an 
information    management    platform    developed    in    the 
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Fig. 1: Typical material flow and information flow in a hub and spoke logistics network [20] 
 

framework of the EU FP7 project ADVANCE (“Advanced 
predictive-analysis-based decision support engine for 
logistics”, http://advance-logistics.eu/). 

 
2. Business process data visibility and observability 

 
Manufacturing chains/networks suffer from sub-optimal 

dispatching, replenishment or production decisions due to 
three factors: 
 the  lack  of  information: in  many  cases  information 

available at a given time and location, is not shared across 
the network or collected over time (e.g., inbound and 
outbound shipment units in a local warehouse, some of 
which—if shared across the network—would be already 
decisive for estimation or early detection of transportation 
demands at other locations); 

 the massive amount of information available for gaining 
decision-critical insight is beyond the capabilities of 
human personnel to assimilate and understand; 

 the large amount of information arising from constantly 
changing demands and associated profiling information 
(customer preferences, individual or batch-level product 
data, e.g., for perishable goods, service  profiles, 
preferences and constraints) remains relatively “flat” from 
the point of view of a “bigger picture” (e.g., general trends) 
because its structure is obscured. 
Transparency of processes—i.e., the ability to gain exact 

information about processes without notable time lag—has 
been highlighted in the literature as one of the key 
prerequisites for improved control or coordination of various 
processes in production and delivery [9, 10, 11]. In  most 
cases, the following issues receive attention: accuracy of 
information, timing of information, and granularity of 
information. The former two properties primarily depend on 
the technologies employed–revealing that accurate and free- 
flowing information needs a maximal removal of human 
intervention at the critical points of data acquisition. While 
this is self-evident in other problem domains (e.g., control 
engineering), only the past few decades have seen a 
comparable spreading of automatic data acquisition on our 
scale of production and delivery, namely, the introduction of 
automatic identification (AutoID) techniques. 

The granularity of information covers two aspects: the 
question of distinguishing individual instances vs. observing 
mere quantities, and the depth of observation (items, pallets, 
batches etc.). Currently, it is still widespread industrial 
practice to merely observe stock levels at a given location 
(referred to as account-based approach) [12], as in a number 
of applications this proves to be sufficient. The prevalence of 

this approach is also shown, for example, by the still 
widespread use of the so-called EAN13 (European Article 
Number, ISO/IEC 15420) code for merchandise which does 
not distinguish individual instances by, e.g., a serial number. 
However, as product customisation is spreading, or more 
intricate customer or government requirements for product 
traceability are faced, more and more applications require the 
unique distinction of instances of the same class of articles 
(i.e., a so-called item-centric approach). 

An extensive study dealt with the introduction of AutoID 
technologies and functionalities based thereon, and can  be 
cited here as a comprehensive work explaining principles and 
current findings of the field [13]. The study identified four 
functionality levels based on identifiers: 
 An  identification  infrastructure  alone  means  the  mere 

presence of an identification technology, and the 
possibility of meeting decisions on the spot, based on local 
knowledge about the identified object. 

 Identifier-based operations already presume the existence 
of a central information repository which assists in meeting 
local decisions (e.g., if an entity is authorized to pass 
through a facility gate). 

 Tracking-based operations give individual reading acts a 
meaning, since detecting an ID at a given time and place 
(plus, optionally, other conditions) implies that the item in 
question was physically present at the point of reading. 
This event is then stored in a database, so that it becomes 
possible to keep track of what occurred to it during its life 
cycle. The same applies to interactions with other 
instances. 

 Advanced   item-centric   services   become   necessary   if 
relevant parts of the life cycle take place under the 
authority of other parties, or the complexity of the 
processes require to maintain transparency across 
organizational borders. In such cases, item-related data and 
services (e.g., notification, subscription) are shared among 
process participants with proper access restrictions. 
The highest functionality level massively exploited in the 

industry is the layer of tracking-based operations [13], 
however, some early proprietary solutions as well as 
commercially available business integration frameworks 
already reach into the layer of advanced item-centric services. 

The spreading of AutoID based solutions, also  created 
issues in need of further resolution, as this technology 
enables–and competition even forces–logistics and trading 
companies to take into account an order of magnitude of data 
they never experienced before. To give an approximate 
picture: RFID explodes the information related to traditional 
order processing by a factor of 10,000 or 100,000, and sales 
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slip line processing explodes the usual order processing data 
by similar factors. 

Even if some re-thinking in information granularity (border 
of item-centric vs. account-based solutions, designating item 
groups as unique instances etc.) may tame the data amounts in 
some selected cases, most industrial users will inevitably face 
the burden of an information flood. Concerns of being unable 
to handle such amounts of data are realistic–mostly, the 
inability to cope with the volume of such data even hampers 
their exploitation for operational decisions. 

It can be concluded that the technological background of 
low-level process transparency is far better developed  and 
more widespread in industrial applications than the efficient 
harvesting of the resulting masses of information for gaining 
insight on a higher level of abstraction. This is especially so 
for logistics operations, given that logistics networks create 
billions of items of information every month, which all need 
analysing if instant and strategic decision making are to be 
properly integrated. 

The last few decades have seen the emergence of logistics 
networks that successfully bridge the apparent gap of fast and 
low-cost shipping of small - typically less-than-truckload - 
consignments. One proven way of such solutions is a multi- 
level structure that implements, from an operational point of 
view, a class of hub and spoke networks (Figure 1), while 
from an organisational perspective it is an enterprise network 
of a “major player” with a large-throughput core structure of 
hubs, contracting smaller local logistics providers also called 
operating depots, with collection and delivery services [14]. 
The key to the success of such networks is the bundling and 
re-bundling of shipments [15, 16] that make transporting less- 
than-truckload consignments economically feasible. 
Enterprise interoperability has been recognized as a paradigm 
vital for improving processes of operations spanning 
enterprise borders [17, 18, 19] and recent  years  have 
witnessed much progress also related to hub operations. 

The complexity of dealing with data present in hub and 
spoke networks is increased by the fact that the data needs to 
be captured and utilized from a multitude of different data 
sources. Examples of the kind of data are: 

1. Historical data (pallet flows, orders, scans in and out, 
normal volume per day-of-week, per week-in-month, per 
month etc...) 

2. Semi-static hub data - e.g. vehicle time-slots, bay 
allocations, hub-depot travel time matrix, pricing. 

3. Dynamic hub data - e.g. pallets currently held at the 
hub. 

4. Dynamic depot data - e.g. new pallet orders, new 
pallet labelling events, vehicle manifests etc. 

5. Adjacency data - extrapolating trends from one 
region and applying them to a nearby region, or using trends 
between distant regions which are linked by pallet flow 
patterns. 

6. Travel time data - e.g. digital mapping with road 
speeds, live traffic feeds, GPS tracking etc. 

7. Economic data - e.g. state of the economy, consumer 
spending, consumer buying habits and whether the current 
month contains four or five weeks. 

8. Other external data - e.g. weather, public holidays, 
knowledge of major events (for example, the 2012 Olympics 
in London), potentially even using commercial geographic 
census-type business data. 

A very conservative estimate is that in such networks 
40,000 data items are created every minute, which can be 
handled neither by human operators nor by conventional data- 
analysis approaches. Instead, new and sophisticated data 
mining techniques are required to pluck out the important 
patterns in the shimmering data display and present these 
patterns in a form that can be understood and acted upon by 
human decision makers in real time. The trillions of potential 
relationships and dependencies in the data items are subject to 
combinatorial explosion and are absolutely not amenable to 
systematic number crunching: new, rapid, and focussed 
intelligence is required, guided top-down by the human 
decision-making experts and bottom up by the data mining 
approaches. The top-down element is partly informed by 
longer-term analyses of the billions of data accumulating over 
days and weeks but the bottom-up analysis depends on 
working as fast as possible on thousands of new pieces of 
information arriving across the network every minute. 

The deficiencies resulting from inefficient utilisation of 
resources due to limitations in processing  localised 
information in larger amounts and over larger ranges can be 
mitigated if companies 
 invest in sharing and collating information over temporal 

and hierarchical ranges, and 
 introduce methods of analyzing the collected data 

comprehensively enough to cover the sources of network 
operation deficiencies. 
In view of the amount and span of information (both in 

terms of location as well as dynamically over time) modern 
artificial intelligence methods can provide a substantial 
advantage by their abilities to collate and filter the available 
information, identify phenomena of importance, and provide 
decision support, forecasts or early warnings for human 
personnel. This, again, requires: 
 data to be obtained and processed in machine form so that 

data mining can be applied; 
 methods for automatically  identifying  relevant 

information; 
 and the intelligence for relating this information to selected 

decision priorities for the network operation. 
In many cases, the acceptance of decision support systems 

(and therefore, the “return on investment” in data sharing and 
processing) is leveraged beyond a critical level if the output of 
automatic processing is in a human-interpretable form (i.e., it 
“makes sense” with the experienced operator), allowing 
human assessment of the decision quality. 

 
3. Information management through a predictive-analysis- 
based decision support platform 

 
In order to support networked companies addressing these 

challenges and increase responsiveness of logistics business 
processes to internal and external dynamics, a predictive- 
analysis-based  decision  support  platform  was  developed  as 
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part   of   the   FP7   project   ADVANCE   (http://advance- 
logistics.eu/). 

The ADVANCE platform provides a dual perspective on 
transport requirements and decision making dependent on the 
latest snapshot information and the best higher-level 
intelligence, featuring the following key functionalities: 
 allows   companies   to   extend   their   already   existing 

infrastructure towards better information sharing; 
 provides means for exploiting this information for better 

operational decisions; 
 presents  automatically  generated  results  in  a  human- 

interpretable way; 
 facilitates the alignment of artificial and human expertise 

so that they can cross-validate and collaboratively adapt 
the system as the knowledge domains evolve. 
Research in ADVANCE focused on exploiting locally 

existing information (potentially including data that can be 
made available with a minimal addition of tracking 
infrastructure) by performing adequate pre-processing steps, 
making it available to a widened circle of the targeted network 
(or other corporate structure), identifying models for decision 
support, and making human-interpretable predictions. 

Quantitative improvement in local decisions. Locally 
available information was gathered, pre-processed and 
exploited with a higher efficiency than before, allowing for the 
modelling of processes, the extraction of interpretable process 
features (in other words, formalized expressions of process 
status), and the prediction of adequate measures for improving 
or maintaining given process states. The ADVANCE 
framework pursues real-time responses to the decision 
problems. 

Quantitative improvement of collaboration processes 
network-wide. Here, the task consisted in gathering and using 
Quantitative information regarding selected aspects of 
collaboration (e.g., transportation capacities and decision 
preferences of logistics service providers or suppliers within a 
supply chain) were gathered and used for, optimisation of the 
network as a whole. Once the information of interest is 
available for sharing within the network (especially among 
partners appearing “nearby” in a functional chain), decisions 
can be met to the benefit of improved local management of 
actions without the burden of lagging and coarse central 
coordination. This is of special importance if certain actions 
are typically carried out in chains spanning several local 
network members (e.g., handing over a shipment to the next 
forwarder). 

 
3.1. Perspectives of decision support in ADVANCE 

 
The ADVANCE solution offers decision support to both 

type of actors in a hub and spoke network, i.e. both hub and 
depots. 

The decision support from the Hub perspective 
Improved responsiveness of business processes is expected 

to lead to (1) a reduction in pallet handling time at the hub, 
which may lead to an improvement on delivery times further 
downstream in the transport network and (2) better use of 
warehouse capacity. 

Hub objective 1: Reduction of pallet handling time at the 
hub. It is expected that the sooner information on incoming 
and outgoing pallets is available, the more efficiently the hub 
can be operated. Efficient operations lead to  less handling 
time. The sequence of tipping pallets from inbound trucks 
should be assessed carefully with respect to the sequence of 
loading pallets on outbound trucks. The tip and load sequence 
should be optimised jointly. The tip and load sequence mainly 
depends on the number and characteristics of  the 
consignments being announced and manifested by member 
depots. Any delay in processing this data may lead to a 
suboptimal sequencing process. The sequence is also 
dependent on factors such as last minute changes in depot 
decisions, delays of incoming trucks as a result of traffic 
conditions. Direct availability of all data regarding pallet 
arrivals is essential for efficient hub operation. 

Hub objective 2: Better use of warehouse capacity. When a 
truck is tipped at the hub, each pallet from it is temporarily 
placed in the bay assigned to the depot that has to take the 
pallet from the hub. The capacity of the bays is limited. More 
complete, accurate and timely information on incoming and 
outgoing pallets made available to the hub is expected to 
improve the use of this limited bay capacity. Examples 
include levelling the number of pallets in the bay, better 
anticipating last minute changes in the arrival of pallets to the 
hub site. Better use of bay capacity will result in trucks 
spending less time at the hub and better use of hub site 
capacity in general. In this way, a growth in number of pallets 
that need to be processed at a hub can, for example, be 
absorbed without an expansion of the number of warehouses. 
As a result of pallet handling optimisation and improved bay 
capacity usage at the hub, an increase in responsiveness of 
business processes should result in less unpredicted delays for 
member depot trucks. 

The information on incoming and outgoing pallets can be 
used to better align the tip and load sequence to the pallets that 
actually come in at the hub, also making better use of the bay 
capacity. The decision for a specific sequence is expected to 
reduce the number of delays for outgoing pallets. When a 
delay of an inbound truck still results in a delay of some 
outbound truck(s), the delay information should be available 
in advance. The member depot can be notified about the delay 
and can therefore better prepare for it. 

The decision support from the Depot perspective 
From a member depot perspective, improved 

responsiveness of business processes should lead to increased 
truck capacity utilisation. Member depots are responsible for 
picking up at the hub all pallets going to their own delivery 
territory. For efficient operations, member depots seek to 
utilise truck capacity well both on the way to the hub and back 
to the depot. 

Depot objective: increased truck capacity utilization 
The number of trucks to be sent to the hub is determined by 

the expected number of pallets to be collected from the hub 
and delivered by that member depot. Truck capacity on the 
way to the hub can be used by sending pallets into the 
network. It is expected that earlier information on the number 
of trucks that have to be sent to the hub increases the chances 
for member depots to fill their truck capacity on the way to the 
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hub. Additionally, the pricing policies within the network 
should be analyzed with respect to detailed data  on  pallet 
flows to the hub. Dynamically changing pricing policies, 
based on truck capacity usage and aimed at providing 
incentives to bring in pallets to the network, should increase 
truck capacity utilization for member depot trucks. 

 
3.2. TheADVANCE decision support software framework 

 
The ADVANCE decision support software framework 

includes support for both hub and depot operations via the 
ADVANCE Live Reporter (ALR) and the Depots 
Collaboration Tool (DCT). 

 

3.2.1. The ADVANCE Live Reporter 
The ADVANCE Live Reporter architecture, as depicted in 

Figure 2, comprises six element types: 
1. At the top of the architecture, end-users are provided 

with information through a (generic or dedicated) user 
interface. 

2. The information that is presented through the user 
interface is assembled by the Analytical Process Engine 
(APE). The APE is the heart of the ALR, and performs data 
analysis by using and combining several software modules 
(later referred to as “blocks”). The analytical process engine 
may get part of its input from APEs of other organisations, 
whereby users allow or disallow the sharing of selected 
information with selected partners. 

3. A business analyst may use the flow editor to deploy 
the blocks, which are stored in the repository. In order to do 
so, multiple blocks can be “combined”. 

4. A schema editor that is used by a business analyst to 
define and enhance the information needed by users (and in 
intermediate process steps). 

5. Operational data that are collected accumulate in the 
data storage. A data store interface is used to provide the 
analytical engine with the data required for analysis and to 
store intermediate results. 

6. At the bottom of the architecture, application 
interfaces are designed to convert data from existing systems 
into data the ADVANCE system can use. 

When large amounts of data have to be channelled and 
processed—much of it has to succeed without significant time 
lag, congestion or data loss. This calls for a solution which is 
resource-lean, capable of high throughput and allows 
immediate response. 

The reactive paradigm, where dataflows are processed in a 
push-based manner, can very well suit these  requirements 
[21]. Here, processing blocks react in the presence of 
incoming data only (i.e., they do not “pull” data from sources 
but respond immediately if input appears), while output is 
emitted in a “fire-and-forget” manner. Special mechanisms, 
such as buffers, can be implemented to prevent data loss or 
allow synchronous operation—however, this is only done 
where specifically needed, relieving most of the network of 
unnecessary computational demands. 

Given these expected advantages, the reactive  paradigm 
was chosen to be deployed in the fundamental dataflow 
framework of the project. Several frameworks implementing 

 
 
 
 
 

Fig. 2. ADVANCE Live Reporter architecture. 
 

the reactive paradigm or equivalent concepts are already 
available [22, 23, 24], however, none of these was found to 
efficiently support the strongly typed dataflows required in our 
setting. In order to fill this gap, reactive4java was 
implemented which is now also available as an open source 
framework   (http://sourceforge.net/projects/advance-project/) 
in itself. The runtime environment built upon the reactive 
framework offers fundamental functional blocks for 
processing, channelling and buffering data. More complex 
processing blocks can be composed of basic blocks, or, if 
better efficiency is required, application-specific  custom 
blocks can be designed and implemented. In line with similar 
environments, practice has shown that generic blocks can be 
used for developing simple conceptual prototypes and 
switching around dataflows, however, solutions that do 
eventually find practical use have to rely on the higher 
efficiency of purpose-made custom blocks. (A more detailed 
description of the framework is offered in [25]. 

Dataflows in logistics applications are typically strongly 
typed, and reliance on structured data models is common in 
both communication and storage of logistics-related data 
(although actual structures may be lightweight compared to, 
e.g., manufacturing). Therefore, type definition and data 
modelling tools are a must for solution frameworks targeting 
the logistics sector, both for handling of types within one 
consolidated network and making data models negotiable 
when information channels of different participants or 
networks need to be interfaced. To this end, an XML-based 
type system was developed in the ADVANCE project that is 
meant to support all typical logistics-related operations with 
customisable data models. 

When dataflows and their processing methods are 
concerned, specialisation is advisable. As opposed to 
inheritance, this means that the type definition starts out with 
the most complex set (structure) of attributes and removes the 
ones not needed for the given type. In order to allow such an 
approach, a data structure was designed in the ADVANCE 
project to cover all needs within the targeted application 
range. While this makes the solution kit, as-is, suitable for a 
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specific application range only, the XML-based type 
definition makes it easy to redesign the initial type for other 
application ranges. 

In the application context of ADVANCE, semi-automated 
type negotiation and type handling methods became 
necessary, both at runtime and during development and 
debugging of dataflows: 
 During  development  time,  users  are  provided  with  a 

verification tool to examine if the constructed dataflow 
network is consistent with regard to possible input/output 
types. 

 Still during development time, a type probe is at the users’ 
disposal to check the typing of selected wires in the 
dataflow diagram. 

 During build and runtime, types are determined 
dynamically. This is necessary because typing of data sent 
within the same dataflow might vary as well. 

 In order to meet these requirements, structure-based type 
inference [26, 27, 28] is employed to perform  set 
operations (e.g., subset, superset, intersection, union) on 
structured type definitions. More details on the algorithms 
and related work can be found in [29]. 

 The  reactive  runtime  environment  and  the  concept  of 
blocks connected by dataflow channels make a graphical 
flow design environment a natural choice. Therefore, flow 
design, compilation and execution control were unified 
behind a graphical IDE front-end in the ADVANCE 
project. 

 The flow editor provides the user with an assortment of 
processing blocks that have input (except for blocks 
providing constants, or channelling in data from outside 
the runtime environment) and output. While the number of 
input and output is fixed for a given type of block, suitable 
data switching blocks are provided for merging or 
replicating data. Construction of composite blocks is also 
supported, as is implementation of custom blocks where 
complex functionalities (as specific data processing tasks) 
would call for the more efficient form of coding block 
functions right away. The blocks can be connected via 
bindings that will work as typed data channels at runtime. 
For this reason, extensive support is given to detect 
possible type conflicts already during design time: detected 
type conflicts can be noticed immediately, and a type probe 
functionality can display the current type of a given 
binding. 

 Once a flow design is complete, it is verified, and possible 
errors are reported and highlighted in the flow diagram. 
Upon successful verification, the graphical diagram is 
transformed into an XML flow description that the runtime 
environment will use. The execution control environment 
contains access control with various levels of access rights, 
and also allows the execution of multiple dataflows by 
maintaining different execution realms, i.e., separate 
runtime containers. 
In addition to a “bare” framework, the ADVANCE project 

has also conducted research on techniques that allow more 
insight into a network’s processes than routine surveillance 
and common aggregation techniques would do. To this end, 

ADVANCE  examined  modelling  and  prediction  algorithms 
that can: 
 detect trends and patterns over a longer timeframe or over 

a wider area in the network than the attention of human 
decision makers could capture, and 

 make predictions or interpolations where process 
observability may otherwise be insufficient or impossible 
(e.g., due to “legacy” business processes, lack of reporting 
discipline, or the nature of process scheduling). 
If a given case of transparency limitation is inherent to the 

way the network operates, one will encounter the need for 
estimating data that would otherwise play an important role in 
decision processes, e.g., the pre-allocation of transportation 
assets and scheduling of tasks for more efficient or more 
balanced utilisation of network resources. For this reason, 
model building and prediction were another focal area in the 
ADVANCE project. While research was primarily working 
towards satisfying the requirements of the project’s main 
industrial pilot, genericity and adaptability of the results to 
other similar scenarios was just as much observed. 

Initial surveys regarding transparency gaps in hub-and- 
spoke logistics networks revealed that the majority of these 
can be mapped reasonably well onto event chains whose 
observability may suffer some imperfection at present time, 
but reconstruction (e.g., for cross-validation in model 
learning) is possible from historical data. Typically, the events 
are notifications of shipments entering a given status, while 
data of interest to be predicted are transportation demands 
arising from material accumulating at a given point of the 
network. The term advance order information [30], is 
commonly used for the former type of events, and in the 
project, a combined additive and multiplicative model, often 
used in the AOI context, was assumed for the examined case. 
Given the quickly changing processes of the targeted scenario, 
separate models were created for relatively frequent 
equidistant time points, each of these making a  prediction 
based on the most up to date data available at the given time 
point. Models comprehensible for personnel were built using 
machine learning with feature selection. 

Short-term predictions and greater visibility of various 
quantities of interest to the day-to-day running of the freight 
transportation network are provided. The principal predictions 
include expected numbers and sizes of pallets for the end of 
the day, next day or two days in advance at different 
aggregation levels, for different service levels, for both 
collection and delivery depots and the hub. 

While a specific selection of models and methods was 
found best fitting the scenario examined in the project, the 
nature of the approach allows a wider variety of methods to be 
deployed and tested interchangeably, enabling future users to 
elaborate choices in algorithms best serving their scenario 
(details on project results on prediction can be found in [14]). 

 
3.2.2. Depots Collaboration Tool 

A logistics network typically has key points  where 
decisions (e.g., resource assignment, scheduling of processes) 
must be met that have strong impact on the performance of the 
overall system. In hub-and-spoke networks, these are usually 
related to the dispatching and timing of inbound and outbound 
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Fig. 3. Initial mind map template 
 

shipments in a way that constraints (e.g., delivery deadlines) 
are met while resources are used as efficiently as possible 
(e.g., less deadheading vehicles). In present day  networks, 
these decisions are met by humans, i.e., highly skilled 
personnel with sufficient routine who can make sound choices 
even when information needed for the decisions is incomplete, 
lagging behind relevant events, or simply unreliable. 

Current network transparency and complex—often 
probabilistic and difficult-to-formalise—behaviour of 
operations would make it risky, if possible at all, to fully 
automate decision making [31]. However, a human decision 
maker can still be aided by a decision support system that 
presents data and offers alternative choices in a way that 
improves the operator’s insight and awareness of the given 
situation. Logistics networks are subject to frequent changes 
regarding resource capacities and operation requirements, 
making it necessary to re-tune the decision support system and 
allow its constant evolution through user feedback—a 
challenge that is not met by many decision support systems. 

The ADVANCE Depots Decision Tool serves two 
purposes: 
 Mapping   of   existing   decision   mechanisms   and   staff 

preferences using a purpose-built cognitive modeller; 
 Decision support tool putting the modelled knowledge to 

work with live data received from the network 
infrastructure. 
The underlying principles of modeller and decision tool 

make it easy to gradually refine the model during use—also in 
collaboration over several decision points—and keep up with 
the evolution of the processes as well. 

The decision support system implemented in the 
ADVANCE project follows the Galatean model supporting 
the way human decisions are met, allowing human 
interpretation (and evaluation) of the entire decision structure. 
The approach builds upon the finding that expert decisions are 
not met by rules but by weighing up degrees of support for 
premises contributing to a decision [32]. In the Galatean 
model, simply connected decision trees are set up with 
membership functions tuned to the perfect conditions for a 
given decision. Such decision trees can be initially set up by 
structured interviews with decision makers, and can be 
subsequently refined. During use, degrees of support are 
percolated through the tree, giving an overall degree of 
support for the final decision at its root. As opposed to many 
other decision support systems, the user can browse through 
the decision tree and see a comprehensible explanation for the 

top-level result. This enables the user to match the suggested 
choice with his/her own picture of the world and fine-tune the 
system as needed. 

For configuring the ADVANCE system so-called mind 
maps to represent the evolving knowledge about logistics 
operations held by expert interviewees were used. Mindmaps 
constitute one of the most intuitive aids for note-taking, 
brainstorming, and generally organising ideas, where the 
central idea (a decision class, for example) is situated in the 
middle and the subconcepts radiate outwards in ever more 
detailed subdivisions until the edges are reached with no 
further child nodes. 

A semi-structured interview method was used for gathering 
requirements based on a schedule derived from an initial 
mind-map template [32] (see Figure 3). Analyses of the 
current and desired operational decisions were recorded in an 
emerging ADVANCE mind map template, which was then 
used to inform subsequent interviews. Interview data were 
analysed, and added to the mind map, with the mind map 
being periodically validated by in-depth interviews 
scrutinising the content and structure. This iterative process 
led to increasingly stable decision hierarchies showing how 
input data relates to output decisions. The complete mind map 
resulting from the interviews was used to specify the detailed 
end user and industrial functional requirements, covering 
many operations for improving efficiency in hub-and-spoke 
networks. 

Building decision support systems around psychological 
models ensures that the most relevant data is used, including 
empirical sources directly accessible by the machine and those 
coming from human experience, and furthermore ensures the 
bridging of gaps in human interpretability and feedback to the 
decision support system. 

 
4. Conclusion 

 
Often, information in manufacturing chains is used locally 

in standardized work processes (e.g., shipment tracking data 
for a given region) and is, for the span of its existence, 
available in some structured form. In a number of cases (e.g., 
retailing), work processes are well-defined, and even though 
little information is recorded, it would be fairly 
straightforward to introduce structured data for further 
processing (e.g., storing of check-out steps distinguishing 
unique items or individual batches a given piece of 
merchandise belongs to). The amount of data, as well as their 
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relatively flat nature, requires them to be pre-processed, if not 
for storage, then, at least, for efficient sharing. Depending on 
the form of the raw data, the required depth of processing may 
range from simple aggregation to the extraction of patterns or 
data mining. 

Even if relevant information is highlighted, this is rarely 
enough to directly support human decisions, since operators 
can hardly overview the data sets and extract relevant 
information to the degree the decisions would require. 
Therefore, computational intelligence is needed to analyze the 
data, detect patterns and build models (in essence, application- 
related assumptions), and eventually meet predictions 
regarding tendencies or effects of certain decisions. This can 
be then delivered to human operators in the form of 
suggestions or indicators which can be assessed by the 
operating personnel. In most cases, the models need to be 
refined over several iterations (or have to undergo continual 
changes for certain dynamic environments), relying on 
feedback from both data and humans (e.g., plausibility 
measures). 

The ADVANCE decision support software framework 
relies on machine learning and cognitive modelling to deliver 
a practical solution that is both specialised to the industrial 
case study and is general enough to be adapted in other 
logistics scenarios. In fact components of the framework are 
independent and could be used in entirely different domains, 
where the problems to be solved have similar characteristics. 

 
References 

 
[1] Christopher, M., (1992), Logistics and Supply-chain Management, Pitman 

publishing, London. 
[2] Lambert, D. and Cooper, M., (2000), Issues in Supply-chain 

Management, Ind. Marketing Management, Vol.29, pp. 65-83. 
[3] Burgess, R., (1998), Avoiding Supply-chain  Management  Failure: 

Lessons from Business Process Re-engineering, Int. Journal of Logistics 
Management, 9/1, pp. 15-23. 

[4] Mentzer, J., DeWitt, W., Keebler, J., Min, S., Nix, N., Smith, C., and 
Zacharia, Z., (2001), Defining supply-chain management, Journal of 
Business Logistics, 22/2, pp. 1-25. 

[5] Norek, C.D.,Pohlen, T.L., (2001), Cost Knowledge: A Foundation for 
Improving Supply-chain Relationships, Int. Journal of Logistics 
Management, 12/1, pp. 37-51. 

[6] Gunasekaran, A., Ngai, E.W.T., (2004), Information systems in supply- 
chain integration and management, European Journal of Operational 
Research, 159/2, pp. 269-295. 

[7] White, R. and Pearson, J., (2001), JIT, system integration and customer 
service, International Journal of Physical Distribution & Logistics 
Management, 31/ 5, pp. 313-333. 

[8] Bertolo, S., (2006), From Intelligent Content to Actionable Knowledge: 
Research Directions and Opportunities Under the EU's FP7, 2007-2013, 
in R. Meersman, Z. Tari (Eds.), OTM 2006, LNCS 4276, pp. 1125-1131. 

[9] Michel, R:  RFID, (2005), Where’s the Beef?, Modern  Materials 
Handling, 60(2), pp. 29–31. 

[10] Dejonckheere, J.; Disney, S. M.; Lambrecht, M. R.; Towill, D. R., 
(2003), Measuring and Avoiding the Bullwhip Effect: A Control 
Theoretic Approach, European Journal of Operational Research, 147(3), 
pp. 567–590. 

[11] Jansen-Vullers,  M.H.;  van Dorp, C.A.;  Beulens,  A.J.M.,  (2003), 
Managing Traceability Information in Manufacture. Int. Journal of 
Information Management 23(5):395–413. 

[12] Monostori, L.; Ilie-Zudor, E.; Kemény, Zs.; Szathmári, M.; Karnok, D.; 
(2009), Increased transparency within and beyond organizational borders 
by novel identifier-based services for enterprises of different size. CIRP 
Annals – Manufacturing Technology, Vol. 58, Nr. 1, pp. 417–420. 

[13] Kemény, Zs.; Ilie-Zudor, E.; van Bolmmestein, F.; Kajosaari, R.; 
Holmström, J. (2007), State of the art in tracking-based business, Public 
deliverable D3.1, version 1.3, EU FP6 STREP project TraSer (FP6-2005- 
IST-5). 

[14] Welch, P. G.; Kemény, Zs.; Ekárt, A.; Ilie-Zudor,  E.,  (2012), 
Application of model-based prediction to support operational decisions in 
logistics networks. Proc. of the 3rd Workshop on Artificial Intelligence 
and Logistics, Montpellier, France; SFB/TR 8 Report No. 031-08/2012, 
pp. 25–30. 

[15] Zäpfel, G., Wasner, M. (2002), Planning and optimization of hub-and- 
spoke transportation networks of cooperative third-party logistics 
providers, Int. J. Production Economics Vol. 78, pp. 207–220. 

[16] Wieberneit, N. (2008), Service network design for freight transportation: 
a review, OR Spectrum, 30/1, pp. 77–112. 

[17] Jardim-Gonçalves, R., Popplewell, K. and Grilo, A. (2012). Sustainable 
interoperability: The future of internet based industrial enterprises, 
Computers in Industry 63(8): 731–738. 

[18] Agostinho, C., Jardim-Gonçalves, R. (2009). Dynamic Business 
Networks: A Headache for Sustainable Systems Interoperability, On the 
Move to Meaningful Internet Systems: OTM 2009 Workshops, Lecture 
Notes in Computer Science Volume 5872, 2009, pp 194-204. 

[19] Chen, D., Doumeingts, G., Vernadat, F. (2008). Architectures for 
enterprise integration and interoperability: Past, present and future, 
Computers in Industry 59(7): 647–659. 

[20] Ilie-Zudor, E.; Ekárt, A.; Kemény, Zs.; Karnok, D.; Buckingham, C.; 
Jardim-Goncalves, R.: Information Modeling and Decision Support in 
Logistics Networks. Proc. of the 5th Int. Conf. on Experiments, Process, 
System Modeling, Simulation, Optimization, Athens, Greece, July 3-6, 
2013, Vol. I, pp. 279-286, ISBN 978-618-80527-1-0. 

[21] Elliott, C.M. (2009), Push-pull functional reactive programming, Proc. 
of 2nd ACM SIGPLAN symposium on Haskell, Haskell’09, ACM, New 
York, NY, USA, pp. 25–36, ISBN 978-1-60558-508-6. 

[22] Liberty, J., Betts, P. (2011), Programming Reactive Extensions and 
LINQ. Apress,ISBN 978-1-4302-3747-1. 

[23] National  Instruments  (2012),  LabVIEW  System  Design  Software. 
Official website, URL: http://www.ni.com/labview/. 

[24] Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., 
Bradshaw, R., Weizenbaum, N. (2010), FlumeJava: easy, efficient data- 
parallel pipelines, Proc. 2010 ACM SIGPLAN conference on 
Programming language design and implementation, PLDI’10, New York, 
NY, USA, pp. 363–375. 

[25] Karnok, D., Kemény, Zs. (2012), Framework for building and 
coordinating information flows in logistics networks, Proc. 14th int. conf. 
on the modern inf. tech. in the innov. proc. of the industrial enterprises, 
MITIP 2012, Budapest, Hungary, October 24–26, 2012, pp. 551–560. 

[26] Kaes, S. (1992), Type inference in the presence of overloading, 
subtyping and recursive types, Proc. 1992 ACM conference on LISP and 
functional programming, LFP ’92, ACM, New York, NY, USA, pp. 193– 
204. 

[27] Odersky, M., Sulzmann, M., Wehr, M. (1997), Type inference with 
constrained types, Proc. of the Fourth International Workshop on 
Foundations of Object-Oriented Programming. 

[28] Palsberg, J. (1995), Efficient inference of object types, Inf. Comput., 
Vol. 123, No. 2, pp. 198–209, DOI: 10.1006/inco.1995.1168. 

[29] Karnok, D., Kemény, Zs. (2012), Definition and handling of data types 
in a dataflow-oriented modelling and processing environment, Proc. 14th 
int. conf. on the modern information technology in the innovation 
processes of the industrial enterprises, Budapest, Hungary, Oct. 24–26, 
pp. 561–574. 

[30] Haberleitner, H., Meyr, H., Taudes, A. (2010), Implementation of a 
demand planning system using advance order information, Int. J. of Prod. 
Economics, 128/ 2, pp. 518–526. 

[31] MacCarthy, B., Wilson, J., eds. (2001), Human Performance in Planning 
and Scheduling, Taylor & Francis, URL: 
http://books.google.com/books?id=0wBLHGX1_WIC. 

[32] Buckingham, C.D., Buijs, P., Welch, P.G., Kumar, A., Ahmed, A., 
(2012), Developing a cognitive model of decision-making to support 
members of hub-and-spoke logistics networks, Proc. 14th int. conf. on the 
modern inf. tech. in the innov. proc. of the industrial enterprises, Bp, 
Hungary, pp.14–30. 


