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Abstract. From the perspective of the linguist, the theory of formal languages
serves as an abstract model to address issues such as complexity, learnability, in-
formation content, etc. which are hard to investigate directly on natural languages.
One question that has not been sufficiently addressed in the literature is to what
extent can a result proved on an abstract model be presumed to hold for the concrete
languages that are, after all, the real object of interest in linguistics. In this paper we
attempt to remedy this defect by developing some figures of merit that measure how
well a formal language approximates an actual language. We will review and refine
some standard notions of mathematical density to arrive at a numerical figure that
shows the degree to which one language approximates another, and show how such
a figure can be computed between some formal languages and empirically measured
between a real language and its formal model. In the concluding section of the paper
we will argue that from the statistical perspective developed here even some classical
results of mathematical linguistics, such as Chomsky’s (1957) demonstration of the
inadequacy of finite state models, are highly suspect.
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0. Introduction

Imagine the issue is some dimensionless physical constant in nature.
Like any other number, this constant can be rational, algebraic, or
transcendental. When someone measures the number and finds it to
be 3.141592 with the six decimals of precision afforded by the mea-
surement, she is entitled to say the number is, within the error of
measurement, close to π. She can then go on to prove, with full math-
ematical rigor, that π is transcendental. However, she is not permitted
to jump to the conclusion that the original physical constant was tran-
scendental, for it could just as well be approximated by a rational such
as 355/113.

Remarkably, a similarly fallacious argument has been widely ac-
cepted in linguistics for forty years. We are referring, of course, to
Chomsky’s (1957) demonstration that natural languages are not reg-
ular. As we shall see in the concluding sections of this paper, this
demonstration rests on the impermissible step of substituting a math-
ematical model, formal languages, for the actual object of inquiry,
which are natural languages. What makes the physical constant ex-
ample trivial is that the relationship between a number and other
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numbers approximating it is well understood. In this paper we discuss
how Language Models (a weighted generalization of formal languages)
can approximate Languages (a subclass of weighted formal languages)
as well as formal or natural languages. The key notion of this approx-
imation is density, defined in Section 1 and studied in some detail
for the regular case in Section 2. Finer measures of approximation for
zero density Languages are discussed in Section 3, and are related to
standard notions like channel capacity in special cases.

After these preparations, in Section 4. we turn to Chomsky’s self-
embedding argument and show that it remains fallacious even if we
accept the competence vs. performance distinction familiar from the
early years of the debate surrounding the subject. Finally, in Section 5.
we discuss the related “Infinity Fallacy” that no significant general-
ization about the syntax of a language can rest on a finite class of
cases. Mathematical arguments that would stretch the boundaries of
this paper are relegated to the Appendix.

It is impossible for a paper about such a controversial matter to
be entirely free of polemic. But the reader is exhorted to focus on
the positive contributions of the article, which include a conservative
extension of the traditional notion of density, a characterization of
zero density regular languages, and a simple yet powerful definition
of approximation error, and take the polemic in the spirit it is offered,
with the goal of clarifying a complex issue, rather than saying the final
word.

1. Definitions

Our central notion will be that of a Language (with capital L) over
a finite alphabet of phonemes or graphemes V (including pause or
whitespace) which we define as a function f that assigns a non-negative
probability f(α) to every string α over V in such a manner that the
sum of these is bounded (can be normalized to 1). To forestall confusion
it should be emphasized that probability is not meant as a numerical
scale of degrees of grammaticality: syntactically well-formed strings can
have zero or low probability and syntactically ill-formed strings can
have relatively high probability. The definition of Language embodies
the simplifying assumption that string probabilities are fixed once and
for all, though in estimation tasks it has been often noted that for
low values the static probabilities are outweighed by context effects.
To fix ideas, a Language is best thought of as the set of strings that
will be encountered by an idealized speaker/hearer (or by a computer
application such as a speech or character recognition device), weighted
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by the frequency of such encounters. For the most part we will ignore
the fact that language changes with time and therefore such frequencies
are not truly fixed once and for all – we will use a stationary model
that assumes we can average over past, present, and future inputs. A
Language Model is defined as any combination of table lookup and other
algorithmic procedures that will assign a non-negative number to each
string over the alphabet. We do not require the sum of these numbers
to converge because we do not wish to exclude language models like
formal languages which approximate probabilities by a 0-1 decision but
permit an infinite number of valid strings.

Eilenberg 1974 (p 225) defines the density of a language L over a
one-letter alphabet as

lim
n→∞

|{α ∈ L : |α| < n}|
n

if this limit exists. This definition can be generalized for languages over
a k-letter alphabet V in a straightforward manner: if we arrange the
elements of V ∗ in a sequence φ and collect the first n members of φ in
the sets Vn,

lim
n→∞

|L ∩ Vn|
n

= ρφ(L) (1)

can be interpreted as the density of L when it exists. Since this defi-
nition is not independent of the choice of the ordering φ, we need to
select a canonical ordering. We will call an ordering ψ length-compatible
if |ψ(n)| ≤ |ψ(m)| follows from n < m. It is easily seen that for arbitrary
alphabet V and language L, if φ is a length-compatible ordering of V ∗

and the limit in (1) exists, than it exists and has the same value for
any other length-compatible ordering ψ. In such cases we can in fact
restrict attention to the subsequence of (1) given by V 0, V 1, V 2, . . .: if
we denote the number of strings of length n in L by rn, natural density
ν can be defined by

ν(L) = lim
n→∞

∑n
i=0 ri∑n
i=0 k

i
(2)

This is in fact the definition used in Berstel (1973) and subsequent
work. But to define density by (2) over k-letter alphabets for k > 1
has considerable drawbacks, since this limit fails to converge for some
simple languages, such as the one containing all and only strings of even
length. To avoid such problems, we introduce the generating function
d(z) =

∑∞
n=0 rnz

n, and define Abel density ρ by

ρ(L) = lim
z→1

(1− z)d(z/k) (3)
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if this limit exists. A classical theorem of Hardy and Littlewood asserts
that whenever the limit (2) exists (3) will also exist and have the same
value, so our definition is conservative. We use the name Abel density
because we replaced the Cesàro-summation implicit in Berstel’s and
Eilenberg’s definition with Abel-summation. In the case of Languages,
the number of strings rn are replaced by sums Rn of the probabilities
of the strings of length n, but otherwise the definition in (3) can be
left unchanged. Even in Language Models where the weights do not
necessarily sum to one, as long as every weight is maximum one, the
Abel density will never be less than zero or more than one.

Beauquier and Thimonier (1986) define the Bernoulli density δ of
a language L through Language Models (though they do not use this
term) that arise through a Bernoulli process in which each element ai

of the alphabet has some fixed probability pi (
∑k

i=1 pi = 1) and the
weight f(α) of a string α is the product of the probabilities of its letters.
Since the sum of all such weights would be divergent for any L, they
consider only prefixes (minimal left factors) in L. Using λ for the empty
word, α ∈ L is a prefix iff for any decomposition α = βγ, γ = λ follows
from β ∈ L. Denoting the prefixes in L by Pref(L), Bernoulli density
is defined by

δ(L) =
∑

α∈Pref(L)

f(α) (4)

In the equiprobable case, for languages where every word is a prefix,
this coincides with the combinatorial density κ(L) =

∑∞
n=1 rn/k

n. It is
easy to see that for k > 1 if a positive natural density ν exists the terms
in κ will converge to ν so combinatorial density itself will diverge.

While (3) does not always yield a numerical value (e.g. the properly
context-sensitive language {ai : 4n ≤ i < 2·4n, n ≥ 0} can be shown not
to have Abel density over the one-letter alphabet {a}), Bernoulli den-
sity always exists. Though this suggests that Bernoulli density would be
a better candidate for a basic measure in quantitative comparisons than
the Abel density developed above, there is an important consideration
that points in the other direction: Abel density, when it exists, is always
additive (because of the absolute convergence of the power series in
z = 1), while Bernoulli density is only an exterior measure, additive
only for languages closed under right multiplication. If L is not closed,
there is an α ∈ L and a β ∈ V ∗ such that αβ 6∈ L. Either α is a prefix
or it contains a left factor α0 ∈ L which is. Consider the two-member
language X = {α0, αβ}:

δ(X) = p(α0) 6= p(α0) + p(αβ) = δ(X ∩ L) + δ(X \ L)
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Thus, by Caratheodory’s theorem, L cannot be measurable. Note
also that for languages closed under right multiplication rn+1 ≥ krn so
the coefficients in d(z/k) =

∑∞
n=0 rnz

n/kn are non-decreasing. There-
fore the coefficients of the Taylor expansion of (1 − z)d(z/k) are non-
negative, and the Abel density ρ also exists.

2. The regular case

As Berstel notes (p 346), neither combinatorial nor natural density will
always exist for regular languages, even for relatively simple ones, such
as the language of even length strings over a two-letter alphabet. Abel
density does not suffer from this problem:

Theorem 1. Let L be a regular language over some k-letter al-
phabet V . The Abel density ρ(L) defined in (3) always exists, and is
the same as the natural density whenever the latter exists. The Abel
density of a regular language is always a rational number between 0
and 1.

The proof (see the Appendix) makes clear that shifting the initial
state to i′ will mean only that we have to compute ~vH~ei′ with the same
limiting matrix H, so density is a bilinear function of the (weighted)
choice of initial and final states. The density vector H~ei can be easily
computed if the graph of the finite deterministic automaton accepting
L is strongly connected: in this case the Frobenius-Perron theorem
can be applied to show that the eigenvalue k of the transition matrix
has multiplicity 1, and the density vector is simply the eigenvector
corresponding to k normed so that the sum of the components is 1. If
this condition does not hold, the states of the automaton have to be
partitioned into strongly connected equivalence classes: such a class is
final if no other class can be reached from it, otherwise it is transient.

Theorem 2. The segment corresponding to a final class in the overall
density vector is a scalar multiple of the density vector computed for
the class in question. Those components of the density vector which
correspond to states in some final class are strictly positive, and those
which correspond to states in the transient class are 0.

We will say that a language L over V is blocked by a string β if
LβV ∗ ∩ L = ∅. L is vulnerable if it can be blocked by finitely many
strings i.e. iff

∀α ∈ L∃β ∈ {β1, . . . , βs}∀γ ∈ V ∗αβγ 6∈ L

Theorem 3. For a language L accepted by some finite deterministic
automaton A the following are equivalent:
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(i) ρ(L) = 0

(ii) The accepting states of A are transient

(iii) L is vulnerable.

Natural languages are vulnerable: it is easy to provide ungrammati-
cal strings which, once appended to a left factor of a sentence, will make
recovery impossible for any left factor that does not explicitly introduce
a metalinguistic/quotation complement, and those left factors which do
introduce such complements can be blocked by another string explicitly
closing them and then introducing unrecoverable ungrammaticality.

Another important application of Theorem 3. is to the formal lan-
guages that can be generated/accepted by Hidden Markov Models.
Such languages are not only regular but also locally testable, and
therefore (except for L = V ∗) can always be blocked by any string
that does not appear as a local subword of some word in the language.

3. Finer distinctions

Since the most important Language Models have zero density, it is of
great importance to introduce finer quantitative measures. One such
measure could be the saturation σ(L) of a language L over a k-letter
alphabet, which is given by the reciprocal of the convergence radius of
d(z/k).

Theorem 4. If ρ(L) > 0 then σ(L) = 1. If ρ(L) = 0 and L is regular
then σ(L) < 1. If L ⊂ L′ then σ(L) ≤ σ(L′). σ(L) = 0 iff L is finite.

Saturation has a further advantage: neither Bernoulli nor combinato-
rial density can be invariant under multiplication with an arbitrary
string, but for Abel density and for saturation we have ∀L,αρ(L) =
ρ(αL) = ρ(Lα), σ(L) = σ(αL) = σ(Lα). Much as Abel density, satu-
ration generalizes trivially from languages to Languages and Language
Models.

Example. Let D1 be the Dyck language over a two-letter alphabet.
r2n =

(
2n
n

)
/(n + 1), so d(z) = (1 −

√
1− 4z2)/2z2, so d(z/2) will have

its first singularity in 1. However, if D1 is generated by the grammar
S → aSb|SS|λ then the generating function associated with the gram-
mar (Chomsky and Schützenberger 1963) will satisfy the functional
equation d(z) = z2d(z) + d2(z) + 1 and will therefore have its first
singularity in

√
3. The Language Model where the weight of a string

is given by the number of derivations it has is supersaturated: its
saturatedness 2

√
3 can be interpreted as the degree of its ambiguity.

mol4.tex; 16/03/2006; 19:11; p.6



Quantitative comparison of languages 7

If strings of length n are generated by some CFG approximately
an times, then an+m ≈ anam, because context-freeness makes disjoint
subtrees in the generation tree independent. Therefore, an ≈ cn and
the base c is a good measure of ambiguity. By the Cauchy-Hadamard
theorem, σ = lim sup n

√
an = c. Note also that in the unambiguous case

log(σ) = lim sup log(an)/n can be interpreted as the channel capacity
of the grammar (Kuich 1970). In the unambiguous case as well as in the
case of context-free Languages where weights are given by the degree of
ambiguity, the generating functions corresponding to the nonterminals
satisfy a system of algebraic equations, and therefore d(z) will have its
first singularity in an algebraic point, therefore in such cases saturation
and Abel density are algebraic numbers.

One problem with saturation is that it provides an all or nothing
type decision when investigating whether one Language Model approx-
imates another. For example, the language D1

1 which permits matched
parentheses of depth one, as given by the grammar S → aTb|SS|λ, T →
ab|abT, can be subtracted from D1 but the resulting Language Model
has the same saturation as the original. Therefore we introduce two
more direct measures, but unlike the case of natural density vs. Abel
density, where the change is essentially technical, here we depart more
significantly from the pioneering work of Berstel.

Given an alphabet T , a Language f : T ∗ → R+, a Language Model
g : T ∗ → R+, and a precision ε > 0, we define the underestimation
error U(ε) of g with respect to f by

U(ε) =
∑
α∈T∗

g(α)<f(α)−ε

f(α)− g(α) (5)

and the overestimation error by

T (ε) =
∑
α∈T∗

g(α)>f(α)+ε

g(α)− f(α) (6)

While Berstel considers pairs of languages L and mappings f from
V ∗ to R+ (these mappings are the same as our Language Models
except for the fact that Berstel requires strictly positive values while
in LMs zero values are also permitted), we are considering pairs of
Language Models. Also, Berstel computes the ratio of the summed
weights (summed for strings of length ≤ n in L in the numerator, for
all strings in V n in the denominator), while our definition uses the
differences, segregated by sign. We believe that our choice reflects the
practice of computational language modeling better, inasmuch as in
practical Language Models both underestimation and overestimation
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errors are present, and their overall effects are seldom determined in
the limit (incorrect estimates for high frequency strings are far more
important than incorrect estimates for low frequency strings).

Of particular interest is the case ε = 0 where all instances of un-
derestimation and overestimation are taken into account. In the case of
approximating the CFG we used above to generateD1 by the CFG used
above to define D1

1 there is only underestimation error, which becomes
convergent e.g if we assume that the negative log probability of a string
is proportional to its length. If the constant of proportionality is chosen
as log(k), combinatorial density is simply the overestimation error T (0)
of the Language Model with respect to the empty language.

4. Self-embedding

In general, the proportion of “interesting” strings among all combina-
torially possible strings of the same length decreases rapidly, so the
Abel density of interesting languages is always zero. Generalizing to
Languages means that d(1) =

∑∞
i=0Ri = 1, so limz→1(1 − z)d(z/k)

will again be 0. In other words, only Language Models with a divergent
weight sum can give rise to nonzero density. This effect is somewhat
mitigated by Bernoulli density, which ignores every string that has a
valid prefix. But when approximating one Language by another, con-
centrating only on prefixes is counterintuitive, and it makes sense to
keep underestimation and overestimation errors separate.

From this perspective, several arguments advanced in mathemati-
cal linguistics about the structure and complexity of natural language
stringsets are highly suspect: we will illustrate this on the classic argu-
ment of Chomsky (1957) against finite state models. While the standard
counterargument (Yngve 1961) focuses on the breakdown between the
competence and the performance of the speaker/hearer, here we fully
accept the claim that self-embedding to any degree is grammatical. In
fact, we permit our Language Model to contain several rules that will
self-embed (either in themselves or in combination with other rules).
But if our model makes 0-1 decisions (does not assign probabilities to
strings) its overestimation error will always be infinite, since it gener-
ates an infinite number of strings by the self-embedding construction
alone, while the total probability of such strings in natural language is
less than one.

There are several ways to bring this divergence under control: nor-
malizing factors (e.g. negative log probabilities proportional to the
length of the string) can be applied, an arbitrary cutoff point in length
can be selected, etc. Once this has been done, we can ask: how much
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would we increase underestimation error if self-embedding was limited
in the model? While string frequencies are often hard to measure, it
should be emphasized that there is no deep philosophical issue here,
only the pragmatic issue of how to deploy limited resources optimally.
It is easy to verify that simply embedded constructions take less than
3% of e.g. the Brown corpus, doubly embedded constructions less than
3% of that, and so on. Given that the under/overestimation errors of
every current computational model are an order of magnitude higher
(in the 30% range), an argument based on a data set containing at most∑∞

n=1 .03n (i.e. less than 3.1%) of the data is relegated to the status of
a curiosity.

Most empirical fields of study have their share of curiosities, and
it is hard to find a theoretical model that gives rise to absolutely
no anomalies. Though from a logical point of view a single anomaly
is sufficient to demonstrate that there is something wrong with the
model that gave rise to it, in practice broader theories are seldom built
on curiosities, and anomalies rarely, if ever, play a direct role in the
development of better models. It would never occur to a physician to
remove a treatment from consideration just because it is known in
advance that 3% of the patients will not respond, and it would never
occur to a physicist to discard our best model of the universe just
because there is a problem with dark matter. This is not to say that
the study of low-frequency examples can not be rewarding (just think
of the catalytic effect the discovery of Bach-Peters sentences had on
semantics) but you have to crawl before you walk – the value of extreme
examples becomes clear only against a backdrop of understanding the
less extreme cases.

It can hardly be doubted that formal languages (implying divergent
weight sums in the Language Model unless describing a finite corpus,
a matter we shall turn to in the concluding section) are among the
most fruitful abstract models of natural languages ever devised. But to
investigate the structural complexity of natural languages, we need not
only a mathematical notion of the complexity of the abstract model,
as provided e.g. by the Chomsky hierarchy, but also a firm foundation
for the idea that the modeling process itself preserves complexity. At
present, no such foundation exists for Languages, and linking the com-
plexity of the weights (which themselves can be rational, irrational but
algebraic, or even transcendental) to the complexity of the structure is
a nontrivial task.

The failure of Chomsky’s original argument does not, by itself, inval-
idate Chomsky’s original conclusion that natural languages are outside
the simplest (rational) class. However, just as all our numerical models
ultimately rest on finite precision arithmetic, it appears that all our
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effective Language Models can rest on regularly weighted regular lan-
guages, and considerations of algebraic complexity, which rarely play a
role in numerical work, are destined to remain tangential to the study
of natural languages as well.

5. Conclusions

It is remarkable that a whole generation of linguists grew up firmly
believing in the following Infinity Fallacy (IF):

No significant generalization about the syntax of a language can
rest on a finite class of cases.

Those accepting the IF (and most students of generative syntax
still fall in this category) are forced to declare almost every classical
branch of linguistics scientifically bankrupt: phonology, morphology,
lexicography, and historical linguistics, being primarily concerned with
finite corpora, are all suspect. While such revolutionary fervor may have
made sense in the early days of generative grammar, by now it seems
clear that the bulk of the classical results, e.g. from Indoeuropean,
survived the generative revolution essentially intact, while the bulk
of early generative grammar had considerably shorter half-life. This
suggests that 0-1 models of Languages, and the concomitant use of the
finite/infinite distinction as the primary measure for goodness of fit, are
simply too crude to deal with the subtler issues that arise in modeling
finite data sets.

To the extent that finite data sets remain at the center of the
actual practice of linguistics, the more sophisticated quantitative mea-
sures discussed in the paper offer a good starting point for linguists
interested in developing more numerical methods of argumentation.
And to the extent that such argumentation, in particular the creation
of models capable of acquiring linguistic generalizations by numerical
optimization techniques, is becoming increasingly relevant for applied
systems, the mathematical study of languages is also likely to shift from
the complexity classes defined in automata-theoretic terms to more
information-theoretic considerations of complexity.
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Appendix

Proof of Theorem 1. Since rn ≤ kn, d(z) ≤ 1/(1 − kz) so ρ(L) ≤ 1
will always hold. The transition matrix A associated with the finite
deterministic automaton accepting L has column sums k, so B = A/k
is stochastic. Define H(z) as (1 − z)(E − zB)−1. The limiting matrix
H = limz→1H(z) always exists, and the density of L is simply ~vH~ei
where the j-th component of ~v is 1 of the j-th state is an accepting
state (and 0 otherwise) and the initial state is the i-th. Since H(z) is a
rational function of z and the rational coefficients of B, and its values
are computed at the rational point z = 1, every coefficient of H is
rational and so is the density.

Proof of Theorem 2. By a suitable rearrangement of the rows and
columns of the transition matrix A, B = A/k can be decomposed into
blocks Di which appear in the diagonal, a block C, which corresponds
to transient states and occupies the right lowermost position in the
diagonal of blocks, and blocks Si appearing in the rows of the Di and
the columns of C. The column norm of C is less than 1, so E − C can
be inverted and its contribution to the limiting matrix is 0. The column
sum vectors of Si can be expressed as linear combinations of the row
vectors of E−C, and the scalar factors in the theorem are simply the n-
th coefficients in these expression, where n is the number of the initial
state. Moreover, since (E − C)−1 =

∑∞
i=1C

i holds, all these scalars
will be strictly positive. By the Frobenius-Perron theorem, the density
vectors corresponding to the (irreducible) Di are strictly positive, and
this concludes the proof.
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Proof of Theorem 3. (iii) ⇒ (i). If ρ(L) > 0,A has accepting states
in some final class by Theorem 2. If α ∈ L brings A in such a state, then
no β ∈ V ∗ can take A out of this class, and by strong connectedness
there is a γ ∈ V ∗ that takes it back to the accepting state, i.e. αβγ ∈ L.
Thus, α can not be blocked.

(i) ⇒ (ii). This is a direct consequence of Theorem 2.
(ii) ⇒ (iii). If the accepting states of A are transient, then for every

such state i there exists a string βi that takes the automaton in some
state in a final class. Since such classes can not be left and contain no
accepting states, the strings βi block the language.

Proof of Theorem 4. If limz→1(1−z)d(z/k) > 0, then d(z/k) tends to
infinity in z = 1, and since it is convergent inside the unit circle, σ must
be 1. If L is regular, d(z/k) is rational (since it is the result of matrix
inversion), therefore if it is bounded in z = 1, it has to be convergent on
a disk properly containing the unit circle. If L1 ⊆ L2, then d1(z/k) ≤
d2(z/k) and since the Taylor coefficients are nonnegative, it is sufficient
to look for singularities on the positive half-line. There d1(z/k) must
be convergent if d2(z/k) is convergent, so σ(L1) ≤ σ(L2). Finally, if
d(z/k) is convergent on the whole plane, then f(1) =

∑∞
n=0 rn < ∞,

so L must be finite.

Acknowledgements

Input from anonymous reviewers is gratefully acknowledged.

mol4.tex; 16/03/2006; 19:11; p.12


