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Abstract—In this article we propose a hierarchical control
structure for multi-agent systems. The main objective is to
perform formation change manoeuvres, with guaranteed safe
distance between each two vehicles throughout the whole mission,
even if motion is restricted to a limited space and static obstacles
are present. The key components that ensure safety are a robust
control algorithm that is capable of stabilising the group of
vehicles in a desired formation and a higher level path generation
method that provides all the vehicles with safe paths, based on
graph theoretic considerations. The method can efficiently handle
a large group of any type of vehicles. As an illustration, the results
are applied to a group of 18 quadrotor UAVs, where 2 of the
UAVs cannot receive information from the others.

Index Terms—multi-agent system, formation control, distrib-
uted control, robust control, obstacle avoidance, UAVs, quadrotor
helicopters

I. INTRODUCTION

Increasing attention has been focused on the problem of

controlling large scale systems that are built up from several

smaller subsystems, e.g. a group of UAVs. The problem is

fundamentally different from single vehicle control since the

stability of single vehicles does not guarantee the stability

at the group level. Moreover, controlling a group of vehicles

together can result in better overall performance and certain

tasks can also be performed more effectively. Examples to such

cases are surveillance missions, fuel consumption reduction by

travelling in formation.

Advances in communication technology, miniaturisation and

increased computation power open the way to implement

not only local, but also formation level control algorithms

on board of a single vehicle. Performing all the required

calculations in a centralised manner is often not viable. In

such cases, distributed solutions are required, even though

additional problems arise, e.g. communication errors or delays.

Several methods have been elaborated that solve certain

problems related to multi-vehicle systems. Each of them have

their strengths and weaknesses, thus they have evolved in

parallel. Two of the most frequently applied control methods

are the model predictive control (MPC) and robust control

techniques.

Obstacle and collision avoidance are most often solved

by applying MPC methods [1]–[4]. MPC involves numerical

optimisation (occasionally mixed integer programming) at

every single time instant and it is a flexible framework, various

objectives can be included into the problem formulation.

The cost is the increased computational complexity that may

require more computational power than what currently exists.

Virtual potential field (VPF) methods can also be applied to

problems mentioned above [5], [6]. These methods are mostly

applied in single vehicle problems. A VPF is included in the

system dynamics such that obstacles and target locations exert

repulsive and attractive forces on the vehicles, respectively,

thus guiding them towards their targets. Most commonly, these

forces are inverse proportional to the squred distances between

the corresponding objects or points.

Other approaches include robust control methods [7]–[11]

that can guarantee certain types of robustness and performance

but cannot handle hard constraints the way MPC can. This is

the motivation of the method we propose in the following. A

promising formation stabilising algorithm is presented in [11],

which ensures that vehicles reach a desired formation, even if

the communication topology changes almost arbitrarily and

arbitrarily quickly. It utilises the graph theoretical results of

[12]. However, it neither guarantees collision-free motion for

the vehicles, nor is capable of avoiding obstacles. We extend

this approach by a higher level method effectively which

tackles both problems mentioned above, even for a relatively

large group of vehicles.

The article is structured as follows. Preliminary results

are briefly summarised in Section II, which include the

previous results of the authors and present the method, the

capabilities of which is extended by our new method. The

main contribution of the article, i.e. the safe path generating

algorithm is presented in Section III, which is followed by

two practical examples in Section IV. The article ends with a

short conclusion and summary of the results.

II. PRELIMINARY RESULTS

The relation between formation stability of connected linear

systems and graph-theory was discussed in the pioneering

work of Fax and Murray [12]. They revealed that the stability

of a formation of a group of identical systems is closely related

to the eigenvalues of the normalised Laplacian associated to

the communication topology graph of the group.

Based on their work, Popov and Werner presented a control

design method in [11] that extends this analysis framework.

They incorporate communication topology and its change
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Figure 1. Single quadrotor with local controllers.

as a disturbance into the control design. Thus, by the aid

of well-known robust control design techniques, formation

controllers can be obtained locally. The design is robust against

communication topology changes and is independent of the

number of the vehicles forming the group.

This robust formation control method is suited to our control

system applied to quadrotor helicopters, which is presented

in detail in [13]. It can also be extended to include model

uncertainties in the future. Our method is a backstepping

control algorithm that stabilises the nonlinear dynamics of the

quadrotor in a specified 3D position and yaw angle. Thanks

to the backstepping control’s linearising and decoupling effect,

the closed loop system can be treated as four separate linear

systems.

A quadrotor with its local controllers is depicted in Fig. 1.

The notations follow the conventions of the previous works.

The input and output of the formation-level controller KF (s)
are the weighted formation error and the reference path of the

helicopter, respectively, while yi contains the measurements

required by the backstepping control. The signals in vi consist

of the position coordinates and the yaw angle of the i-th
helicopter.

III. SAFE FORMATION CHANGE

The most crucial strengths of the algorithms in the prelim-

inaries are that they are capable of stabilising a group of any

number of vehicles with almost any kind of communication

topology that holds certain connectivity properties. However,

there is a major drawback that is not explicitly tackled by

the algorithm, i.e. it is not guaranteed that the vehicles keep

safe distance from each other during the transients. Linear

robust control methods cannot satisfy such constraints. There-

fore, either different control algorithms are required for such

problems, such as model predictive control (MPC), or collision

avoidance must be implemented on a higher level.

The proposed method follows the latter approach and is the

main contribution of the paper. Given a number of identical

vehicles in an initial formation (defined by spatial points

Si ∈ R
3), the task is to occupy the specified target positions

Tj within finite time and keeping a predefined minimum

distance ds between each other during the transition. Vehicles

are assigned a target position dynamically during the path

generation. For simplicity reasons, the vehicles track straight

paths between the start and target positions and may not

necessarily move all at the same time since one might act as an
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Figure 2. Formation change logic.

obstacle to the other, depending on the structure of the initial

and target formation. The algorithm also takes into account

that the vehicles have a maximum travelling speed. There is

only one restriction, which is related to the formation and the

predefined safety distance. The ratio between the minimum

distance between each pair of vehicles in their initial and target

positions and the safety distance should exceed a constant

value specified later:

min
i,j
i6=j

dS,ij
ds

> c min
i,j
i6=j

dT,ij

ds
> c, (1)

where d•,ij = ‖•i − •j‖ and ds is the safety distance. The

crucial aim is to find the smallest possible c. As it will be

revealed later, the above constraint is not overly restrictive

in real applications since the safety distance is related to the

physical dimensions of the vehicles.

In the following, the safe path generating method will

be presented, then as an illustration, a formation changing

scenario will be shown.

A. Path Generating Algorithm

The basic idea of the proposed algorithm is to avoid online

path planning and optimisation at every sample time instant.

Instead, trajectories will be generated in a simple but efficient

way only if the formation of the vehicle group has to be

changed. The generated paths will be safe at the same time.

Throughout the paper, safety region of a point or a route have

the following meaning.

Definition 1 (Safety region): The safety region of a spatial

point P is the set points for which the following condition

holds:

RP,ds
=
{

Q ∈ R
3
∣

∣ ‖P −Q‖ ≤ ds
}

, (2)

where ds is the safety distance. Safety region can be defined

for a line segment ST similarly:

RST,ds
=
{

Q ∈ R
3
∣

∣ d(ST ,Q) ≤ ds
}

. (3)

The formation change logic is integrated into the control

logic as shown in Fig. 2, while the steps of the method are

described in Tab. I. In Fig. 2, Lp = L ⊗ Ip is a time varying

matrix is a time varying matrix describing the communication

interconnection and H(s) represents a vehicle with all its on-

board control (see Fig. 1). Here, ⊗ stands for the Kronecker

product, L = [Lik] is the N×N normalized Laplacian matrix

of the communication graph and p is the dimension of vi [12].



Table I
ALGORITM OVERVIEW.

Phase 1 Direct transition

1.1) Selecting candidate paths

1.2) Conflict search in ”dual” graph

1.3) Maximum clique or single route search

1.4) Found new route?

Phase 2 Correction routes

2.1) Selecting candidate correction routes

2.2) Conflict search in ”dual” graph

2.3) Maximum clique or single correction route search

2.4) Found new correction route?

Phase 3 Resolving trapped targets

3.1) Checking all routes for conflicts

3.2) Maximum clique search

Yes

Yes

No

No

Finished

The first two phases may consist of several steps. During phase

1, as many vehicles as possible move directly from their initial

positions to certain target positions. The steps are repeated as

long as new routes are found, otherwise we proceed to the next

phase. In phase 2, certain vehicles that have already reached

a target regroup so that empty targets (target points which are

not occupied by any vehicle) are generated in the proximity of

new vehicles. The condition for advancing to the final phase is

similar to that in the previous case. In the last phase, vehicles

that still remain in their initial positions can simultaneously

move to a target.

The key in each phase is how to determine which vehicles

are allowed to move at the same time. Graphs will be construc-

ted that contain information about the risk of collision. The

number of vehicles taking part in each step will correspond to

the size of a clique in these graphs. For computational reasons,

certain heuristics will also be included in the algorithm. The

main theorems are stated first, while their proofs will be

presented in the Appendix.

Theorem 1: Let N denote the number of vehicles in a group,

Si their initial positions and Tj the target points, for which

(1) holds with c = 4√
7

. Applying phases 1 and 2 in Tab. I to

the group will transfer every vehicle but the trapped ones to

a target position in less than or equal to N steps.

Theorem 2: All the vehicles remaining in their start position

after phases 1 and 2 in Tab. I can be transferred to the

remaining target positions simultaneously in one final step,

thus the algorithm always finds a suitable solution to the

formation change problem.

1) Phase 1 – Direct Transition: During every step of this

phase, the aim is to find as many routes as possible, along

which vehicles can occupy empty targets in parallel. Routes

are defined as follows.

Definition 2 (Route): A route connects an occupied start

position and an unoccupied target point directly with a straight

line.
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Figure 3. Path search graph.

First, a graph G describing the candidate routes has to be

formed. The vertices of the graph correspond to the initial and

target positions and the edges correspond to a route between

an initial and a target point. Since in the simplest case every

vehicle has the possibility of travelling towards any target

point, this graph is a full bipartite graph (see Fig. 3).

Next, it should be checked whether vehicles stay within the

safety region of a route or a route conflicts with another. Such

routes have to be filtered out during the current step. In this

context, conflict is defined as follows.

Let the start position of a vehicle be Si and its target be Ti.

Let us parametrise the path
−−→
SiTi in the following well-known

way:

γsi + (1− γ)ti, γ ∈ [0; 1], (4)

where si and ti are the vectors pointing to Si and Ti,

respectively, while γ can be considered as a time variable.

This choice will simplify calculations since it means vehicles

start and end their motion at the same time, no matter how

long distances they need to travel. The distance between two

moving vehicles is

d(γ) = γ(si − sj) + (1 − γ)(ti − tj). (5)

Definition 3 (Conflicting routes): Two routes are in conflict

with each other if the distance d(γ) is less than the safety

distance ds for γ ∈ [0; 1].
These pieces of information can be collected into a ”dual”

graph Gd where each vertex corresponds to an edge in G (green

circles in Fig. 3) and there is an edge between two vertices if

the distance between the corresponding two routes is greater

than ds.

The task is then to find as many routes as possible among

which there do not exist pairs that are in conflict with each

other. In other words, a maximum clique has to be found

within A(Gd), which is the adjacency matrix of Gd.

It is known that the maximum clique cannot contain more

vertices than the number of vehicles. However, in most cases

the size of the maximum clique is less than this value, due

to the fact that vehicles can act as obstacles to each other,

i.e. they are inside the safety region of a route. Therefore, the



ds

di,a

di,x

di,a < di,x

S

Ti,a

Ti,b

Ti,c

Ti,d

Ti,x

T

Occupied start position

Occupied target

Empty target

Figure 4. Correction route generation.

above method has to be repeated as long as there are new

vehicles that can find their way to the targets.

Note that since stationary and moving vehicles constitute

obstacles of different nature, certain vehicles that are unable

to reach a target may be able to do so in later steps.

Clique search will be discussed in more detail in Section

III-C.

2) Phase 2 – Correction Routes: Since the algorithm above

cannot guarantee that all the vehicles reach a target position,

a variant of this method has to be applied afterwards, which

further reduces the number of vehicles remaining in their

starting points. For this purpose, the notion of correction route

has to be introduced.

Definition 4 (Correction route): A correction route connects

an occupied initial position with an unoccupied target point

via a chain of routes defined by intermediate occupied target

points. No other vehicles stay within the safety regions of the

constituting routes.

The purpose of correction routes is that along the segments

of each such route the vehicles can regroup creating an

unoccupied target point in the vicinity of an occupied starting

point, which can be reached by a new vehicle. It will be shown

that cmin in Theorem 1 guarantees that all the vehicles but the

one in a start position may move in parallel without entering

the safety region of another, which reduces the total time and

energy required for the change of formation.

The construction of a correction route is an iterative process

and consists of the following steps. The first task is to check

if an occupied intermediate point Ti with minimum distance

from the line section between the current start and target

position (initially
−→
ST ) exists within the safety distance. The

reason for selecting such point is to minimise the total length

of the correction route. If no such point is found, the route

is generated. Otherwise, correction route generation is split

into two parts and thus the safety region changes (this is the

reason for the iterative nature of the process). Finally, when

the process is finished, the intermediate points are collected

in the right order. Correction route generation is illustrated

in Fig. 4. The first intermediate target point found during the

process is Ti,a since the other candidate Ti,x is farther from

Occupied start position

Empty target

Trap region

d

d

ds

ds

Figure 5. Trapped vehicles (extreme case, c =
√
2).

−→
ST . The subscript indices correspond to the order in which

the algorithm finds the intermediate points.

When searching for correction routes, it has to be ensured

that each intermediate point is closer to the target point

than the previous one (including the starting point) and that

the subsequent routes are not in conflict with each other.

Otherwise, correction routes could possibly be infinite.

If correction routes that satisfy the above requirements exist,

another search, similar to the direct transition phase can be

performed. The only difference lies behind the meaning of

conflict between a pair of correction routes.

Definition 5 (Conflicting correction routes): Correction

routes are in conflict with each other if the distance between

any pairs of the constituting routes are in conflict with each

other.

It can be proved geometrically that if
√
2 ≤ c, then

the routes connecting the target points are never in conflict

with each other. Moreover, all the intermediate points in the

correction route are closer to the target than the previous one

including the initial point (which already holds for 2/
√
3 ≤ c).

The extreme case corresponds to an isosceles right triangle

whose sides are of length
√
2ds,

√
2ds and 2ds. If any of the

sides of this triangle increases, so does the minimum distance

between the vehicles.

Due to the lack of distance constraints between start and

target positions, the case involving the first two vehicles in a

correction route is different. The simplest method for ensuring

safe motion along the first line segment of a correction route

is that the first vehicle waits until its path becomes safe. This

can be improved considerably, however, for space reasons,

discussion is omitted.

3) Phase 3 – Trapped Targets: In occasional cases, certain

target points are left empty even after phases 1 and 2. We will

call these targets trapped.

Definition 6 (Trap/trapped vehicle): A target point is said

to be trapped if it lies within the safety region of two or more

vehicles remaining in their initial positions after the correction

route generation phase.

Such configuration is shown in Fig. 5. The most straight-

forward way to resolve these situations is to ensure that all

the vehicles remaining in their start positions are involved in

trapping target points and within every trapped region there is



only one empty target point. The following lemma will provide

the minimum c value for which safe paths can be generated

in one step and show that the arrangement depicted in Fig. 5

corresponds to the extreme case.

Lemma 1: Let Si and Sj be two occupied initial points that

trap target Ti and let Tj be a target trapped by Sj and another

initial point Sx. The trajectories
−−→
SiTi and

−−→
SjTj are not in

conflict with each other if and only if
√
2 ≤ c holds.

Proof: We will prove the lemma by translating the condi-

tions into an optimisation problem and show that ctr =
√
2 is

necessary and sufficient for the safe trajectories. The minimum

distance between the two vehicles is the solution to the

problem below.

fmin = min
sj ,tj ,γ

dT d (6a)

subject to

0 ≤ γ ≤ 1 (6b)

(sj − si)
T (sj − si) ≤ d2s

(sj − ti)
T (sj − ti) ≤ d2s

(tj − ti)
T (tj − ti) ≤ d2s











(6c)

(sj − tj)
T (sj − tj) ≥ (ctr ds)

2. (6d)

Here the objective function is the squared distance of two

moving vehicles. The constraints in (6b) are related to traps

and (6d) controls the relative position of the two targets. The

position of the two starting points is fixed. This problem can

be transformed into a problem which only contains equation

constraints.

fmin = min
p1,q1,γ,εi,λ

dTd+ λTφ, (7)

where the vector φ contains the equation constraints above

and λ is the vector containing the Lagrange multipliers. The

constraints are defined as follows.

0 = γ(1− γ)− ε20

0 = (sj − si)
T (sj − si)− d2s + ε21

0 = (sj − ti)
T (sj − ti)− d2s + ε22

0 = (tj − ti)
T (tj − ti)− d2s + ε23

0 = (sj − tj)
T (sj − tj)− (ctr ds)

2 − ε24.

(8)

The problem above can be solved by the well-known Lag-

range multipliers method. Careful examination of the gradient

reveals that the location of the optimum has the following

properties:

• The four spatial points lie in the same plane,

• ‖sj − si‖ = ‖sj − ti‖ = ‖tj − ti‖ = ds,

• ‖si − ti‖ = ‖sj − tj‖ = ctr ds.

The four points thus form a trapezium whose fourth side’s

length is (c2tr − 1)ds. The minimum distance is

dmin =
√

fmin =
c2tr
2
ds, (9)

which is not less than ds if and only if
√
2 ≤ ctr.

ds
d′
s

d

c ds

S T

Figure 6. Ensuring convergence to the target.

B. Generating Suitable Correction Routes

The problem mentioned in III-A2 is illustrated in Fig. 6.

Suppose a correction route has to be generated from start

position S and target T . When generating the correction route,

vehicles may have already occupied target positions in the red

area, which lies within the safety region of route
−→
ST . The

distance between a vehicle in the red area and the target is

greater than ‖−→ST‖. Since these points cause divergence from

the target, it should be avoided that correction routes include

them as intermediate points. Moreover, for a target Ti within

the red zone, S ∈ RTiT ,ds
holds, since ‖ST‖ < ‖TiT‖.

A solution to this problem is as follows. If all the routes and

correction routes that end in a target point which has at least

one occupied initial point within an increased safety distance

d′s are filtered out, then it is ensured that suitable correction

routes can be found in each step. The ratio between d′s and

ds can be read from the figure when d = c · ds:

d′s = ds · c

√

√

√

√2

(

1−
√

1− 1

c2

)

. (10)

The downside, however, is that cmin has to be increased by

the same ratio, as it is revealed by the configuration depicted

in Fig. 7. A vehicle in the red region in Fig. 6 may block

vehicles from reaching targets. If these points are kept empty,

they may act as if they were trapped, thus they are treated as

trapped. Therefore, the ratio between d and d′s should be kept

ds

d
′

s

Occupied start position

Occupied target

Empty target

The rest of the formation

Figure 7. Difficulty caused by vehicles in the red zone in Fig. 6.



at
√
2, which yields cmin = 4√

7
. It has to be mentioned that

the change is less than 7%, therfore it is not an overly strict

constraint, especially if we consider that the densest achievable

arrangement for c =
√
2 corresponds to a cubic grid.

A further question that needs to be investigated is whether

it is possible to design the trajectory of the first vehicle in

the correction route without increasing cmin so that it remains

safe. Recall that in case c = 4√
7

, ds is the distance between

S and TiT but not the minimum of d(γ).

C. Clique Finding in A(Gd)

A number of maximum clique search algorithms have

already been developed by research groups, see e.g. [14]–[17].

The algorithm presented in [17] is considered as an efficient

method in most cases, thus it is applied to our problem as

well.

Since finding a maximum clique in a graph is known to

be NP-complete [18], certain modifications and additional

heuristics are necessary to be applied to the algorithm to make

it tractable in case the number of vehicles reaches the order

of 50. One way of accelerating the search is that during the

graph construction step, only a subset of all possible routes are

considered. Selection is made after sorting the target distances

from each initial position. Based on the order, n routes are

selected as evenly as possible (e.g. if n = 3 and there

are 5 empty targets, we select the 1st, 3rd and 5th shortest

routes). This method performed the best among the ones we

tried. Note that the most important in the selection method

is that the shortest route should always be selected, which –

by construction – ensures that at least one vehicle will reach

a target in every step. Also note that this step is important

because of the considerable time required for creating A(Gd)
itself, the size of which is N2-by-N2!

Even though this modification greatly decreases the search

space, finding the maximum clique in the reduced graph

may still require a long time. In most practical cases a first

candidate clique is found in a relatively short time, and its size

is not much less than that of the maximum clique. Finding

new candidates can be time consuming. Thus, a time limit is

introduced that cancels further search if a new candidate is not

found within this limit.

The above modifications are destructive in the sense that

applying them most likely results in finding a clique whose

size is less than that of the maximum clique of the original

adjacency matrix. However, all the vehicles still reach a target

point, though the number of the required steps may increase.

Time and energy consumption can also be taken into

consideration. Since route lengths are already available when

the clique search begins, these pieces of information can be

utilised as a tie-breaker when sorting the vertices based on

their degree (c.f. lines 9 – 13 of Fig. 4 in [17]). This way, the

shortest routes are checked as early as possible.

D. Integrating Obstacle Avoidance into the Algorithm

Suppose that a vehicle stops receiving state information

from the other vehicles or does not access the reference

trajectory but is still capable of maintaining its position in

the frame of reference. A similar case is the existence of

static obstacles in the environment that constrain the motion

of the vehicles. We will show that a slight modification to the

algorithm enables us to treat such cases.

Malfunctioning vehicles can be treated as follows. The

main problem with malfunctioning vehicles is that they act as

obstacles. In phases 1 and 2 of the original algorithm the case

was similar. However, in phase 2, vehicles could be involved

in correction routes, which solved the problem. This is not

true for malfunctioning ones, therefore, a modified concept

is needed, so that the correction route method could still be

applied.

The key idea is that we introduce virtual occupied target

points around the malfunctioning vehicle. When correction

routes are generated, it has to be ensured that along the

segments of each correction route no vehicle enters the safety

region of the malfunctioning vehicle. A suitable way of

ensuring this is that virtual targets are distributed over the

surface of a sphere with a radius cminds around the vehicle.

The distance between the virtual targets should be as long as

possible and at the same time short enough to guarantee that

correction routes will remain on the ”surface” of the sphere.

A close to optimal choice of this distance is ds.

The algorithm of phase 1 needs no modification since during

this phase there is no difference between a malfunctioning

vehicle and a vehicle in a target position. These vehicles only

need to be included as targets to avoid. In phase 2, in contrast,

distinction has to be made between real and virtual targets for

two reasons.

1) Virtual targets are close to each other, which affects

correction route generation.

2) A vehicle has to travel from a real target to another real

one, occasionally along virtual target points.

The second reason is rather technical, the first one needs ex-

planation. Correction route generation is effective if the virtual

targets do not divert a vehicle to a wrong direction. This can

be avoided if the closest neighbours of a virtual intermediate

point are filtered out from the set of new candidate virtual

points. This condition can be formalised as follows. If

‖tv − ti‖2 <
1

2
‖si − ti‖2 (11)

holds for a virtual target tv, when si and ti are the current

start and end point of the correction route segment, then it

is ignored. This has the additional benefit that the correction

route leaves the surface of the sphere as soon as possible, not

at the closest point to the end of the route.

The method presented here will be illustrated in the second

example in the following section.

IV. PRACTICAL EXAMPLES

A. Simple Formation Change Scenario

As a first illustrative example, a formation change man-

oeuvre involving a group of 25 quadrotors is presented. The

vehicles are placed randomly in the 3D space and the target
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Figure 8. Example scenario 1, direct phase, step 1.

positions are chosen randomly in the xy-plane, satisfying the

constraints of (1) with c = 4√
7

. The vehicles point to the same

direction (Ψd,i = 0) throughout the mission.

Communication topology is chosen randomly, two vehicles

are connected with a probability of 0.2, which means that each

vehicle exchanges information with 5 others on average. For

simplicity, the topology is fixed throughout the mission.

The coefficients of the backstepping controller and the ro-

bust formation controller are tuned so that the quadrotors track

constant and ramp reference paths at a desired performance.

Robust stability is achieved and all the designed controllers

are stable. The full formation-level controller is obtained by

placing the four controllers in the diagonal of a 4-by-4 matrix.

Reference paths are generated so that the speed of vehicles

never exceeds 1m/s. Specifying a suitable maximum speed is

also necessary for guaranteeing the stability of the backstep-

ping controller of each vehicle. Computation time statistics are

shown in Tab. II, where columns tA(Gd), tMC and |MC| show

the time required for adjacency matrix generation, finding a

maximum clique and the clique’s size, respectively. Tests were

performed by the aid of MATLAB on an average P4 PC. All

the algorithms were executed on a single core. It can be seen

that the most time consuming step is the first, in particular

the adjacency matrix generation, which is common in general

situations.

The first steps of phases 1 and 2 in the example formation

change are shown in Figs. 8 and 9 (the rest are omitted for

space reasons). The graphs show the paths of vehicles involved

in the transition steps. Start and target positions are marked

Table II
PATH GENERATION STATISTICS.

Phase Step # tA(Gd)
tMC |MC|

Direct 1 0.8356 s 0.0288 s 11

2 0.3865 s 0.0241 s 8

3 0.0650 s 0.0024 s 4

Correction 1 0.0261 s 0.0007 s 2
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Figure 9. Example scenario 1, correction phase, step 1.

by red crosses and blue circles, respectively. Only vehicles

that change position are shown for transparency reasons. An

additional dashed arrow connects the starting and end points

of each correction route in Fig. 9. At each step, a maximum

of 5 of all the possible routes are selected from each occupied

start position. It is worth mentioning that trapped targets occur

rarely in practice, since vehicles that might be involved in such

situations usually find their way to different target points.

The safety distance is set to ds = 0.45m. Throughout the

whole simulation, the minimum distance between two vehicles

is 0.46m.

B. Obstacle Avoidance Manoeuvre

The second example involves 18 quadrotors, two of which

malfunction. The task is that the other 16 vehicles move above

these vehicles so that they can safely land without risking a

collision. The vehicles are initially in random places in the

3D space and the targets lie within two parallel planes. The

points satisfy the distance constraints. All the other settings

are similar to the previous example’s.

For space reasons, only the correction route generation step

involving virtual target points is shown in Fig. 10. Green

coloured crosses depict the virtual targets, while the black

crosses correspond to the malfunctioning vehicles. To illustrate

the algorithm better, the radii of the spheres around the

malfunctioning vehicles is increased to 2ds, thus the number

of virtual targets around a malfunctioning vehicle is 49.

Calculations are performed on the same machine as before

and the total time required for the formation change man-

oeuvre design is 0.8 s.

CONCLUSION

The proposed path generation method together with a care-

fully tuned robust formation controller is capable of guaran-

teeing a safe formation change with a practically negligible

constraint on the formation topology for any type of vehicles.

Additionally, the framework is suitable for solving certain

obstacle avoidance problems. The efficacy of the algorithm

was shown in formation change missions involving a large

group of quadrotor helicopters.
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Figure 10. Example scenario 2, correction phase, step 1.

The algorithm can be accelerated by performing compu-

tations in a distributed manner. Further methods with robust

performance allowing constraints on the controller can also be

taken into consideration, which are to be investigated in the

near future.
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APPENDIX – PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1: It is straightforward that routes

found in phase 1 may be considered as correction routes.

It is sufficient to show that omitting phase 1 and applying

phase 2 from the beginning of trajectory generation leaves

only trapped targets. Since after every step in phase 2, the

number of occupied start positions decreases, it is obvious

that the number of required steps is not greater than N .

The first part of the theorem follows from the fact that a

target point Tj is possibly excluded from the search only if

there exists a start position Si for which Si ∈ RTj ,d′

s
holds.

Otherwise, there exists an occupied start position Si closest

to Tj and there exists a correction route from Si to Tj if the

points satisfy (1) with c = 4√
7

.

Proof of Theorem 2: Let the distance ratio be c =
4√
7
>

√
2. The greatest distance between two points within

the intersection of two start positions Si and Sj is strictly less

than c ds (see Fig. 5). Therefore, no intersection of RSi,ds

and RSj ,ds
can contain more than 1 empty target. Since the

number of vehicles trapping targets is equal to the number of

trapped target points after phases 1 and 2, these intersections

cannot be empty. As a consequence, trapped positions can

only form closed chains or closed three-dimensional surfaces

(they may form separate similar structures). In case vehicles

travel at constant speeds along straight lines, they never enter

the safety region of other vehicles, as it has been shown in

Lemma 1.
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