Linguistische Datenverarbeitung ursula NIENK, reier ocuelrel,

Manfred Thaller (Hg.)

In Zusammenarbeit mit der Gesellschaft fur C hi 1stik - d
. . . somputerliinguistik-un
Linguistische Datenverarbeitung (GLDV) e. V. R p g '

herausgegeben von Peter Hellwig, Heidelberg philOlOgISChC DatenVerarbeltung
und Jirgen Krause, Re¢gensburg

Beitrage der Jahrestagung der Gesellschaft fur
Band 7 Linguistische Datenverarbeitung e. V.
1986 in Gottingen
Ursula Klenk, Peter Scherber,
Manfred Thaller (Hg.)
Computerlinguistik und
philologische Datenverarbeitung

1987 1987
Georg Olms Verlag Hildesheim - Zirich - New York Georg Olms Verlag H.ild.eshelm - Zirich - New York
Gesellschaft fiir Linguistische Datenverarbeitung e. V. Gesellschaft fiir Linguistische Datenverarbeitung e. V.




oo T a T e s e |affaaes AT T U LIV LGV AUiIAIY ULV Jal ULV YVl J. 11 d4AdUDC
et al., in der bekannte InformationserschlieBungsverfahren verglichen und
evaluiert werden.

Nun gutes Lesen!
Ursula Klenk

Peter Scherber
Manfred Thaller

vi

INHALTSVERZEICHNIS

BLUMENTHAL, Andreas: Voriiberlegungen zum Computerein-
satz bei der Erarbeitung lexikographischer Bedeutungsver-
anderungen. Ein Bericht aus dem Projekt COLEX 1

DIERKS, Karin / ZINKO, Christian: Computerunterstiitzte
Emendierung des Hethitischen 12

HAENELT, Karin: Ein Beschreibungsmodell geisteswissen-
schaftlicher TexterschlieBungsverfahren auf der Grundlage
ciner Software-Entwicklung. - Ein Bericht des Projekts
PRO TEXT (Universitit Heidelberg) 22

HUONKER, Hans: Reflexionen zum Begriff “Wortdatenbank”
in der LDV 32

KELLE, Bernhard: Retrieval in mundartlichem Sprachmaterial
ohne feste Wortgrenzen 45

KORNAI, Andrds: Finite State Semantics 59

KRAUSE, J. / SCHNEIDER, C. / SPETTEI, G. / WOMSER-
HACKER, C.: Was leisten informationslinguistische Kom-
ponenten bei der InhaltserschlieBung fir ein deutsches
Patentinformationssystem? 71

LUCKHARDT, Heinz-Dirk: Normalisierung deutscher Oberfla-
chenstrukturen mit controlled active procedures 86

NETTER, Klaus: Wortstellung und Verbalkomplex im Deut-
schen 98

ROLSHOVEN, Jiirgen: LPS: Eine linguistische Program}rxier-
sprache 115

ROSNER, Dietmar: Von Titeln zu Texten. Zur Entwicklung
des Textgenerators SEMTEX 130




Schwarz, Christoph (1982): Freitextrecherche — Grenzen und Moglich-
keiten. Anmerkungen aus der Sicht der Informationslinguistik. In: Nach-
richten fiir Dokumentation 33: 228-236.

~ (1984): Linguistische Hilfsmittel beim Information Retrieval. In:
Nachrichten fir Dokumentation 35: 50-31.

Schwitalla, Johannes (1979); Dialogsteuerung in Interviews. Ansatze
zu einer Theorie der Dialogsteuerung mit empirischen Untersuchungen
von Politiker-, Experten- und Starinterviews in Rundfunk und Fernsehen.
Miinchen.

Steger, Hugo (1983a): Konzeptionelle und methodische Anforderungen
an einen regionalen Sprachatlas. In: Forschungsbericht (1983): 1-15.

~ (1983b): {Uber Textsorten und andere Textklassen. In: Textsorte.n
und literarische Gattungen. Dokumentation des Germanistentages in
Hamburg vom 1. bis 4. April 1979. Berlin: 25-67.

Steger, Hugo et al. (1974): Redekonstellationen, Redekonstellations-
typ, Textexemplar, Textsorte im Rahmen eines Sprachverhaltensmodells.
In: Jahrbuch des Instituts fir Deutsche Sprache 1972: 39-97.

Werlen, Erika (1984): Studien zur Datenerhebung in der Dialektologie.
(Zeitschrift fur Dialektologie und Linguistik. Beihefte. 46.) Wiesbaden.

FINITE STATE SEMANTICS

Andris KORNAI
Institute of Linguistics

Hungarian Academy of Sciences, Budapest

0. Introduction

While certain theories of knowledge representation (KR) lend themselves
to computer implementation quite naturally, others require a great deal
of programming effort and ingenuity. Unfortunately, it is nearly impossi-
ble to evaluate or compare various KR proposals on this basis, since ease
of implementation depends crucially on the architecture of the machine
chosen, be it an actual computer, or a theoretical model of computa-
tion. However, there is one architecture which deserves special attention,
namely that of the human brain.

The goal of this paper is to outline a theory of knowledge represen-
tation aiming at neurological reality: this means, among other things,
that it has to be built from strictly finite state components. The calcu-
lus employed for knowledge representation is described in Section 1, and
its interpretation is discussed in Section 9! The rest of this introduction
outlines the neural model employed.

Neurons form a highly interconnected network in which each cell can
receive impulses from certain neighboring cells and can send impulses to
other nearby cells. At any given moment, a single cell, depending on its
internal state and on the impulses it receives through its dendrits, will
either send an impulse through its axon to the dendrits of other cells
(will ‘fire’), or will send no impulses at all (will ‘be quiet’). This digital
behaviour is captured in the classical McCullogh/Pitts (1943) model of
nerve nets: neurons can be taken as finite automata having prescribed
transition functions, and the nerve net itself is equivalent to a single finite
automaton (cf. also Kleene 1956).

The process of learning can be easily modelled by rearranging the
dendrits: anatomical studies, however, make it clear that after birth no
such rearrangement ever takes place. How can, then, humans acquire
knowledge? The answer is provided by the kindling model of Goddard

59




(1967, 1975), which puts the classical summation effect of nerve impulses
in a new perspective. Subliminal impulses on a given dendrit have no
effect on the output, but if we give subliminal stimuli repeatedly, then the
sum of these might result in a permanent decrease of stimulus threshold.
In effect, neurons can be reprogrammed, i.e. their transition functions

can be changed.

To give a (hypothetical) éxample, suppose a neuron has two dendrits,
one axon, and transition function f(0,1) = £(0,0) = 0, f(1,0) = f(1,1) = 1.
This cell is insensitive to the impulse from the second dendrit, and simply
transmits the impulse from the first dendrit: we might say that it stores
a single bit corresponding to, say, zero. However, if we stimulate the
second dendrit repeatedly, the transition function might become £°(0,0)
=f(0,1) = 1, f/(1,0) = £(1,1) = 0. The next transition function is still
insensitive to the impulse from the second dendrit, but now acts as an
“inverter’ w.r.t. the impulses on the first dendrit: in effect, we changed
the bit stored in the neuron from 0 to 1.

Thus, the kindling mechanism makes it possible to store a single bit
permanently - this can be trivially extended to any finite sequence of bi-
nary digits. However, there is no reason to suppose that the human brain
contains flip-flops, multiplication circuits, or the like. On the contrary,
the functional units of the human brain, henceforth called modules, are
expected to be highly similar to each other. These functional units will
be discussed in Section 2.

With the implantation of microelectrodes, it is possible to measure
whether a single cell fires or not at any given moment. In fact, it is pos-
sible to measure the activity of several hundred cells simultaneously, and
with the advancement of experimental techniques, it might well become
possible to measure all the relevant cells in real time. A theory can lay
claim to neurological reality only if it is capable of predicting the firing
pattern of all neurons involved: such predictions, at least in principle,
are subject to empirical testing.

The theory outlined below cannot (as yet) make such predictions:
therefore it makes no direct claim to neurological reality. The reason
for this is that the critical step of circuit design from finite automata to
modules will be omitted — given the lack of empirical data bearing on this
mattér, a detailed proposal would only have one chance in a billion to be
the right one. However, since modules with the desired properties can
be built from elementary {McCullogh/Pitts) finite automata , the the-
ory does make an indirect claim ‘modulo circuit design’ to neurological
reality, and this sets it apart from less constrained (nonfinite-state) KR
theories.

60

1. The calculus

The logical calculi used for KR purposes in machine translation range
from first-order predicate calculus (e.g. Schubert/Pelletier 1982) to the
higher order intensional calculus of Montague Grammar (e.g. Landsber-
gen 1977), but so far, no type-free calculus has been employed for this
purpose. The aim of this section is to outline a transfer language (called
MIL) for machine translation which is based on combinatory logic. The
main advantage of the type-free approach is that the traditional distinc-
tion between rules (e.g. phrase structure rules) and representations (e.g.
that of lexical items) disappears: every chunk of knowledge relevant to
natural language understanding and related tasks is stored in the same
format, namely as an ob of the system. Before turning to the details of
MIL, however, it will be necessary to discuss some of the problems with
the traditional (typed) approach, as exemplified by Montague Grammar.

The type theory of Montague (1970a, henceforth UG) is based on the
assumption that the world is a collection of ‘things’: these will correspond
to the individual constants of the model. Since we can give a name to
every thing, proper names will have type e. Common names are usually
taken to represent collections of things: therefore, they are interpreted as
sets of individuals and will have the type (e — t). It is less clear what to
do with abstract nouns like love, and the decision here is usually based
on the linguistic similarity of abstract and concrete nouns, so that the
former are also taken to be of type (e — t). This is in sharp contrast to
the frame-semantic approach embodying the common sense observation
that love is between individuals, for that would give us a relation of type
eXe.

Adjectives combine with nouns into phrases syntactically equivalent to
nouns: using the notations of categorial grammar, A = N/N. Since they
take (e - t) elements as their arguments, and their values must also be
of type (e — t), adjectives will have the type (e — t} — (e —t). !

In general, if x is of category A/B, the type of A is u, and the type
of B is v, then x must have type (v — u). I will call this requirement
the soundness of type-assignment. But this requirement is insufficient for
unique type-assignment unless we stipulate that the only permitted mode
of composition is application ? (of a function to an argument), and we

1 To facilitate comparison with the naive theory, the intensional types of Mon-
tague Grammar are systematically replaced by their extensional variants.

2 This stipulation is not necessarily a part of Montague’s original program
(as formalized in UG), but it is implicit in the work of most linguists in the
Montague tradition. For an explicit statement, see Hausser (1982 ch 1).

61




know which constituent is the function and which is the argument. The
importance of this latter condition is best exemplified by the radically
different types assigned to proper names in the earlier work of Montague
and in later treatments (Montague 1973, henceforth PTQ). Proper names
(type e in Montague 1970b) and intransitive verbs (type e — t) combine
to form sentences (type t). Therefore, if the verb is the function, it must
be of type (e — t) for the type assignment to be sound, but if we take
the noun to be the function (as in PTQ), the only way to maintain the
type (e — t) for verbs and the type t for sentences is to assign the type
(e — t) — t to proper nouns.

The main problem is that no version of Montague Grammar has a
one-to-one correspondence between logical types and linguistic types. For
instance, common nouns and intransitive verbs, though clearly different
linguistically, have the same logical type (e — t) in practically every
version of the theory. The distinction between t/e and t//e was made in
PTQ precisely in order to cope with this problem, and in more detailed
systems (such as Partee 1977) the use of four, or even more slashes is
quite common.

In fact, Turner (1983), using the process of nominalization in En-
glish shows that if we map English expressions into formulas interpreted
in Russellian typed models, than certain natural requirements on this
mapping can not be simutaneously met. (For a fuller discussion, and a
similar demonstration based on category changing suffixes in Hungarian,
see Kornai 1985). To solve this problem, Keenan (1981, 1983) enriched
Russellian type theory considerably, and Turner (1983) employs Scott
domains as models. My proposal is to do away with types altogether:
this can be achieved by adopting a type-free model.

For the purposes of machine translation, the ‘logical form’ of natu-
ral language expressions should contain those (and only those) pieces of
information which are relevant for {meaning-preserving) translation to
other natural languages. This means that in general the logical form
of a source-language expression will depend on the target language as
well: in particular, the grammatical categories (gender, number, case,
etc.) that have to be preserved will have to be mapped on the (coarsest)
common refinement of the category systems of the languages in question.
3 Therefore, we have a family of interlinguas {one for every set of nat-
ural languages), rather than one fixed logical form; and as long as the
common refinement of all these languages is beyond our power to define,

3 This idea is not at all original with me: for the first proposal along these
lines, see Mel’cuk (1960).

62

it is expedient to work in a formalism in which various interlinguas can
be uniformly expressed. Such a formalism, here called a metainterlingua

(MIL), can be defined as follows:

1. The primitive obs (atoms) of MIL form a finite set A. (Later on, we
might equip A with some internal structure - at this point, however, the
only restriction on the atoms is that they should be unique, and distinct
from each other.)

2. The primitive functions of MIL are &, =, and perhaps also finitely
many operations P1, P2, ..., Pn - these are all supposed to be binary. &

will also be denoted by PO. H is a {metalanguage) variable ranging over
the Pi (i = 0,1,...,n).

3. If p and q are arbitrary obs, Hpq will be an ob, and p=q is an
(elementary) statement. (The only predicate of MIL is ‘=".) x, y, z, ...
will be (metalanguage) variables ranging over obs.

4. The system is defined inductively: the only obs, functives, and state-
ments of MIL are those resulting from the iterated application of 3.

5. The axioms of MIL are:

X=X
Hx&yz = &HxyHxz
&xx = x
Hé&xyz = &HxzHyz
&xy = &yz
6. The rules of deduction are:
X=Y X=Y Y=z X =Yy ) X=Yy
y =Xx X =1z Hxz + Hyz Hzx = Hzy

MIL, as defined above, is an equational system in the sense of Curry
/ Feys (1958 ch IE): the equivalence ‘=" makes it possible to define a
‘conjunctive normal form’ with respect to &. To put it in other words,
MIL is a free algebra over a finite set A generated by the binary operations
PO, P1, ..., Pn satisfying the equations in 5. Since the rules of deduction
in 6. make = compatible with the operations, = is a congruence, and its
classes can be represented by terms in conjunctive normal form.

To give a concrete example, if the primitive obs are taken to be the
(unanalyzed) symbols PP, PA, and AA (corresponding roughly to nouns,
adjectives, and adverbs), ATRANS, PTRANS, PROPEL, MOVE, ...,
MBUILD (corresponding to the primitive actions), and if the operations
Pi are taken to be ACTOR, OBJECT, INSTRUMENT, RECIPIENT,
..., POSSESSION, we get the Conceptual Dependency Representation

63




developed by Schank (1973a). * If we want to incorporate the theory of
causality developed by Schank (1973b), we simply adjoin the operations
RESCAU, ENACAU, INICAU, and REACAU.

The role of & will be illustrated on the semantic representation em-
ployed by Kdlman/Kornai (1985): here the primitive obs are taken to be
the (root) morphemes of the language in question, ® and there are only
two primitive operations, namely attribution {U), a'nd predication (V).
Complex obs of the type Uab (Vab) are depicted as edges in a graph-like
structure called a dependency graph. The vertices are labelled by a and
b, and the edge running from a to b is labelled by U (V).

(1)

(i) (ii) (iii) (iv)

U
b a—b a—b
a_.yl\' be~——a—c¢
U ¢ \ 18] v a—c¢
c —>d

Edges can be the starting point or the endpoint of other edges: structures
like (i) correspond to obs like UaVbc. The operation & is interpf‘eted as
(graph-theoretic) union: expressions like &UabVed are as dep.lcted'm
(i1). The atomic vertices are taken from a finite set A. Expressions like
&UabVac correspond to structures like (iii) — since atoms have to be
unique, structures like (iv) cannot be formed. The postulates in 5. and
6. serve to make those structures that differ only in the order in which
they were built up indistinguishable.

To give an example, suppose we learn that horses drink only clear wa-
ter. How do we represent this knowledge? In the kind of truth-conditional
approach best exemplified by Montague Grammar, the typical result is
that after a long series of complex calculations we end up with a formula
like
(horse’(z) & water’(w) & drink’(z,w)) = clear’(w)

But what does horse’, water’ or clear’ mean here? From this analysis, all
we can learn is that they are constants (of various types). But except for
a few ’logical’ words like not or therefore we can hardly define them in the

4 The elaborate syntax of linkages between the conceptual categories is simply
ignored here: the reader is invited to construct a system of additional axioms
reflecting the restrictions on the operations.

® Unlike Schank’s system, which is claimed to be the ultimate interlingua, this

representation is (as yet) monoligual.

64

metalanguage, and it is doubtful whether we can specify their extensions
at every index. In fact, the evidence (e.g. Labov 1973) suggests that we
can not: the limits of the extensions of words are, at Jeast, fuzzy. Whether
this fuzziness can be captured by free interpretation in models constrained
by meaning postulates remains to be seen. However, it is clear from
the outset that the number of meaning postulates necessary in such an
approach is extremely great, and that the task of drawing inferences in
accordance with all these postulates is computationally unfeasible.
In the dependency graph notation outlined above, we have

(2) horse — drink « water « clear
(The ‘only’ part can be represented as

(3) horse — drink «- water

T T

not —— clear
but I will not discuss this matter here.)

The interpretation of dependency graphs proposed here differs rad-
ically from model theoretic interpretation: the idea is to capture the
meanings of the constants in programs. Notice, that it is at this point
that the type-free approach pays off: programs can have other programs
as their input, and if we take them to be functions (e.g. LISP functions),
application is in principle unrestricted. For instance, the noun praise and
the verb praise mean essentially the same thing. The difference between
gain the praise and praise the gain stems not from the different meanings
of praise and gain (since both appear in both constructions), but rather
from the fact that they appear in different positions. There is no rea-
son to suppose that predication is commutative: f(g) and g(f) can (and
does) mean different things. In principle, self-application is also possible:
praise the praise or can the can are well-formed expressions of English.
Only in a type-free language can f(f) be meaningful.

2. The interpretation

The minimal anatomical units of the brain are its cells - the minimal func-
tional units {called modules), however, are expected to be much larger
(ca. 10 cells/module). What are the general properties of these modules?
In what follows, I will suppose that ordinary lexical entries correspond
to single modules, and will derive the basic characteristics of modules
from this assumption. Lexical entries contain at least phonological and
semantic information: the former can be used e.g. to control the arti-
culators, and the latter e.g. to draw inferences. While the phonologi-
cal representation of lexical entries is narrowly constrained (for a specific

65




proposal, see Halle 1983), the representation of meaning, as far as we
know, is not. In certain instances (e.g. hand) it might be connected Fo
the body scheme, in others (e.g. red) to the visual perception sysjcem, in
yet others {e.g. tuesday) only to similar highly abstract entities. Since we
are concerned mainly with semantics here, it seems unreasonable to con-
strain the semantic representations in advance: for the time being, I will
suppose that the meaning of lexical items — stored as their special infor-
mation, or spinfo ~ can be any partially recursive function, i.e. any LISP
program. Naturally, there are length restrictions on these programs,.bu.t
as these should be stated in terms of the neural machine code, here it is
sufficient to say that the spinfo in some given module can not exceed a
finite uniform bound. .

Programming objects ® can communicate with each other quite freely
- naturally, this is not the case with real-life modules. Among these,
communication is strictly Jocal: each one can send (or receive) messages
only to (from) some of its neighbors, which are listed on the neighbors
list once and for all. At this point, it might be useful to draw an ana
logy between modules and the processors of massively parallel computers
such as the Connection Machine: each processor (module) has a limited
storage area for itself (spinfo), and is connected to a limited number of
other processors in hardware (neighbors).

The message a modul can send has to be built from its current spinfo:
in particular, the internal states of other modules can have no direct
effect on it. In an idealized model, where the modules are synchronized,
everything happens in two cycles: in odd cycles, the modules digest the
information received from neighbors, and in even cycles, the modules
send and receive messages. This means that the internal states of mo-
dule M1 at T(1) can affect the workings of module Mn (to which M1 is
only indirectly linked via intermediate modules M2, M3, ..., Mn-?) only
at time T(2n-1): there is no such thing as instantenous long-distance
communication in this model.

In addition to its spinfo, each module is characterized by its current
activation state, which is encoded by a set of flags. For instance, when

someone hears the sentence
(4a) John hates porcupines

the state of the module corresponding to porcupine is somewhat altered.

% The system is being implemented in an object-oriented programming envi-
ronment, the so-called Beggarman’s Flavor System, which is based on the Poor
Man's Flavor System (Di Primio/Christaller 1983), and runs on the IBM
3031 of the Computer Science Institute of the Hungarian Academy of Sciences.

66

This can be demonstrated by purely linguistic methods: if we continue
with

(4b) but I think they are lovely

they refers to porcupines. and not to, say, rats. This difference must be
reflected somewhere in the system: either we say that the flag TOPIC
is set differently on rat and porcupine, or we say that a copy of the
porcupine spinfo now resides in some other module (and this is not true
for the spinfo of rat). If we choose the latter option (see e.g. Kdlmdn
1985), there is no need for a TOPIC flag - however, the TEMPORARY
flag has to be set on the programmable module in which the spinfo of
porcupine temporarily resides. The name of these flags is immaterial:
in any case, there can be only a few flags which, between themselves,
can only distinguish a very limited number (< 10) of internal states.
The most important of these states is the passive or basic state (denoted
by F0): unless a message received by a passive module contains some
specific reference to the contents of this module, the message will not be
forwarded and the module remains in state FO. Other states of interest
are the stimulated (F1), inhibited (F2), and learning (F3) states. In a
more realistic asynchronous model, flags can be used to signal whether a
given module is currently in the processing stage, or whether it is capable
of receiving messages, etc.

The central item in the LISP program giving the spinfo is a list (called
lista) of associated modules: in fact, most modules that have no efferent
connections will only have a lista in their spinfo. That means that if
we do not want to describe how one raises his hand upon hearing the
command Raise your hand, i.e. if we restrict ourselves to matters of ‘pure’
semantics, then only the association lists are available to us. Therefore,
we have a highly restricted knowledge representation in which everything
has to be achieved by manipulating listas. Moreover, as these lists are
in principle unordered, 7 this theory is based on a finite set M of pri-
mitives (corresponding to Modules or Morphemes). M is equipped with
a binary relation N (neighbors), and an association relation A which is
an extension of N. Modules can send messages only to their immediate
neighbors: if we want a message to arrive at some unlinked module, we
have to address it properly.

To continue with the above example, presumably, neither water nor
drink was associated to horse previously. We can suppose, however, that
drink is associated to the abstract modules SUBJECT and OBJECT -
in fact, such a statement must be part of the lexical entry of drink. For

T Naturally, they are implemented as ordinary lists on the computer.

67




our purposes, it does not really matter whether the association between
drink and e.g. OBJECT is direct (i.e. they are neighbors) or is effected
by intermediary modules (such as VERBINTR) - the point here is that
OBJECT appears on the lista of drink. OBJECT and SUBJECT are,
in turn, associated to NOUN. Although NOUN appears on the lista of
both horse and water, there is no reason to suppose that either water or
horse appears on the lista of NOUN - clearly, that would make the latter
lista much too long. Similarly, the only link between water and clear is
provided by the chain

(5) water — NOUN « MODIFY « ADJECTIVE « clear

~ as can be seen, this gives us no direct path from one to the other.
But, in the course of parsing (for details, see Kélmdn/ Kornai 1985), the
contents of both water and clear will appear in the module MODIFY,
which will send it to NP, and so on. In the end, the whole parse will
arrive to horse via the module SUBJECT. In the model outlined above,
attribution and predication correspond to flow of information and flow
of control, respectively. Interpretation means the activation of certain
programs as prescribed by the given ob of MIL: here & corresponds to
parallel execution. The main point here is that the knowledge stored
in these program ‘objects’ is organized linguistically: in particular, it is
stored in the lexical entry corresponding to the subject & of the sentence.
The list-structure of the parse corresponds, to a surprisingly large extent,
to the syntactic constituent structure of the original sentence, and the
meaning of sentences can be defined as the representation created during
the execution of the programs corresponding to lexical items.

In many languages, the ‘contentive’ lexical iterns themselves are type-
free, and the categorial status of the constituents is determined by various
formatives (function words, affixes, word order) which, aside from their
‘grammatical’ meaning, are semantically empty. In the model presented
here, the interpretation of these formatives causes no problems: the syn-
tactic structure of the surface expressions will determine only the control
structure (function-argument-structure) of the programs to be executed,
while the information content of the expression resides in the programs
encoding the meanings of the contentive lexical items.

References
Curry, H. / Feys, R. (1958): Combinatory logic 1. North-Holland,

Amsterdam.

8 Or rather, the communicative theme, or ‘topic’ (see Kdlman 1985).

68

|
|
|
|
|

Di Primio F. / Christaller Th. (1983): A poor man’s flavor system.
ISSCO Working paper 47 Institute Dalle Molle, Geneva.

Goddard, V. G. (1967): Development of epileptic seizures through
brain stimulation at low intensity. In: Nature 214: 1020-1021.

Goddard, V.G. / Douglas, R. N. (1975): Does the engram of kindling
model the engram of long term memory? In: Kindling. A Symposium
on Basic Research in Neuroscience. Canadian Journal of Neurological
Science 2: 383-394.

Halle, M. (1983): Distinctive features and their articulatory imple-
mentation. In: Natural Language and Linguistic Theory 1: 91-107.

Hausser, R. (1982): Surface compositional grammar. Ms.

K&lmaén, L. (1985): Type free context change semantics. Ms, HAS
Institute of Linguistics.

Kdlman, L. / Kornai, A. (1985): Pattern matching: a finite state
approach to parsing and generation. Ms, HAS Institute of Linguistics.

Keenan, E. (1981): A boolean approach to semantics. In: Groenendijk
/ Janssen / Stockhof (eds): Formal Methods in the Study of Language.
Amsterdam Mathematical Centre Tracts, 343-380.

Keenan, E. (1983): Facing the truth: some advantages of direct inter-
pretation. In: Linguistics and Philosophy 6: 335-372.

Kleene, S.C. (1956): Representation of events in nerve nets and finite
automata. In: Shannon / McCarthy (eds): Automata Studies, 3-41.
Princeton University Press.

Kornai, A. (1985): Logical types and linguistic types. To appear in 1.
Rusza (ed): Tertium Non Datur.

Labov, W. (1973): The boundaries of words and their meanings. In:
Bailey / Shuy (eds): New ways of analyzing variation in English. George-
town University Press.

Landsbergen, J. (1982): Machine translation based on logically iso-
morphic Montague grammars. In: Horecky (ed): COLING 82: Proceed-
ings of the Ninth International Conference on Computational Linguistics,
175-181.

McCullogh, W.S. / Pitts, W. (1943): A logical calculus of the ideas
immanent in nervous activity. In: Bulletin of mathematical biophysics 5:
115-133.

Mel’cuk, 1. (1960): Grammatical meanings in interlinguas for auto-
matic translation and the concept of grammatical meaning. Masinnyj
perevod i prikladnaja lingvistika 4: 25-45. Reprinted in Rozenzvejg (ed):
Machine Translation and Applied Linguistics I. Athenaion, Frankfurt,
95-114.

69




Montague, R. (1970a): Universal Grammar. Reprinted in Montague
1974, 222-246.

Montague, R. (1970b): English as a formal language. Reprinted in
Montague 1974, 188-221.

Montague, R, (1973): The proper treatment of quantification in ordi-
nary English. Reprinted in Montague 1974.

Montague, R. (1974): Formal Philosophy (Thomason, ed). Yale Uni-
versity Press.

Partee B. (1977): John is easy to please. In: A. Zampolli (ed):. Lin-
guistic structure processing. North-Holland, Amsterdam, 281-312.

Schank, R. (1973a): The fourteen primitive actions and their infer-
ences. Stanford Al Lab Memo 183, Stanford University (CA).

Schank, R. (1973b): Causality and reasoning. ISSCO Working Paper
1, Fondazione Dalle Molle, Castagnola (Switzerland).

Schubert, L. / Pelletier, F. (1982): From English to logic: context free
computation of ‘conventional’ logic translation. AJCL 8: 27-44.

Turner, R. (1983): Montague semantics, nominalizations and Scott’s
domains. In: Linguistics and Philosophy 6: 259-288.

70

WAS LEISTEN INFORMATIONSLINGUISTISCHE
KOMPONENTEN
BEI DER INHALTSERSCHLIESSUNG
FUR EIN DEUTSCHES PATENTINFORMATIONSSYSTEM?

J. KRAUSE, C. SCHNEIDER, G. SPETTEL, C. WOMSER-HACKER

Universitit Regensburg

1. Uberblick und Problemstellung

Obwohl informationslinguistische Komponenten bei der Inhaltserschlies-
sung von Massendaten eine lange Tradition haben, ist bis heute unklar,
ob es sich lohnt, die verbreiteten Freitextverfahren mit ihren erginzenden
Retrievalfunktionen wie Trunkierung und Kontextoperatoren durch lin-
guistisch begriindete Teilkomponenten (z.B. die Reduktion von Wortfor-
men auf ihre Grundformen oder eine Nominalgruppenanalyse) zu ersetzen
bzw. zu erganzen. Die Meinungsvielfalt reicht von krasser Ablehnung bis
zum naiven (nicht hinterfragten) Glauben an die These, ein Mehr an in-
formationslinguistischen Komponenten miisse zwangslaufig zu besseren
Retrievalergebnissen fiithren. Dem Mangel an Konsens unter den Wissen-
schaftlern entspricht ein Mangel an empirischen Daten zur Beantwortung
dieser Frage.

Deshalb konnte auch die Entscheidung, welches InhaltserschlieBungs-
verfahren beim Aufbau eines Deutschen Patentinformationssystems (DPI)
die giinstigsten Retrievalergebnisse verspricht, nicht ohne extensive Tests
der derzeit zur Verfiigung stehenden Systeme beantwortet werden. Diese
Ausgangssituation fiihrte zum Projekt PADOK, das vom 1.1.1985 - 31.3.
1986 am FG Linguistische Informationswissenschaft der Universitat Re-
gensburg durchgefiihrt wurde (gefordert unter BMFT Nr. 10 131 14).
Durch PADOK sollte eine wissenschaftlich fundierte Entscheidungsgrund-
lage fir das Bundesforschungsministerium und das Patentkonsortium,
das den Aufbau eines DPI betreibt, geschaffen werden. Zugleich ergaben
sich empirische Erkenntnisse iber die Wirksamkeit informationslingui-
stischer Teilalgorithmen zur InhaltserschlieBung von Massendaten.

71




