
Int J Digit Libr manuscript No.
(will be inserted by the editor)

Exploring publication metadata graphs with the LODmilla
browser and editor

András Micsik · Sándor Turbucz · Zoltán Tóth

Received: date / Accepted: date

Abstract With the LODmilla browser we try to sup-

port Linked Data exploration in a generic way learn-

ing from the twenty years of web browser evolution as

well as from scholars’ opinions who try to use it as a

research exploration tool. In this paper generic func-

tions for LOD browsing are presented, and it is also

explained what kind of information search tactics they

enable with Linked Data describing publications. Fur-

thermore, LODmilla also supports the sharing of graph

views and the correction of LOD data during browsing.

Keywords Linked Open Data · Semantic Web · graph

exploration · provenance

1 Introduction

The Semantic Web initiative provided the framework

and the tools for sharing machine-understandable data

on the Web. In 2006 Tim Berners-Lee outlined best

practice for publishing and connecting structured data

on the Web: the Linked Data principles [5]. This bases

the identification and linking of semantic entities on

so-called dereferenceable URIs, which can be used to

retrieve more and meaningful information on the refer-

enced object. On the other hand, Open Data refers to

the open access to data in open (non-proprietary) for-

mats. The merge of the two concepts became very pop-

ular in last years and was named as Linked Open Data

(LOD) [7]. The LOD cloud diagram [9] recorded the

growth of available LOD data until 2011, and counted

295 datasets in 2011 containing more than 31,000 mil-

lion triples.

András Micsik · Sándor Turbucz · Zoltán Tóth
MTA SZTAKI, Budapest, Hungary
E-mail: {micsik,sandor.turbucz,zoltan.toth}@sztaki.mta.hu

Although the Semantic Web and LOD are meant for

machine processable data, their use by humans cannot

be avoided. Semantic data is often the only available

place for the information sought, and furthermore it

is usually more accurate and richer than any human-

readable representation. Therefore, it is the task of the

IT to provide nice and useful presentations of Semantic

Data for humans. The problem with these visualiza-

tions is that they are often not generic, but ad-hoc;

they are capable of presenting limited types of datasets

only. While the World Wide Web had its generic visu-

alization method, the web browser since the very be-

ginning, the LOD cloud is still missing generic, user-

friendly software tools for browsing, information search

and exploration. In this paper we investigate previous

generic LOD visualization approaches and present our

own ideas in this respect which were implemented in

the LODmilla prototype.

The next section of the paper gives an overview of

approaches for browsing and visualization of Linked

Data. Section 3 describes our suggestion for human

LOD browsing, while Section 4 explains the server side

architecture that supports the implemented visual graph

queries. Section 5 introduces our publication data set

which is used as a starting point for research activities

exploration detailed in Section 6 before the conclusion.

2 Related work

Most approaches for presenting LOD for humans are

dedicated to specific purpose and specific datasets, see

for example [3]. The obvious solution for all-purpose

LOD browsing is a pure text-based approach (e.g. Vir-

Andras
Typewritten Text
Published as http://dx.doi.org/10.1007/s00799-014-0130-2 



2 András Micsik et al.

tuoso faceted browser1 or Graphity2), where usually a

single resource with all its referring triples are listed. In

this case one can read data properties such as names,

birthdate, etc., and also see connected resources as links.

Clicking on a connected resource presents the same view

for the selected new resource. The disadvantage of the

pure textual approach is that we see one resource only

and the graph structure of connections is not displayed.

We are used to this in case of hypertext, but in RDF the

connections convey elementary information, for which

users should have an overview. Therefore, the combina-

tion of graphical and textual browsers is a more popular

approach, and in the rest of the section we provide an

overview of these.

Some people argue [12] that although an RDF dataset

is a ’big fat graph’, one does not always want to view

them as graphs, because graph manipulation does not

scale well and graph views are unnatural presentations

for some purposes. On the other hand, the density, the

clusters, the neighbourhood in a graph convey impor-

tant, inductive information. Typicaly, when one zooms

into a graph, the broader context gets lost. It is the

task of the visualization to keep enough context around

a focus in the graph. In LODmilla we provide selective

expansion from a focus to solve this problem, so that

users can quickly and flexibly decide on how much con-

text they want to see.

There are various ideas for dynamic, free form GUIs

for LOD, where a large variety of information seeking

strategies can be combined. Tabulator [6], for example,

fills cells with RDF data and expands them into bigger

tables or converts it into a timeline or a map. mSWB is

a Semantic Web Browser for mobile phones [14], where

the limitations of small screens and touch-based nav-

igation are added to the list of previously mentioned

problems.

In [10] Dadzie and Rowe provide a rich survey of

Linked Data visualisation approaches and also analyze

some requirements for such applications. In our ap-

proach we try to address many of their requirements

for example intuitive navigation through LD structures,

data exploration to understand the structure of the

dataset, advanced qerying.

One thing that differentiates the applications using

the semantic web is the level where they handle the

data. As [11] points out, the grouping by the granularity

of information can be at collection level, resource level

or intra-resource level.

While the collection level approach focuses on pro-

viding a general overview of a set of data, and mostly

used for predictions, the resource level shows the at-

1 http://dbpedia.org/fct/
2 http://graphity.org

tributes of the individual resources, and visualizes the

connections between them, hence it provides more de-

tails on individual resources. Intra-resource level ap-

proaches show the distribution of the topics and at-

tributes in a single resource, and they are used mostly

for deeper analysis. In this work we aim at the resource

level and try to point out the strong and weak points

of related other work.

LodLive3 represents the LOD resources and their

connections in a graph structure. The visual design here

is plain and simple, so it is relatively easy to understand

the whole concept. Even so, the resources, represented

by circles, do not contain enough information for the

first sight. We only see a circle, with the resource la-

bels listed in different languages, plus some other cir-

cles around it. If we would like to know more about a

resource, we have to open its detail box on the right.

Here we can see the data properties attached to the

selected node in a pre-processed format, for example

image URLs are detected and shown, geographical lo-

cation is extracted and put on a map, etc. The major

drawback of LodLive is the pure navigation on connec-

tions. Connections are grouped by property, and visu-

alized as expanding small circles around the resource

circle. This gives a limitation on the number of con-

nections that can be shown, and in fact, LodLive trun-

cates the shown connections to the first 30-40 for each

connection type which results in information loss. It

is also hard to see where the connection points to, as

only the resource URIs are shown as a hover for each

small circle. Resource URIs can be quite cryptic for hu-

mans when they contain numeric identifiers. Therefore,

in LODmilla we aim at showing the labels or titles of

connection endpoint resources. LodLive has a nice de-

sign, but quite often the usability is sacrificed on the

design. As an advantage, it is made as a pure HTML5

browser, which can be run in any modern browser.

OOBIAN4 is a feature-rich, well-designed and use-

ful LOD browser implemented in Silverlight. Techni-

cally this is a drawback as Silverlight is not available

in all browsers. OOBIAN consists of several views: a

graph view, a textual reader, a file explorer and a map.

This application combines the visual and text based ap-

proaches, but it cannot be used for advanced purposes.

It is a good LOD browser to jump from one node to

another or to filter properties, but there is a main lim-

itation that one can see only a single resource and its

connections in the graph view.

Microsoft Academic Search is a special tool for find-

ing researchers, their publications, and the relations be-

tween these. It includes a Silverlight-based graph mod-

3 http://en.lodlive.it/
4 http://oobian.com/



Exploring publication metadata graphs with the LODmilla browser and editor 3

ule named Visual Explorer5 where one can visualize the

connections between people, show the links between co-

authors, and see the citation graphs for authors. The

main problem with this approach is that it is limited to

a given scenario and requires the internal database of

Microsoft which is not open for any other organizations.

The VisualDataWeb6 project produced a set of very

interesting graphical user interfaces for the Semantic

Web: RelFinder, gFacet, tFacet, SemLens . The RelFinder

helps to find connection paths between selected resources.

This is a very useful function if we want to know how

two objects are related to each other. In LODmilla we

implemented a similar function using a different solu-

tion in order to find paths including nodes from dif-

ferent RDF stores. gFacet and tFacet are the graph-

based and textual implementations of faceted brows-

ing of RDF data. SemLens provides tables and plots

to analyse trends and correlations in RDF data. These

tools cover specific needs for RDF data consumers, and

may be applied as add-ons in future generic LOD browsers.

3 A generic LOD browser

Browsing the web is a commodity today with a num-

ber of web browsers on the market. These browsers

share some default, fundamental controls and functions,

which provide the basic browsing experience, as a result

of crystallization during the last two decades. With any

web browser we can open URLs, follow links, search for

text on the page, save a copy of the page, etc.

Although Linked Data has a much shorter existence

than WWW, we cannot find a tool that provides com-

fortable and visual browsing of semantic data and LOD

resources. The tools we examined are either built for

specific datasets or they are difficult to use and lack

important visualization features. We believe that there

is a need for generic LOD browsers, with a set of com-

mon basic features the users can learn and get used to.

This would greatly increase the impact and usefulness

of LOD.

The following basic actions for generic LOD browsers

can be identified:

– Visual representation of multiple resources and prop-

erties (most probably as a graph),

– Opening resources, viewing object and data proper-

ties,

– Searching in the graph,

– Managing selections,

– Saving current view,

– Sharing views with others,

5 http://academic.research.microsoft.com/VisualExplorer
6 http://www.visualdataweb.org/

– Undoing previous actions (as a replacement of web

browser history).

We implemented LODmilla as our prototype solu-

tion for the goals listed above. LODmilla is a graph

based browser, running in conventional web browsers,

developed using HTML, CSS and Javascript. While it

is primarily visual, it also contains textual representa-

tions of resource properties in order to com-bine the

best of both worlds. Its goal is to provide a simple, yet

feature-rich application for the interactive exploration

of LOD content residing in multiple knowledge bases.

By its design, LODmilla does not hide any information

available in RDF from the users, but it tries to organize

and pre-process presented data. For example, incoming

and outgoing properties are grouped by property type,

and for the data properties URLs are made clickable,

image URLs are shown inline and geographic locations

are shown on a map. The work in the field of user expe-

rience is still in progress, but our long-term approach is

to extend the interface with more advanced operations

in a palette-like fashion, which work similarly to usual

image manipulation software (e.g. Gimp).

3.1 Frontend

The goal was to implement a solution for a wide set

of browsers. Therefore, HTML+CSS and SVG were se-

lected as basic technologies, and two Javascript libraries

as graphical toolkit: jsPlumb7 and jQuery8 . JsPlumb

uses pure HTML+CSS for drawing the graph nodes,

and SVG for drawing the links between them.

Figure ?? shows the four main parts of the web ap-

plication:

– canvas

– palettes (top left)

– toolbar (bottom left)

– node inspector (right)

The canvas is the background, on which the graph

structure is drawn. The palettes contain various ac-

tions, grouped as accordion styled menu items. We have

a toolbar at the bottom, with the standard operations

like load, save, etc. The triples referring to a node (LOD

resource) are listed in the inspector window on the

right, which opens by clicking the I (information) but-

ton in any node. The inspector window - unlike the

other three main elements - can be moved, resized, and

closed.

Complex operations can be started from the palettes,

while simple ones can be found in every node. Each

7 http://jsplumbtoolkit.com/
8 http://jquery.com/



4 András Micsik et al.

node has the following basic information in it: its data-

store, its title or label, and the number of data proper-

ties and object properties associated with the resource.

Additionally, an image representation (if found) or an

icon based on the resource type is put in the middle of

the node box.

Nodes may have the following actions: remove from

the canvas, open details in the inspector window and se-

lect/highlight (with the star icon). Furthermore nodes

can be moved around, and we can zoom or pan the

whole graph view. Actions in the toolbar affect the

whole view, while palette actions are used to manipu-

late a set of (highlighted) nodes or to display new nodes.

Opening resources

The first step when using the LOD browser is to

open some nodes. This can be done by pasting a re-

source URI, but for some datasets we offer autocom-

plete search as well: by typing part of the resource label,

one can choose from offered resources. The information

associated with the resource can be browsed in the in-

spector window, and some new nodes can be opened by

clicking on selected connections in the list.

Searching in open resources

Resources may have a lot of properties and long

texts, which one may not want to read through. One

palette item serves for searching text patterns in the

content of all shown graph nodes. The search results

appear as dynamic autocomplete suggestions under the

search input box.

Searching for new resources

When we do not find the requested information in

open nodes, we can try to expand our graph view with

new nodes. This is also a search function; it finds the re-

sources which somehow contain the given query word(s)

in associated triples, and are connected to a selected

resource. Figure 1 shows the use case of searching the

word semantic from the starting node representing one

of the authors in the middle. All the surrounding doc-

ument resources are the search results containing the

word semantic in their content.

Saving and sharing

The graph of shown RDF nodes and connections

may demonstrate a new finding, or record a certain

state of knowledge, which may be useful in the future

for the user who created it. We offer the ability to fully

save a graph state under user-given title, and load it

later into the browser. Saved graphs can also be shared

via a unique URL.

Undo

As some actions may unexpectedly cover the can-

vas with many new nodes, an Undo function has also

been implemented, which reverts the last action the

user made.

Selecting nodes

All nodes on the canvas can be marked one-by-one

or in groups. One method to achieve this is clicking on

the star in the top-left corner of the nodes. Another

method is using the ’Select nodes’ palette on the left,

which can mark all nodes or nodes of the same type.

Multiple node selection is also possible with the mouse

as in most drawing software. Marking nodes provides

the starting point for operations on node groups such

as search. For example, we can select the person type

resources, and perform a search for a project name in

those nodes, this way finding the ones somehow related

to the project.

3.2 Editing mode

The need for authoring Linked Data in a browser was

also identified in [10]. It is more natural to draw con-

nections in a graph than adding triples to a triple store.

Therefore we extended LODmilla with an editing mode,

and provide operations for changing the graph during

exploration. This can be typically used to correct errors

and to complete missing parts of information.

Although there is the SPARQL Update language

and protocol [18] to inject changes into a triple store, it

is not widely used yet, probably because of the autho-

rization issues. Unlike editing Wikis, the joint editing of

triples in a datastore is not prevalent today. In LOD-

milla, deletions of triples may affect several datasets,

and it also requires a decision in which dataset to store

triple insertions. The typical user cannot be expected

to make such decisions. In order to avoid such problems

and to reach a simple yet testable solution, we decided

to collect user modifications in a local edit buffer.

The edit buffer contains triples with a timestamp

and a flag indicating insertion or deletion. The content

of the buffer can be retrieved as two triple sets: deleted

triples and inserted triples. These triple sets can be sent

to the datastore as a SPARQL Update, or they can be

sent to an administrator who is authorized to perform

these changes on the datasets. The edit mode is an aid

to laymen for correcting or extending datasets without

precise knowledge of RDF and other related specifica-

tions.

Users may insert and delete nodes or connections,

drag connection endpoints in the graph. Furthermore,

some operations can be performed in the infobox as

well: connections may be deleted, data properties may

be added or deleted. At any time, the modifications

can be copied to the clipboard in Turtle format. Fur-

ther plans include to save the modification list on the

backend, and to enable users to have joint editing ses-

sions via shared graph views. Figure 2 shows the edit



Exploring publication metadata graphs with the LODmilla browser and editor 5

Fig. 1 Expanding the graph via text search

buffer displayed after the user pushed the ”My edits”

button.

While editing, user actions has to be translated into

triple insertions and deletions. For example, moving a

connection end from node A to node B generates one

triple deletion and one triple insertion. While the trans-

lation of operations on graph edges to RDF operations

is straightforward, the operations on nodes raises some

issues. Node deletions may have several meanings from

the RDF viewpoint as a node does not exist per se in

an RDF dataset. A node can be deleted by deleting all

triples referring to this URI either as subject or object.

But one can never be sure to find all such triples from

all datasets over the world. Another interpretation of

node deletion may be to delete triples where the node

is the subject in the current dataset. Our intention is

not to hide the RDF nature of the graph, but to reflect

it by the implementation of the editing actions. There-

fore, we have an icon for simply hiding the node, and

another to delete all connections of the node. This lat-

ter operation deletes the currently visible connections

only, and leaves hidden connections intact.

Regarding node insertion, we ask for the label and

type of the new node, and in order to avoid URI colli-

sions, the URI is generated as a globally unique id with

the prefix selected by the user. The new node can then

be displayed on the screen using an optional thumb-

nail URL to show as an icon. As a result, new nodes

manifest as two or three new RDF triples.

Finally, in the inspector each property-value pair

represents one triple, so the change, insert or delete op-

erations have natural meanings in this case. It will re-

quire more time to find all discrepancies in graph-based

editing of RDF, and to reach a common set of transla-

tions from graph operations to RDF modifications.

4 Backend

Most of the browsing functionality does not rely on a

server, and thus our tool could work without a ded-



6 András Micsik et al.

Fig. 2 The edit buffer containing changes

icated server. In order to support saving and sharing

users views, we had to implement a server side com-

ponent as well. The backend has an additional bene-

fit for performance as it may load information faster

and cache visited nodes. Finally, we moved most of the

search operations to the backend because of these rea-

sons. Search operations use both graph traversal and

SPARQL queries, as we cannot always find an open

SPARQL endpoint for datasets.

We put a requirement that our solution should work

on as many datasets as possible, and it should use

the latest information available, so harvesting and pre-

processing datasets as in [19] was not a viable option in

our case. These presumptions lead us to a graph traver-

sal which can use either a SPARQL query (DESCRIBE

for example), or dereferenceable URIs to fetch the con-

nections of resources. Incoming RDF can be parsed as

Turtle, RDF/XML, JSON, etc. in the backend using

the Jena toolkit [15]. Three variations of LOD graph

search have been implemented:

– Content search: we are searching neighbour nodes

with data properties containing the given search

pattern,

– Connection search: we are searching neighbour nodes

for object property names matching the search pat-

terns,

– Path finder: paths are sought between selected nodes.

In all cases we wanted to avoid solutions that work

in single datasets only and solutions which use pre-

processing of whole datasets. These requirements lead

to several problems: first, the quality of the RDF stores

is quite different in capabilities, availability and speed,

which has big impact on the performance and qual-

ity of the graph traversing process. Some of the RDF

nodes might not be available during the search process,

or they can be slowly harvested. The second problem

is that the world-wide LOD graph is huge: nodes may

have 500 or 1000 connections, and a 2-step path may

cover 3 different RDF stores. The third problem also

comes from the heterogeneity of our data sources: links



Exploring publication metadata graphs with the LODmilla browser and editor 7

Fig. 3 Finding paths between two resources

between graph nodes sitting at different RDF stores are

known only by one of the nodes (i.e. incoming links are

not stored).

Because of these limitations, we chose to generate

our graphs dynamically. When a user explores a part

of the LOD graph, several search operations may be

started in a sequence. These queries may be slow at first

due to dynamic loading of nodes, but will get faster and

faster after the graph area is cached.

As we only see a part of the whole graph at search

time, most of the well-known fast graph search algo-

rithms are not applicable in our case. We have to go

back to A* style traversal and adapt it to our needs. It

is hardly possible to estimate the distance to the goal

node, but we can use some heuristics based on connec-

tion types. As a specificity of this task, there are paths

we are simply not interested in, for example Book re-

sources are all connected to the Book RDF class. There-

fore, we simply do not follow a set of trivial links denot-

ing type, language or format of nodes. The traversal of

the remaining links may be ordered heuristically based

on learning, this remains as future work in the project.

In the case of remote content search our task is to

answer the question: does a node containing a given

string in a data property exists in the neighbourhood

of a given node? To answer this question breadth-first

traversal in the RDF graph structure is applied. We

have to limit this algorithm in several ways. First, a

maximum depth is specified until the algorithm tries

to find results. As the result set may easily grow to

hundreds of nodes, which is unmanageable for the user,

the number of result nodes is limited as well. The result

of the search is shown as highlighted nodes in the graph

for which the shortest paths from the start node are also

displayed.

In the case of connection search only connection

types matching the given search text(s) are followed.

Multiple search items might be added divided by a sep-

arator. The traversal of links is also breadth-first. The

result of the query is a set of nodes which are accessible

via the matching connections. The relevant incoming



8 András Micsik et al.

connections, just like in the case of the content search

algorithm, might not be discovered, as these can only

be retrieved using SPARQL endpoints, and even so, we

cannot ask each SPARQL endpoint in the world for the

existence of such connections.

For path finding the question is if a path exists be-

tween two RDF resources (Figure 3). Our implementa-

tion is similar to the Dijkstra algorithm with all edges

having the same weight and where the graph is pro-

duced on the fly. The starting parameters of our im-

plementation are the two starting nodes, the maximum

depth of the search, and the maximum number of nodes

we can handle as a response. In the first iteration a

breadth-first traversing starts from both endpoints. Their

connections are checked and if common nodes can be

found, they will be accepted as results and the algo-

rithm is finished. In each further iteration the nodes

accessible from the already found nodes are checked.

One such iteration means two steps in depth increment

since we are growing our graph from both ends. The lo-

cal target is to find nodes which have parents to both of

the source nodes. When such node has been found, the

resulting graph must be simplified. All nodes not on the

common path are eliminated. In this case it still might

happen that we have more nodes in the path than the

number we can comfortably handle on the user inter-

face.

5 Datasets used with LODmilla

The aim of LODmilla was to support zero configura-

tion browsing of any LOD dataset. Therefore, we rely

on dereferenceable URIs [17], and the ability to down-

load resource descriptions in at least one of the pop-

ular Linked Data formats using content negotiation.

The voiD vocabulary [2] provides a method for pub-

lishing high-level descriptions of datasets, including the

main entry points such as the SPARQL endpoint. Al-

though the use of voiD is still infrequent, we plan to

rely on voiD descriptions to automatically configure the

browser for the visited datasets.

Besides DBpedia, the most frequently used data for

LODmilla is provided by the SZTAKI LOD service9

containing two datasets: one about publication data

and one with the contents of Hungarian archives based

on the National Digital Data Archive of Hungary. The

second dataset (11 million triples) contains informa-

tion about books, movies, articles published in Hungary

with links to other datasets such as DBpedia or VIAF.

The cultural dataset was produced from the results

of OAI-PMH harvests from several Hungarian reposito-

9 http://lod.sztaki.hu

ries. In this way we collected more than 800.000 Dublin

Core records in XML, and converted them to RDF. The

RDF conversion used DBpedia, schema.org, FOAF and

dcterms schemas. We decided to use multiple type def-

initions in order to facilitate further processing of our

data without reasoning under different schemas. As an

example, person descriptions have the Person type from

DBpedia, FOAF and schema.org schemas. The RDF

result uses 17 dcterms properties to describe the cul-

tural assets. The processing of creators took much extra

effort. The original metadata records did not contain

creator identifiers, and they were also quite dirty, for

example birth dates and contribution role names were

often put before or after the creator names. Therefore,

we first applied some rules to detach dates and roles

from names, and use them to enrich the description

of persons and assets. Further then, we extracted cca.

375.000 creator occurences from the cultural metadata.

These names we wanted to match with named author-

ity records, or person records from VIAF, DBpedia and

the Hungarian National Library. Hungarian names ap-

pear in different order: last name first. We also had to

deal with the various ordering of name parts. Different

name formats were recorded as dcterms alternative data

property. The name linking process searched the three

datasets for some name variations, and if there was an

obvious match, a sameAs property was recorded for the

author. In this way cca. 130.000 creators were linked to

at least one other dataset.

A similar process was completed for the publica-

tion records of SZTAKI researchers. This resulted in a

much smaller dataset, but it was much more interesting

to our colleagues. The dataset contains the usual meta-

data such as title, publisher, date, subject and creators

for each publication. Each publication is linked to the

producing laboratory. In the future, the dataset will be

extended with links to concepts representing keywords

and topics of publications. The publication dataset was

used to collect scenarios and opinions from researchers,

discussed in the next section.

6 Using LODmilla for research activities

exploration

We consulted twelve researchers in order to find out

how they could use LODmilla for browsing publication

metadata and what are their most frequent activities

during exploration of such data. Among the researchers

there were computer scientists, mathematicians, social

scientists, a linguist and a Ph.D. student in philosophy.

In the following we list some of their suggested explo-

ration strategies and the possible tactics [4] to perform

them using LODmilla.



Exploring publication metadata graphs with the LODmilla browser and editor 9

Most of the collected exploration activities start from

a small set of papers or authors. The elements of the

set can be found in LODmilla by entering the keywords

or person names into the node opener palette. It works

with a SPARQL endpoint currently, or it can work us-

ing a global Semantic Web search engine such as Fal-

cons10. These starting points represent interesting pa-

pers or researchers working on a field that meets our

current interest.

From the starting points, the exploration tries to

collect new information or interesting papers. It is very

typical to traverse the links of creators and references,

and thus surf on the links, which can also be done

using Google Scholar (for example). The main differ-

ence is that LODmilla ’records’ one’s paths of surfing

in the graph, and the visited nodes may be kept on the

screen or dismissed if judged as irrelevant for the cur-

rent search. The graph view also enables us to move

faster back and forward on citation links between pa-

pers.

Quite easily one may litter the screen with many su-

perfluous nodes. It is essential not to miss the goal and

to keep the graph at a manageable size. One can speed

up and focus exploration by surfing towards relevant di-

rections, for example by searching for keywords in the

neighbourhood of selected papers or authors using the

palette for neighbourhood content search in LODmilla.

6.1 The author network

On the other hand, if one is interested in the author net-

work, it can be expanded around selected authors us-

ing the Remote connection search palette in LODmilla.

Discovering such connections is important in scholarly

exploration: our interviewees were eager to know:

– if certain people have written papers together,

– if certain people have worked together at some lo-

cation,

– if supervisors of Ph.D. students may know each other,

– if certain people could act as hidden influencers (this

can be guessed in case of a common working place,

for example)

Such kind of connections can be revealed with the

help of the path finding palette of LODmilla. It is of-

ten important to find out that selected topics has been

researched close to us. One can start a search for key-

words in one’s neighbourhood, and may find relevant

papers by colleagues, or relevant theses done at a nearby

department. Consequently, one can search for a given

topic restricted to any institute or department, by start-

ing the search from the node representing that unit.

10 http://ws.nju.edu.cn/falcons/

6.2 The citation network

By opening the citation network, we see paper refer-

ences as links between papers. This network needs to be

filtered by date, because we are normally interested in

recent evolution of research topics, so papers outside a

period need to be hidden. This feature is not yet imple-

mented in LODmilla. The citation network may reveal

some key papers, which are cited from most other pa-

pers in the topic. Therefore, their indegree is the highest

in the citation network. Highlighting such nodes is an-

other new feature requirement for LODmilla. Such pa-

pers may be seen as the starting points of new research

directions. Similar goal exists for authors as well; the

authors with the most papers in the topic may be the

’grand masters’ in that field.

Researchers are sometimes interested in circular ci-

tations, where authors regularly cite each other. It is

good to know who are the members of such cliques,

and whether one person is inside or outside. A graph

representation is quite ideal for answering such ques-

tions.

Researchers seek for open access, and by using re-

mote connection search in the graph, the nodes with

connections for associated fulltext, research data or source

code are highlighted.

6.3 Strategic maps

One of our interviewees aims at building ’strategic maps’

for learning new fields, which initially contain the im-

portant papers and authors of the field, and then by un-

derstanding the relations among papers and the quality

of papers, the most imortant papers are selected with

minimal overlap in order to reduce reading time. For

this a tactic he would like to apply is to find papers

with the same authors in the same topic, which can be

translated to multi-criteria path-finding. Another tactic

needed is to rank paper nodes by their citedness, and

to filter out less cited papers for example. The third

requirement for the refinement of such maps to be able

to show or hide nodes based on multiple criteria, for

example paper nodes not containing certain keywords.

An interesting aspect here is the distance (or simi-

larity) of papers, which can be represented by the length

of the connecting edges traditionally. The similarity

may be pre-calculated by some other service, but it can

also be guessed using available node properties such as

keyword lists. It is an interesting question how to rep-

resent similarity in LODmilla graphs.

Finding trends and state-of-the-art is the ’ultimate

question’ raised by the interviewees. These can be char-

acterized by topological and statistical characteristics



10 András Micsik et al.

of the graphs together. The papers setting the trend

should be recent, but need to have relatively large num-

ber of citations.

Naturally, there are a bunch of other tasks in schol-

arly information retrieval which require a tabular or

listing view, such as the statistics of publications and

their types or citations. The traditional keyword search

in the style of Google also remains indispensable.

6.4 Research data

Cyberscholarship is a rapidly expanding phenomenon,

where new results are mined and discovered from the

growing number of primary and secondary sources [13].

Murray-Rust suggests the continuous creation of se-

mantic objects during research [16], which should be

the basis of publication and could be an enabler to find

undiscovered results. This means that besides the pre-

viously examined traditional publication data, the de-

scription of research data needs to serve an impotant

role. The two kinds of descriptions are related and can

be used together with the help of further improvement

of data citation techniques. Although cyberscholarship

typically involves text mining and data mining, there

is an inevitable need to explore the results of mining,

and browsers such as LODmilla can be used for that

purpose in case of semantic data. LODmilla and sim-

ilar software can be a part of the new service infras-

tructure required for cyberscholarship to support ”self-

organizing knowledge driven by human interaction” as

reported by Larsen [13]. We are in the phase when se-

mantic descriptions of primary data is becoming avail-

able, for example, myExperiment provides experiment

descriptions in RDF 11. In the area of social science

the Data Documentation Initiative (DDI) is an inter-

national standard for the documentation of data. The

DDI-RDF Discovery Vocabulary defines RDF descrip-

tion of social science research data in order to facili-

tate semantic searching [8]. When Linked Data about

research data and publications will have rich intercon-

nections, LODmilla may serve as a handy tool for the

human exploration of such RDF datasets.

7 Conclusion

In this paper we argue that generic tools for explor-

ing and navigating the LOD cloud are necessary not

only for computers but for humans as well. The exam-

ple of Web browsers show that functionality for using

11 http://rdf.myexperiment.org/

a similar technology converges to a common visualiza-

tion and to a common set of functions. With the LOD-

milla browser we experiment and test these common

functions for generic LOD browsing, with the aim to

exploit the benefits of graph visualization, browseable

lists and flexible search functions. It is also important

to offer this functionality on all datasets matching min-

imal criteria (dereferenceable URIs or a SPARQL end-

point) without the need of manual configuration for

each dataset.

Additionally, new ways of searching and exploring

the LOD graph are needed. LODmilla supports sev-

eral candidates for these: content search starting from

a resource, finding paths between resources, expanding

the graph via given connection types, etc. With this

approach LODmilla is capable to handle, and more im-

portantly connect most LOD knowledge bases easily

and transparently, and provide a shared knowledge ex-

ploration and visualization experience for its users.

The features of the browser enable the users to ac-

cess, visualize and explore all contextual and relational

information of LOD resources including research datasets

or publications as a particular application area. Most of

the information seeking strategies suggested by schol-

ars could be translated to some concrete tactics using

the LODmilla browser, and we also received interesting

new ideas to improve the exploration support of the

browser.

LODmilla is an open web application12, with its

source code published on GitHub13.

References

1. Visual data web: visually experiencing the data web.
http://www.visualdataweb.org/, 2011.

2. Alexander, K., Cyganiak, R., Hausenblas, M., and

Zhao, J. Describing Linked Datasets - On the De-
sign and Usage of voiD, the ’Vocabulary of Interlinked
Datasets’. In WWW 2009 Workshop: Linked Data on the
Web (LDOW2009) (Madrid, Spain, 2009).

3. Badger, E. The best open data releases of 2012.
http://www.theatlanticcities.com/technology/2012/12/best-
open-data-releases-2012/4200/, 2012.

4. Bates, M. J. Information search tactics. Journal of the
American Society for Information Science 30, 4 (1979),
205–214.

5. Berners-Lee, T. Linked-data design is-
sues. W3C design issue document, June 2009.
http://www.w3.org/DesignIssue/LinkedData.html.

6. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D.,

Dhanaraj, R., Hollenbach, J., Lerer, A., and Sheets,

D. Tabulator: Exploring and analyzing linked data on the
semantic web. In In Procedings of the 3rd International Se-

mantic Web User Interaction Workshop (SWUI06) (2006).

12 Accessible at http://lodmilla.sztaki.hu/
13 https://github.com/dsd-sztaki-hu/LODmilla-frontend



Exploring publication metadata graphs with the LODmilla browser and editor 11

7. Bizer, C. The emerging web of linked data. IEEE Intel-
ligent Systems 24, 5 (2009), 87–92.

8. Bosch, T., Cyganiak, R., Gregory, A., and Wackerow,

J. Ddi-rdf discovery vocabulary: A metadata vocabulary
for documenting research and survey data. In LDOW

(2013), C. Bizer, T. Heath, T. Berners-Lee, M. Hausen-
blas, and S. Auer, Eds., vol. 996 of CEUR Workshop Pro-

ceedings, CEUR-WS.org.
9. Cyganiak, R., and Jentzsch, A. The linking open data

cloud diagram. http://lod-cloud.net/, Sept. 2011.
10. Dadzie, A.-S., and Rowe, M. Approaches to visualising

linked data: A survey. Semantic Web 2, 2 (2011), 89–124.
11. Herrmannova, D., and Knoth, P. Visual search for sup-

porting content exploration in large document collec-
tions. D-Lib Magazine 18, 7/8 (2012).

12. Karger, D., and Schraefel, M. The pathetic fallacy of
rdf. Position Paper for SWUI06, 2006.

13. Larsen, R. L. On the threshold of cyberscholarship. The
Journal of Elenctronic Publishing 11, 1 (2008).

14. Matuszka, T., Gombos, G., and Kiss, A. mswb: Towards
a mobile semantic web browser. In Mobile Web Infor-

mation Systems, I. Awan, M. Younas, X. Franch, and
C. Quer, Eds., vol. 8640 of Lecture Notes in Computer
Science. Springer International Publishing, 2014, pp. 165–
175.

15. McBride, B. Jena: a semantic web toolkit. IEEE Internet
Computing 6, 6 (2002), 55–59.

16. Murray-Rust, P. Semantic science and its communica-
tion - a personal view. J. Cheminformatics 3 (2011), 48.

17. Sauermann, L., and Cyganiak, R. Cool URIs for the Se-

mantic Web. W3C Interest Group Note, W3C, December
2008.

18. Schenk, S., Gearon, P., and Passant, A. Sparql 1.1
update. Tech. rep., W3C, 2008. Published online
on October 14th, 2010 at http://www.w3.org/TR/2010/

WD-sparql11-update-20101014/.
19. Vocht, L. D., Coppens, S., Verborgh, R., Sande, M. V.,

Mannens, E., and de Walle, R. V. Discovering mean-
ingful connections between resources in the web of data.
In LDOW (2013), C. Bizer, T. Heath, T. Berners-Lee,
M. Hausenblas, and S. Auer, Eds., vol. 996 of CEUR

Workshop Proceedings, CEUR-WS.org.




