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Abstract--Recognition of small patterns covering only a few pixels in an image cannot be done by 
conventional recognition methods. A theoretically new pattern recognition method has been developed 
for undersampled objects which are (much) smaller than the window-size of a picture element (pixel), i.e. 
these objects are of subpixel size. The proposed statistical technique compares the gray-level histogram of 
the patterns of a set of scanned objects to be examined with the (calculated) gray-level densities of different 
(in shape or size) possible objects, and the recognition is based on this comparison. This method does not 
need high-precision movement of scanning sensors or any additional hardware. Moreover, the examined 
patterns should be randomly distributed on the screen, or a random movement of camera is (or target or 
both are) needed. Effects of noise are analysed, and filtering processes are suggested in the histogram domain. 
Several examples of different object shapes (triangle, rectangle, square, circle, curving lines, etc.) are presented 
through simulations and experiments. A number of possible application areas are suggested, including 
astronomy, line-drawing analysis and industrial laser measurements. 

Subpixel-recognition Histogram noise filtering Undersampling Super-resolution 
Image analysis Pattern classification Convolution Statistical pattern recognition 
Light-sensor arrays Density estimation 

l. INTRODUCTION 

Subpixel measurement technology is a new field in 
digital image processing. Several methods have been 
developed to detect some specific features t 1-4) of image 
segments of low resolution. In these measurements the 
accuracy is higher than the scanning resolution of the 
camera. 

One of the main areas of subpixel technique is the 
position analysis of line drawings. Koplowitz and 
Sundar Raj tS) propose a method which reconstructs 
the original curve from chain coded data. When a 
straight line segment has been digitized into a chain 
code sequence with N chain points and the distance 
between the pixeis is D, then the subpixel resolution is 
about D/~/N.  Lyvers et al. ~3) determine the position of 
an edge with an accuracy of about 1/20 pixel by a 
moment-based edge operator to measure imaged metal 
machine parts. The effect of noise is also considered. 
It is found that the operator has a relatively small bias 
in the presence of noise. Cox et al. ~4~ use matching 
methods to predict and estimate locations of edges 
with an accuracy of 3% interpixel spacing. Alexander 
and Ng t6~ show when the Nyquist criterion is satisfied 
for a scanned object, the location of the object can be 
estimated by a subpixel accuracy centroid method. 
Reichenbach et al. ~ ~ characterize digital image devices 
using edge detections of subpixel accuracy. Huertas 
and Medioni ~7) have developed a subpixel operator 
using the facet model combined with Laplacian- 

Gaussian masks. Warmerdam and Algazi t2J give a 
method to describe the edge transition by Gaussian 
Derivatives at the resolution matching the transition 
widths. Aghajan et al. ta~ use neural networks to estimate 
the multipixel line-width of straight lines and to mea- 
sure their position by subpixel accuracy in micro- 
lithography. Szir$nyi et al. ~9'1 o~ show an inverse statis- 
tical method to estimate the diameter of a laser beam 
by a moving sensor-array by subpixel accuracy. 
Szir/myi t 11) suggests the same technique for parameter 
estimation of nearly noiseless light-spots in two dimen- 
sions. 

Conventional pattern recognition and other image 
analysis methods deal with objects which can be de- 
scribed by several pixels and gray-levels. In the spatial 
frequency domain the main criterion to appropriately 
describe an object is the Nyquist criterion: the spatial 
frequency which corresponds to the scanning resolution 
should be at least twice the spatial bandwidth of the 
image (reference 12, p. 97). Sometimes, the spectrum 
folding of the aliasing effect can be exploited as an 
information source in the lower spectra, "3~ but in 
general the aliasing effect degrades the image. In the 
case of low resolution pictures ~1.'~5) the recognition 
works on a limited number of classes only. When the 
object to be recognized is so small that it covers few 
pixels only, the conventional statistical or syntactical 
recognition methods will no longer work correctly. 

However, the well-known and precise characteristics 
of recent image capture devices give new possibilities 
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for low-resolution picture processing. For about 10 
years new types of scanning arrays (e.g. CCD = Charge 
Coupled Device, cl 6-1 s) photodiode array ~ls) have been 
available. They have some properties which are impor- 
tant in recent applications: the elementary scanning 
windows are nearly independent of their neighbors in 
the photoarray, the geometry and sensitivity distribu- 
tion of the elementary scanning windows are the same 
for all windows and these properties are given by the 
data sheets316-1 s~ The latest types of available image 
sensors have impressing characteristics: 110dB dynamic 
range and 52-electron noise, t19) 

Typically, the resolution of image acquisition devices 
(cameras, scanners) is limited by the scanning photo- 
matrix and not by the optical systems; consequently, 
these devices are designed for undersampling, tl) 

These features of the new devices give an opportunity 
to handle the picture information by statistical and 
analytical methods to get super-resolution. Moving 
the object with accurately measured small steps in the 
scanning field of the camera, the object can be scanned 
through a convolution31) Similarly, the position or 
angle of a known large (multipixel) shape (e.g. an edge) 
can be measured by analytical subpixel algorithms, tl-4~ 
However, nothing has been published on the recog- 
nition of small subpixel-size objects. 

Now, a new method will be presented for the recog- 
nition of subpixel objects. In some applications we 
have very small (relative to the pixel window) patterns 
on the screen originated from objects of the same shape 
and size, but we cannot recognize them with conven- 
tional pattern recognition methods. It is also possible 
that we know the shape of the scanned objects, but the 
diameter or some other parameter of these scanned 
similar objects should be determined. 

One of the main areas of subpixel technique is the 
line drawing analysis. In this case not only the positions 
of line-segments, tS~ but also the line-width and type 
(continuous or dotted) can be determined by this sub- 
pixel recognition/measurement technique from under- 
sampled images. 

As an example, one can think of the case when the 
distance between the stars of a double star is to be 
estimated in an undersampled astronomical measure- 
ment, where the spots of the optically projected stars 
and their distance are smaller than an elementary 
scanning-window of the scanning-matrix of the camera, 
and the optical magnification cannot be increased (e.g. 
on a space telescope). Here, the histogram statistics are 
provided by the results of image sequences about the 
stars at random positions (the telescope is not stabilized 
firmly in the space). 

Another example is provided by simultaneous wide- 
range tracking and beam-spot measurement t11~ or 
determination of a laser beam. Following the track of 
a light beam (laser beam) is an important task in many 
laser-optical measurements (cutting and welding with 
laser, optical-memory devices). In these cases the mea- 
sured track runs in an image area that is much larger 
than the width of the beam-spot. 

A non-visual image analysis example is robot tactile 
sensing. ~15~ The relatively small objects contacted ran- 
domly with the sensor array or the quality of surface 
could be determined by this subpixel method. 

The exact theoretical grounds of this new method 
will be shown in this paper. Effects of noise, application 
possibilities and the practical limits will be analysed 
by simulations and experiments. It will be shown that 
not only the subpixel-accurate position of a multipixel 
shape, but the exact recognition of such subpixel-size 
objects can be done by statistical methods, without 
high-precision moving or additional hardware. The 
recognition needs only a gray-level statistics (histogram) 
of the objects to be determined. These objects frequently 
appear randomly and separately on the screen, or there 
is a histogram made of consecutive expositions about 
the same randomly moving object. 

Histograms are often used in picture processing. 
They are the gray-level statistics of the picture. In the 
normalized case the histogram is the estimation of the 
probability density function of the gray-levels of the 
pixels in the image. Making histograms 12°J is one of 
the basic steps of any picture processing system (both 
in hardware and software), ~12.21~ so our method is easy 
for any applications. However, this new histogram- 
based technique cannot be derived from the conven- 
tional statistical pattern recognition methods which 
also use image histograms. 

In our case the shape and the size of the measured 
objects are the same in the whole detected area. The 
light-sensitivity of elementary sensor-windows is uni- 
form (or it can be made uniform by memorized pixel- 
bias values), and the reflection factor of the targets (or 
the transmission factor) is homogeneous. The objects 
projected onto the sensory array may be much smaller 
than the width of an elementary scanning-window. 
Then, we can use a new statistical measurement method 
to recognize the subpixel-size objects from their projec- 
ted patterns in the image. This method is based on a 
histogram-evaluating method which makes the gray- 
level statistics (histogram) of the scanning-windows 
(pixels) (partly or fully) covered by the scanned object. 
Prior to the measurement, the possible object classes 
must be considered in the calculations of gray-level 
densities based on the known sensitivity distribution 
of the scanning windows and the light-intensity distri- 
bution of the detected objects. During the recognition, 
the histogram of the measured patterns and the con- 
sidered densities of the different object classes are com- 
pared, and the class of the most similar density is given 
as the result. 

In the following sections the original theory of sub- 
pixel pattern recognition (model, calculation of densi- 
ties, comparison of measured histogram and considered 
densities, effects and removal of noise in the histogram 
domain) will be presented, then experimental results 
are shown. Elementary shapes (as circles, double circles, 
rectangles, etc.) will be presented for subpixel recog- 
nition. The theoretical limits of the method will be 
shown in the spatial and the frequency domain as well. 
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2. THE THEORY 

Consider an input picture with the separated pat- 
terns of the same object class or a sequence of pictures 
with the patterns of the same object class. The scanned 
objects are small compared to the pixel width. It means 
that there is only one or a few gray-level values in a 
pattern when an object is scanned. Let us suppose that 
a scanning-window is not covered by more than one 
subpixel object at the same time. 

In the case when there are enough samples of such 
subpixel pattern and the image sources are statistically 
stationary and ergodic, it will be shown that the class 
of the scanned objects can be determined by evaluating 
the histograms of the measured patterns. 

2.1. Calculation of densities 

In the first step, the theoretical distribution of poss- 
ible gray-levels is calculated by computer simulation 
for the objects to be detected. Let S(x,y) denote the 
photosensitivity distribution of an elementary sensory 
window (see Fig. l). ('3) L(x - Ax, y - Ay[og) is the light- 
intensity distribution of the measured ogef~ object at 
(Ax, Ay) characteristic distance from the window's ref- 
erence point, R(.) is the response function of an ele- 
mentary scanning pixel window, and f~ is the set of the 
different object classes. Then, the photo-exposition 
(the gray-level of pixel) for an (i, j) indexed elementary 
sensor-window of the sensor-matrix is a function of the 
window-convolution and the response function: 

Gi4 (Ax, Ayl~o) 

Here the integral is interpreted in the whole (x,y) 
area where the S(x,y) sensitivity function of one scan- 
ning-window is considered nonzero. When the used 
sensor accumulates the light-power between exposures 
(as the TDI-CCD (22) does), a time-domain integration 
must also be considered in convolution (1)J 9) Generally, 
the response function R(.) is a power function (refer- 
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Fig. 1. A sensor window of scanner (camera) with its close 
neighbors and the measured object spot projected onto the 

sensor-matrix. 

ence 21, p. 273) of the illumination of the sensory 
window. However, the new types of image capture 
devices (e.g. CCD arrays t '6- '9) have linear character- 
istics in a wide, 2000-100, 000 dynamic range. Since in 
most cases R(.) may be considered a linear function of 
illumination, in the following part the window response- 
function R(.) in equation (1) will be considered linear 
(R(.) = 1.0). For stationary and ergodic images the 
index (i, j) may be omitted. 

If both Ax and Ay have uniform probability distri- 
bution (Ax, Ay and the (i, j) positions of the exposition 
are independent), the h(Glt~) probability density of 
G(to) can be calculated in the (G, Ax, Ay) space. The 
G(Ax, Ayl~o) function is cut by the G(Ax, Ayito) = Go 
and the G(Ax, Ayi~o) = Go + AG planes. The projec- 
tions of this section of the G(Ax, AyIo ) surface to 
the (Ax, Ay) plane is proportional to the probability 
of G e [ G  o, Go+AG).  When A G ~ 0 ,  we obtain the 
h(Gl~o) density. When AG means discrete finite intervals, 
we obtain the probability distribution (PD). 

IfldG(ArW~)/dAr]- ' exists and is measurable, where 
Ar = (Ax, Ay), F = {ArIG(Arlo~) = Go}, and the follow- 
ing integral exists in the Lebesque-sense, it can be 
shown that the density function is 

, ,  ,[dG(Ar[¢°)l ' 
h(Go]a~)= Jr pAr(ZXr, ] ~  Ar - I dF. 

The density Par of Ar is usually considered uniform. 
As a demonstration, in Fig. 2 the coverage G (~  photo- 

exposition) of a pair of small circles at a distance of 
40~o of interpixel spacing is shown as a function of the 
(Ax, Ay) interpixel position. 

Practically, in the computer calculation, in the case 
of every calculated a) class, the (Ax, Ay) area is divided 
into small equal sections, and direction O is also divided 
into intervals. For every interval of (Ax, Ay) area the 
quantized O is calculated from equation (1) and the 
counter of the interval according to the calculated O 
value is incremented by one. When the partition of 
(Ax, Ay) subspace is not equidistant, the counter of 
summation should be incremented by the measure of 
the examined (Ax, Ay) interval-section. 

Since there are positions where an object covers two 
or more (i, j) pixel-windows at the same time (when it 
is on the border among windows), it gives some statis- 
tical dependencies among the different exposition 
values of the same position. Because of these depen- 
dencies, some neighborhood of the windows should be 
taken into consideration in the calculation, too. In this 
case, at a given position (Ax, Ay) of the projected object 
relative to the reference sampling-window, the neighbors 
of this window are also considered in statistics with 
their exposure values. It means that in the case of 
the nearest neighborhood, 9 pixel values should be 
calculated in a (Ax, Ay) position. If it is necessary, the 
interaction effect of the neighboring pixels can also be 
taken into consideration by this method. 

Not only Ax and Ay, but also the rotation angle ~t 
of the object can be calculated in this way, At = 
(Ax, Ay, ~). 
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CIRCLE PAIR 

/ 
SCANNING WINDOW 

Fig. 2. Probability calculation of P(Ge [G o, G o + AG]) from the G(Ax, Aylto) function in the (G, Ax, Ay) 
space. The probability is proportional to the projected area of the G e [G o, Go + AG] interval intersection 

of the G(Ax, Aylco) function to the (Ax, Ay) plane. 

The local inhomogenity of transition width at the 
border of the scanning windows influences the histogram 
statistics very slightly, as it was simulated for line CCD 
sensors, tg> When the rotation of object is not considered, 
the small difference between the estimated and mea- 
sured angle positions of the object may cause an error 
in the measurement. ~22) 

When more subpixel-scale objects may be projected 
into the same pixel-window and their position relative 
to each other is known or statistically well-defined, this 
condition can be involved in the calculations. (See the 
experiments of single and double spots, Figs 3 and 4.) 

A fixed group ofsubpixel objects should be handled as 
one object. When patterns are periodically spaced in 
the image, it results in effects as in Figs 5 and 6 for 
periodical dots and lines. Such types of repetition 
should be considered in the calculation of densities. 

2.2. Classification: comparino the histooram 
and densities 

In the measurement we take the histogram of the 
gray-levels G of the measured similar objects, and this 
histogram h(G) is compared, as an estimation, with the 
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Fig. 3. Histograms of circular spots of different relative areas. 
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sections. Line-width is 0.40. 
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Fig. 6. Histogram of horizontal lines of different black/white 
ratios. The parameter is the relative length of black/white 

sections. Line-width is 0.40. 

calculated h(Gl~o) densities for every ~o e t~ object class. 
Estimating densities is a wel l -known area of  statis- 
t i c s . ( 2 3 - 2 6 )  

The histogram and the densities are compared by 
some discriminant functions. The classification is taken 
on the results of these comparisons, as the m a x i m u m  
of Correlation and m i n i m u m  of Ll-dis tance  t25'27) 
(absolute integral of difference of densities) and informa- 
tion divergences. (23) 

This classification method,  when the measured 
histogram and densities of different classes are com- 
pared to estimate parameters through nonparametric 
estimation, is relatively new. Partly as a consequence 
of the present work, some latest results deal with the 
robustness and consistency of this methodJ 27) 

The correlation is considered between the measured 
h(G) and the calculated h(Gl09) functions for G e K: 

Corr Sh(G)h(Gl~°)dG-- 1, (2) 
orb(G) O'h(Glco) 
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where the standard deviations for h(G) in the normal- 
ized case are in the form: 

.o, J(,,h,O, .2 o) 
It is similar for ~rh~Oi,o ) of h(Glco). 

Here K is the common interpretation interval of 
h(G) and h(Glco) normalized functions, which are 
normalized again to get the integral be equal to 1.0 for 
them over the K interval domain. The definition of the 
Kullback-Leibler divergence for densities f and g~2s) 
for GeK: 

D(fl]g) = Sf(G)log(f(G)'~dG. (3) 
\g(6)/ 

When D(h(G) H h(GJco)) divergence is minimized over co, 
the result is similar to that of the maximum-likdihood 
(ML) method. (29) When D(h(Glco)II h(G)) is minimized 
over co, we obtain the Kullback minimal discriminant 
information (MDI). (29) 

When the minimal information divergence is relat- 
ively small for the winner class, the estimation is suffic- 
ient. This sufficiency can be estimated from the number 
of measurements, the hypothetical and the measured 
probabilities and the ~2 distribution,t29~ since the 

r 
N ~ (H(Gk)-n(Gklco)) 2 (4) 

k = 1 H(Gklco) 

normalized quadratic estimation error converges to 
the ( r -  l)th order X 2 distribution, when the number 
of independent measurements N ~  GO. (29 '30)  Here the 
number of Gk intervals is r, and the H(Gk) and H(Gklco ) 
probabilities are interpreted as the integrals of h(G) 
and h(Glco) densities over the kth (1 < k < r) interval 
of G. 

When more than one class give sufficient results with 
X z test, it means that these classes must be considered 
one identical class. In order to increase the number of 
separable classes, the number of Gk intervals (the mea- 
surement accuracy) has to be increased. There can be 
cases, however, when possible patterns of two different 
object classes give (nearly) the same statistical densities 
that can be tested through density simulations. 

Since the result of Z 2 test and the maximum-likeli- 
hood ratio test are equivalent, t29) and for the LI dis- 
tance and information divergence of two probabilities 
there is a bouding criterion (reference 31, p. 58), the 
above discriminant functions and X 2 test are in close 
connection. However, the correlation method is not 
invariant to scaling, while the others are (the L1- 
distance and the informational distances are f diver- 
gences).(23,2 7) 

2.3. Effects of image noise and background in the 
histo~3ram domain 

Since subpixel signals mean a special type of"noise", 
taking the effects of other noise sources into considera- 
tion is a crucial point of this method. Reduction of 
noise influence can be achieved through the appropriate 
noise models. 

The first experiments t32) were made with images 
from high-quality scanners, where the images were 
uniformly colored black drawings on clean white paper 
sheets. Even in this ideal case some moderate effects 
of noise have been found. However, one of the main 
application possibilities of this technique is in the 
analysis of undersampled line-drawings where, fortu- 
nately, it is not necessary to deal with high noise. 

In a very general case the effects of noise and uneven 
background should be taken into consideration. Filter- 
ing the picture, transformations can be applied only 
which do not influence the useful information content 
of histograms. Generally, the image-filtering methods 
(averaging, edge-enhancement, noise-removing) change 
the information content of both the image and the 
histograms, 12°} so they cannot be used here. 

In many cases pixels of subpixel patterns can be 
separated by some edge detection t~2} or target-follow- 
ing algorithm. The enhanced pixels can be separated, 
and the original (non-filtered) pixel-values (G) of the 
separated pixels should be taken into the histogram. 
Separating the edge pixels and their close neighbors, 
the remaining pixels can be considered the background. 
The statistics of background and the noise effects can 
be estimated from the separated background. On the 
basis of background parameters, a background-equal- 
ization can be processed on the whole image (containing 
also the subpixel points). In this way, we can get more 
correct histogram statistics of the supposed subpixel 
patterns. This histogram may contain some effects of 
noise and the effects of background. In this section we 
deal with noise removal of histograms and estimation 
of noisy densities in the histogram domain, too. 

Two main types of noise and background are con- 
sidered: additive noise and multiplicative noise. Now, 
the uneven background is considered the main source 
of noise. 

In the first case a noisy (or uneven) background is 
covered by the object examined (e.g. in astronomical 
examples). The noise and the background are con- 
sidered independent of the effects of the subpixel patterns. 
Equation (1) will he modified to be 

Gij(Ax, Aylco) 

= S ~ S(x ,y)L(x-Ax,  y-Aylco)dydx 
~' in( i , j )  

+ ~ S S(x, y)B(x, y) dy dx (5) 
~out( i , j )  

where (x,y)edln(i, j) is the area covered by the object 
in (i, j) scanning-window; (x, y)e~Cout(i, j) is the area 
that is not covered in the (i, j) scanning-window, and 
the whole active domain of a scanning-window is .~¢,,, 
(~¢sw = ~¢in(i, j)  + ~¢out(i, j)). The light-intensity distri- 
bution of background is denoted by B(.). When the 
background is uniform and the image is noiseless, the 
presence of background is arising as a Dirac-delta at 
the background intensity in the measured h(G) distri- 
bution of the image. Neglecting this background peak, 
the first integral in equation (5) is considered the Q 
"ideal" subpixel exposure signal at (i, j) indexed sensor 
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in sensor-matrix: 

Q~j= ~ ~ S (x , y )L (x -Ax ,  y-Aylo~)dydx.  
~ ~n(i,j) 

Restricting the investigation to the case when uniform 
object intensity and uniform window sensitivity are 
considered for a sensor at (i, j) position: 

L(x,y)={oL' when (x,y)e.~i,(i,j) 
when (x,y)e.~o,t(i,j) 

when ( x , y ) e ~  
when (x ,y)~¢~.  

and approximating B(x,y)= Bid by uniform back- 
ground intensity within an (i, j) indexed single sensor- 
window, equation (5) can be rewritten as 

Gi, j= Bi,jSs~tsw + Q~j(1--BLJ ) .  (6)  

It is seen that the noisy exposure G~.j can be originated 
from noiseless exposure Q~j through additive and mul- 
tiplicative noise. 

The other, very general case (e,g. black drawing on 
white paper) is considered when there are objects with 
q%w light-reflectivity on a background of qJB.¢kg light- 
reflectivity. The noisy light intensity of incident illum- 
ination is approximated to be uniform in a scanning- 
window, l(x, y) ~_, I<i. The resulted exposure value is: 

Gij = Ii,j( f f WobjS(x,y)dydx 
\ • ~¢ |n(i,j) 

+ S f S(x,Y)U~a.ck, d y d x ]  • 
~ out(i,j) / 

Considering S(x, y) as earlier, we get 

Gi, j = li,jUftBacksSd,~sw + Ii,jkrff BackgSd~IswQi,j (7) 

where the ideal noiseless exposure: 

1 ~¢Mi, j) 
Qi,j = \ ~idBaekg 
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Fig. 7. Densities convolved bymultiplicative noiseofdifferent 
standard-deviations when only the noisy Wobj is considered. 

Thus, Gij can be derived from Q~.j through the same 
additive and multiplicative noise variable, 

N i. j = I i,jtllBackgS.Y~sw. 

When the lighting is uniform, l~j = I o, and the quality 
of target-reflection qJObj is changing, we get a similar 
equation with only a multiplicative noise part (see 
Fig. 7). 

As it can be seen from equation (7), the "ideal" 
exposure is a linear function of c o n t r a s t  (~ I /ob j /~Backg) .  

This parameter may be measured, but it is not necessary 
when the histograms are transformed into some 
normalized form (see the experiments in Section 3). 
This transformed function must not be dependent on 
the absolute lighting and contrast parameters. The 
normalization of a measured noisy histogram is, 
naturally, an approximation only, and this normal- 
ization process needs some knowledge about the general 
characteristics of the histogram examined. 

Since, in both equation (6) and (7) the additive and 
muitiplicative noises contain the same variable, they 
can be implemented in single-variable model. For the 
case of equation (7), we get the simple general equation 
for the pixel gray-levels: 

Gi, j = Qi , jNi j  + Ni j .  

Histograms are the estimated probability density 
functions of image gray-levels, noise gray-levels or 
their functions. Applying the general relationships for 
densities of continuous and derivable variables u, v, w: 

+ ~ Idul 
hv(v) = _< hw,u(w,u(v)) dvv dw (8) 

(from reference 30, chapter 18.5), and considering the 
independence of Q~j and N~j, we get that for the 
corresponding probability densities of G~j, Qij and 
N~j positive variables: 

+o0 

ho.(Q) = ~ hN,~(N, QN + N)INIdN 
0 

+~ 
~ hN(N)h~(QN + N)INI dN (9) 
0 

+® / G - N ' ~ I 1  "N 
he(G)= + S o h N ' Q ~ N ' ~ ) I N t l  

+oo G - - N  1 
= S + o h N ( N ) h Q ( ~ ) N  dN" (10) 

It may be approximated for the histograms interpreted 
as the statistics of the variables over the exposures of 
the sensor-elements in (i, j) positions. 

While the bivariate density in the first integral of 
equation (10) is separable, it is not true for the histogram 
of equation (9), because the noisy signal G is dependent 
on noise N. Moreover, there is a proof of consistency 
for the additive-noise only, when histogram-decon- 
volution in density estimation is examined in refer- 
ence (33). Nevertheless, a good model of noise effects 
help in noise removal or filtering. 
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Practically, it has been found in most cases that at 
the high noise content of G, the approximate formula 
in equation (9) is no longer valid. So, only the use of 
formula (10) is acceptable, and the densities can be 
used in the comparison after the corruption of noise 
(N) through equation (10). The hN(N ) noise histogram 
could be estimated from the noisy he(G ) histogram 
or the background histogram of the image. The dis- 
advantage of this method is the extra computation 
required for calculating noisy densities for every co 
density class with the estimated noise-density. 

In a very general noise model, when the ideal sub- 
pixel signal Qi,j, multiplicative N .~. noise and additive l,J 

N ~  noise are independent, the general image exposition 
signal can be interpreted in the following way: 

G i,j = .a N .~. Qi,, iN i,j + ,,j. 

The density of G can be obtained from the independent 
densities of Q, N # and N ~ through some convolution- 
type integrals [using equation (8) in consecutive steps 
for different noises] when G, u, v > 0: 

he(G)= +oS S h Q ( u ) h f f ( ~ ) ~ h ~ ( v ,  (11) 

Therefore, in a very general case, it can be said that 
noisy density hG(G ) can be estimated by numerical 
methods from the estimated noise densities and the 
calculated ideal density hQ(Q). 

3. E X P E R I M E N T S  

In the following part square pixel windows of unit 
area are considered without gap between the neighbor- 
ing pixels. 

In the simulations, a pixel is considered with its 8 
neighbors. It means that for a (Ax, Ay) position of 
an object relative to the pixel center, overlaying into 
the close neighbors is also taken into statistics. In 
the simulation the rotation angle of the object is con- 
sidered uniform for every (Ax, Ay) position, so the 
gray-level is calculated in the space of three variables. 

In the experiments the measurements are done by 
using black-typed or laser-printed patterns on white 
paper, scanned by image-scanner of 200 dpi resolution. 
The lower resolutions are given by the numerical 
smoothing of the original 200 dpi picture. In the experi- 
ments this ensures the "ideal" square pixels without 
neighborgap at the border. About 1000-3000 patterns 
have been detected for one histogram. 

In the evaluation the measured histograms are par- 
ameterized relative to the hypothetical 1.0.1.0 pixel 
dimensions. The measured histograms and the com- 
puted densities are normalized to have the same (1.0) 
integral, and the abscissa is also normalized in a way 
to bring the different histograms and densities into a 
comparable form. 

In the figures, usually the left end is white reference. 
Exposition value G is analogous to the coverage rate 
of the sensor-window. 

In the comparison of hypothetical densities and a 
measured histogram, in most cases, for the winner co 
class hypothesis, the X 2 test proved to be acceptable 
at 80-99% confidential interval assumption. The X 2 
test shows whether the measured histogram can be 
accepted or more measurements (and maybe a new 
division of G k intervals) are needed. The G k interval 
division of the density is similar to the interval division 
of the measured histogram in the comparison. 

Histogram filtering is not used in this demonstration. 
However, the measured and hypothetical functions are 
fitted considering the noise-effect. Figure 7 shows 
hypothetical densities convolved by estimated multi- 
plicative noise when only the noisy ~obj is considered. 
The parameter is the standard deviation of the noise 
of the target-reflection. This figure and further simula- 
tions demonstrate that not the right-hand-side peak 
but the beginning of this peak could be joined in fitting 
the functions together. In our comparisons the deriva- 
tive before the right-hand-side peak is used in joining 
the functions. The noise of target-reflection is estimated 
as it is about 3%. 

In this section the basic shapes: triangles, rectangles, 
squares, hexagons, circles, double squares and double 
circles are demonstrated in simulation and experiment. 
These examples show that this subpixel method is 
capable of both pattern recognition and pattern par- 
ameter estimation. 

In Fig. 8 the densities of different subpixel shapes of 
the same area are shown. It is seen that the densities 
are different, but the hexagon and circle are so close to 
each other that there is no real chance to identify them 
in our noisy experiments at the given accuracy. 

Both in the calculations and the measurements, the 
number of gray-level intervals is 70-200. In the figures 
the histograms and densities are shown in maximum 
30 intervals of G. It is easily seen that only 4-5-bit 

Densi t ies  of Shapes ,  Area=0 .04  
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N o r m a l i z e d  Coverage of sq. Pixels  
[] T r i ang le  A Square  ~, Hexagon × Circle  

Fig. 8. Densities of different shapes of the same relative 0.04 
area. The area of the pixel is 1.0. The densities are normalized 
to their maximum abscissa and each of them has 1.0 integral. 
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(16-32 intervals) data representation of histograms is 
enough to get a high measurement accuracy. In practice, 
usually 15-25 intervals are used in the comparisons. 

3.1. Experiments with circular spots and double 
circular spots 

In Fig. 3 the histograms of measured circular spots 
can be seen. The parameter is the ratio of the area of 
the circle and the area of the sensor-window. Now, the 
functions are normalized by fitting the derivatives at 
exposure value G before the right-hand-side maximum, 
because this peak is a very definite part of the curve 
(it has a finite probability that the object is inside the 
pixel, so the density should be a Dirac-delta in the 
continuous case). In the measurement the estimation 
accuracy of spot-area was better than 0.03 by using 
different comparison methods. 

In Fig. 4 histograms and densities of double circles 
are seen. The parameter is the distance between circles 
relative to the pixel-width. The task is the estimation 
of this distance. The distance between spots was deter- 
mined with about 0.10 accuracy. 

As it is seen in Figs 3 and 4, the histograms of double 
and single spots are so different that they can be 
separated in an easy way. 
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Fig. 9. (a) Histograms of squares of different relative side- 
lengths. (b) Densities of the same squares. 

This method should be interesting for astronomy 
(double stars) and laser applications3 ~ 1~ 

3.2. Experiments with squares and rectangles 

In Fig. 9 the histograms and densities of squares can 
be found. The parameter is the area of the side-length 
of the square relative to that of the sensor-window. In 
Fig. l0 the densities of rectangles of different length- 
to-width ratios are seen. In Table 1 results of correlation, 
ML, M D I  and Ll-dis tance comparison are shown for 
squares of different side-lengths. 

In Fig. 11 the histograms of double squares are seen. 
The parameters are the distance between squares and 
the side-length of one square relative to the width of 
the pixel-window. 

D e n s i t i e s  of  R e c t a n g l e s ,  A r e a = 0 . 1 2  
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0 ,015  
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N o r m a l i z e d  C o v e r a g e  of  sq.  P i x e l s  
[] 1:1 A 1:2 O 1:3 x 1:5 + 1:8 

Fig. 10. Densities of rectangles of 0.12 relative area and dif- 
ferent length-to-width ratio. 

Table 1. Comparison of histograms of squares of different 
side-lengths (in ~o) to hypothetical densities 

ML,1000on hyp. MDl*1000on hyp. 
Hist 

14 20 30 60 14 20 30 60 

14 4 6 17 83 4 6 16 73 
20 5 2 6 54 5 2 6 49 
30 19 10 4 28 19 10 4 27 
60 87 47 23 2 95 50 25 2 

L l ,100on  hyp. Corr*1000on hyp. 
Hist 

14 20 30 60 14 20 30 60 

14 6 7 12 27 991 985 972 942 
20 7 4 8 22 991 995 993 977 
30 14 10 7 16 976 987 992 987 
60 30 21 14 4 945 982 993 998 
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Fig. 11. Histograms of square-pairs of different relative sidelengths and center-distances (distance = 3* side). 

3.3. Line drawing analysis: effects of periodically spaced 
or nonuniformly tilted targets 

In another experimental example the measured ob- 
ject is a long curving line with a stable width. The 
elementary subpixel-size objects are stripe-segments 
crossing the pixel window. Possible tasks are the 
recognition of curves of different widths, or the recog- 
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Fig. 12. Histograms of curving continuous lines of dif- 
ferent widths. 

nition of the line type (continuous, dotted, dashed 
lines). 

The calculation of densities is made for the uniform 
distribution of the deviation angle of the line and 
distance between line and pixei-center. The track of a 
stripe going from a pixel to its neighbor is considered 
a straight line, and the first neighborhoods are con- 
sidered in the simulations. 

The normalized histograms of curving line can be 
found in Fig. 12. These plots are nearly the same as 
that of the hypothetical densities. Since there is not a 
definite right-hand-side peak at the border of the inter- 
val, a new normalization is needed for the highest peak 
going from right to left. 

It is found that in the case of (nearly) the same co of 
simulation and measurement, the correlation between 
the histogram and density is very good. The line-width 
estimation by the above comparisons gives higher 
accuracy than 8~o of the window-width. (11,32.34.) 

In Fig. 13 an image of different lines (dotted, sparsely 
dashed, dense-dashed) is found, in Fig. 5 the measured 
histograms of the different curve-lines of all angles are 
plotted. In Fig. 6 the measured histograms of different 
horizontal lines are shown. It can be seen that the 
histograms of curving and horizontal lines are different. 
In this case, the histograms of a curving line can be 
used as standard histograms (a good estimation of 
densities) to recognize the horizontal lines. Table 2 
compares the measured (horizontal lines) and stan- 
dardized measured (long curve in all angles) histograms 
using Ll-distance, correlation and the informational 
divergences of the histograms. 

Through the measured lines of Fig. 6 were very short 
(few hundreds ofpixels) and the histograms are "noisy" 
(partly because of the periodicity of spots), the classifi- 
cation works well even under these circumstances with 
L1 method in every case. The other three methods 
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Fig. 13. Image of different lines: dotted, sparsely dashed, dense-dashed. 

Table 2. Comparison of histograms of horizontal lines to 
histograms of curving lines: continuous, dense-dashed, rare- 

dashed, dotted. Line-width = 0.20 

ML* 100 on hyp. MDI*  100 on hyp. 
Hor 

Co DD RD Do Co DD RD Do 

Co 15 26 74 25 17 30 68 27 
DD 8 5 5 11 8 5 5 11 
RD 32 29 20 37 49 48 29 49 
Do 61 47 57 33 57 48 75 28 

L1 * 100 on hyp. Corr* 100 on hyp. 
Hor 

Co DD RD Do Co DD RD Do 

Co 40 54 82 50 92 81 31 80 
DD 26 20 23 32 92 95 97 88 
RD 49 48 38 55 79 75 85 72 
Do 75 65 74 51 91 98 94 99 

result  in s o m e  m in ima l  e r ro r  d i sc r imina t ing  sparse ly  
d a s h e d  a n d  d e n s e - d a s h e d  lines. In  this  m e a s u r e m e n t  
the  ~(2 test is very poo r ly  satisfied. 

3.4. Recognition of different shapes 

In  Fig. 14 a n d  Tab le  3, densi t ies  o f  different  shapes  
and  the  resul ts  o f  c o m p a r i s o n s  are  shown .  In  these  
e x p e r i m e n t s  small  spo t s  f o r m e d  by l a se r -p r in ted  do t s  
were  s c a n n e d  as objects .  These  m e a s u r e d  g r anu l a r  
pa t t e r n s  are  c o m p a r e d  wi th  the  " ideal"  c o m p u t e d  pa t -  
terns.  T h e  Z 2 test  gives 75~o for  the  circles, 88~o for  the  
squares  and  9 6 ~  for the  rectangles .  Even  in the  p o o r  
es t ima t ion  (circles), the  recogni t ion  works  well by using 

Table 3. Recognition by comparison of histograms and 
densities: circle, square, rectangle 1:2, triangle. Area = 0.16 

ML* 1000 on hyp. MDI*  1000 on hyp. 
Hist 
V Ci Sq Re Tr Ci Sq Re Tr 

Ci 3.5 5.3 3.2 12 3.4 5.2 3.2 12 
Sq 4.8 2.9 3.3 4.6 4.7 2.8 3.2 4.5 
Re 7.0 6.5 4.1 11 6.9 6.3 4.1 11 

L1 * 100 on hyp. Corr* 1000 on hyp. 
Hist 

Ci Sq Re Tr Ci Sq Re Tr 

Ci 4.6 7.6 5.6 12 993 993 995 989 
Sq 6.7 4.5 4.7 6.8 993 997 996 997 
Re 7.9 7.8 6.3 11 988 995 996 994 
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Fig. 14. Densities of different shapes of area = 0.16. 
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L1 method. These demonstrative results and other 
experiments successfully demonstrate the usefulness of 
the theory. 

4. LIMITS OF SUBPIXEL RECOGNITION 

Theoretically, this method can even discriminate 
shapes that are not very different (e.g. circle and hexagon). 
There remained a very important question: What is the 
practical limit of application in the presence of noise 
and disturbing background? 

This statistical subpixel recognition method has its 
theoretical and practical limits. For  example, a practi- 
cal limit is the necessity that the statistical distribution 
of the rotation angle of the object examined should be 
known for density simulation. If the picture is not 
uniformly illuminated, the pixel gray-levels should be 
normalized. When the parameters of the scanned pat- 
terns are varying as a function of picture position, this 
function should be considered in the density simulation 
(e.g. when the optical magnification is changing when 
moving the optical axis away). 

The simulation is not necessary when reliable stan- 
dard measurements are possible prior to the classifi- 
cation to estimate the densities of different classes. In 
this way, the simulation of noise-effects can be avoided, 
but this standardized density estimation ~24'25) needs 
higher measurement accuracy. 

Patterns of different classes must not be mixed. 
However, there are several cases in machine vision field 
where subpixel patterns of the same class can be sep- 
arated from the others. In the following, some examples 
are given: 

• In industrial laser applications the parameters of 
followed laser-beam can be measured t! o.t ~) (beam-shape, 
diameter). 

• In astronomical or military applications separated 
objects (slowly moving) in an image sequence can be 
recognized. 

• In line-drawing analysis at a low-resolution scan- 
ning, a line between crossings is recognized by using 
the histogram of the separated line-segment area. 

• When the noisy background is statistically well- 
defined (or it is separately measurable, see Section 2.3), 
the considered densities can be estimated through 
equation (11). 

When different patterns generate very similar histo- 
grams at a given accuracy, there is no way to discrimi- 
nate them. So, the discriminatory power of this method 
is dependent on the separability of densities of different 
classes at a given measurement accuracy and image- 
noise. 

4.1. Subpixel recognition method and image convolution 

Since the pixels are evaluated as single events, the 
aliasing effect is not considered. Much rather, convolu- 
tion theory t35) determines our method. The main dif- 
ference between our method and the convolution is 

that in the case of convolution the original shape of 
the object scanned by the windows can be reconstructed 
via deconvolution technique, while in the case of the 
recent method, the statistics of the randomized scanning 
cannot be used to recover the original shape. So, it can 
be said when the patterns of blurred (convolved) objects 
of different classes cannot be separated without decon- 
volution, this statistical method cannot even be used 
for subpixel pattern recognition. It means that the 
difference between the blurred images of different classes 
after the smoothing effect of transmission (through the 
optical system and the scanning-windows) should be 
greater than the quantization error. 

4.2. Limits defined in the fiequency domain 

In the spatial frequency domain a similar statement 
can also be given when the frequency spectrum of the 
projected, scanned and convolved (13'36) (by the scan- 
ning-windows) image is considered. The quantization 
error may be considered as white-noiseJ 37) In the 
sampling process using equal quantization ofr number 
of intervals, the classification between two classes of 
subpixel-size objects cannot be effective in the case 
when the difference between the frequency spectra of 
these scanned objects is less than 1/r. 

5. CONCLU~ONS 

As can be seen from the previous experiments, this 
subpixel recognition method works well for several 
pattern classes, even in a number of cases when the 
conventional recognition methods are unsuccessful. 
Theoretically, the efficiency of recognition is limited by 
the final resolution of the optical system and the accu- 
racy of density estimation only. 

The above method can be implemented in any image- 
processing system, because histograms are basic fea- 
tures to be acquired. However, this method is not an 
improvement of some conventional method, but it is 
a new measurement technology for conventionally un- 
solvable problems (recognition in the subpixel range). 
With this statistical evaluation the resolution accuracy 
of conventional image processing systems can be 
increased by a factor of about 10-100 for a limited 
number of object-classes, depending on noise and 
measurement accuracy. 

The possible application area of this method is mostly 
the cases where the background can be eliminated at 
high signal-to-noise ratio: astronomical measurements, 
industrial laser applications, robot tactile sensors, 
images captured by high quality document scanners. 

This method is intended to be used in line-drawing 
analysis systems. A special application area could be 
the track analysis of cloud tracks in cloud-chamber 
experiments of high energy nuclear particles. This 
method may be used in many astronomical and in- 
dustrial applications with success. 

Texture analysing systems can also use this method, 
but it leads to another field which has been partly 



Subpixei pattern recognition 1091 

covered by existing theories. (3s) However,  some under- 
sampled textures of sparse separated patterns can be 
analysed by this new method. 

The statistical type of recognition should also be 
considered in natural systems (39) and artificial neural 
networks. The above results imply that in the environ- 
ment of"f i r ing" neurons of a natural scanning system, 
the low-resolution recognition should be rather statis- 
tical than some fine convolut ion method. 
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