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Abstract. We give efficient quantum algorithms for the problems of Hidden Translation and
Hidden Subgroup in a large class of nonabelian solvable groups, including solvable groups of constant
exponent and of constant length derived series. Our algorithms are recursive. For the base case, we
solve efficiently Hidden Translation in Zn

p , whenever p is a fixed prime. For the induction step,
we introduce the problem Translating Coset generalizing both Hidden Translation and Hidden

Subgroup and prove a powerful self-reducibility result: Translating Coset in a finite solvable
group G is reducible to instances of Translating Coset in G/N and N , for appropriate normal
subgroups N of G. Our self-reducibility framework, combined with Kuperberg’s subexponential
quantum algorithm for solving Hidden Translation in any abelian group, leads to subexponential
quantum algorithms for Hidden Translation and Hidden Subgroup in any solvable group.
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1. Introduction. Quantum computing is an extremely active research area (for
introductions, see, e.g., [30, 1, 36, 35]). Many of the superpolynomial speedups
achieved by quantum algorithms over their best known classical counterparts have
been in a group theoretical setting. In this setting, we are given a finite group G and,
besides the group operations, we also have at our disposal a function f mapping G
into a finite set. The function f can be queried via an oracle. The time complexity
of an algorithm is measured by the overall running time, including both the queries
(counting a query as one step) and the quantum and/or classical processing of these
queries. The most important unifying problem of group theory for the purpose of
quantum algorithms has turned out to be Hidden Subgroup, which can be cast in
the following broad terms: Let H be a subgroup of G such that f is constant on
each left coset of H and distinct on different left cosets. We say that f hides the
subgroup H . The task is to determine the hidden subgroup H .
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While no classical algorithm can solve this problem with polynomial query com-
plexity even if G is abelian, the biggest success of quantum computing until now is that
it can be solved by a quantum algorithm efficiently for any abelian G. We will refer to
this quantum algorithm as the standard algorithm for Hidden Subgroup. The main
tool for this solution is Fourier sampling based on the (approximate) quantum Fourier
transform for abelian groups which can be efficiently implemented quantumly [29].
Simon’s XOR-mask finding [42], Shor’s factorization and discrete logarithm finding
algorithms [41], and Kitaev’s algorithm [29] for the abelian stabilizer problem are all
special cases of this general solution. Quantum algorithms of Hallgren [20, 21] and
Schmidt and Vollmer [40] computing class groups and unit groups of number fields,
including the solution of Pell’s equation, also follow along these lines.

Finding an efficient algorithm for Hidden Subgroup for nonabelian groups G
is considered to be one of the most important challenges at present in quantum com-
puting. Besides its intrinsic mathematical interest, the importance of this problem
is enhanced by the fact that it contains as a special case the graph isomorphism
problem. Unfortunately, although its query complexity is shown to be polynomial by
Ettinger, Høyer, and Knill [14], nonabelian Hidden Subgroup seems to be much
more difficult than the abelian case. Although considerable effort was spent on it in
the last few years, only a small number of successes can be reported. They can be di-
vided into two categories. The standard abelian Fourier sampling based algorithm has
been extended to some nonabelian groups in [39, 22, 19, 16, 33, 12] using the quantum
Fourier transform over these (nonabelian) groups. Although efficient quantum Fourier
transform implementations are known for several nonabelian groups [8, 23, 37, 32],
the power of the technique appears to be very limited. In a different approach, Hid-

den Subgroup was efficiently solved in the context of specific nonabelian black-box
groups [5, 45] by [26] without using the Fourier transform on the group, and instead
using Fourier transforms over abelian groups only. Similarly, only abelian Fourier
transforms were used by [24, 6, 10, 27, 28] to solve the hidden subgroup problem in
some specific kinds of nonabelian groups. See [11] for a more detailed review of hidden
subgroup algorithms and related problems.

In light of the apparent hardness of Hidden Subgroup in nonabelian groups,
a natural line of research is to address subproblems of Hidden Subgroup which,
in some groups, capture the main difficulty of the original problem. In a pioneering
paper, Ettinger and Høyer [13], in the case of dihedral groups, implicitly considered
another paradigmatic group problem, Hidden Translation. Here we are given two
injective functions f0 and f1 from a finite group G to some finite set such that, for
some group element u, the equality f1(xu) = f0(x) holds for every x. The task is to
find the translation u. In fact, whenever G is abelian, Hidden Translation is an
instance of Hidden Subgroup in the semidirect product G � Z2, where the hiding
function is f(x, b) = fb(x). The group action in G�Z2 is defined as (x1, b1)·(x2, b2) =
(x1 + (−1)b1x2, b1 ⊕ b2), where + denotes the group operation in G and ⊕ denotes
the group operation in Z2. In G � Z2, f hides the subgroup H = {(0, 0), (u, 1)}.
Actually, there is an efficient quantum reduction in the other direction as well, and
the two problems are quantum polynomial time equivalent [13]. A nice consequence of
this equivalence is that instead of dealing with Hidden Subgroup in the nonabelian
group G�Z2, we can addressHidden Translation in the abelian group G. Ettinger
and Høyer [13] have shown that Hidden Translation can be solved by a two-step
procedure when G = ZN is cyclic: a polynomial number of Fourier samplings over the
abelian group ZN ×Z2 followed by an exponential time classical stage without further
queries. The best known quantum algorithm for Hidden Translation in cyclic
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(and, in general, abelian) groups is Kuperberg’s subexponential time method [31]. Its
relation to certain lattice problems investigated by Regev [38] provides evidence that
Hidden Translation in cyclic groups might in fact be difficult.

In a related work, van Dam, Hallgren, and Ip [44] gave efficient solutions for
three cases of what they call the hidden shift problem. They also define another
problem called the hidden coset problem which generalizes hidden shift. Their hidden
coset problem can be viewed as a generalization of our Hidden Translation to not
necessarily injective functions. While their paper gives efficient quantum algorithms
for some specific hidden coset problems, in general the hidden coset problem is of
exponential query complexity even in Zn

2 .
Our first result (Theorem 3.5) is an efficient quantum algorithm for Hidden

Translation in the case of elementary abelian p-groups, that is, groups Zn
p , for any

fixed prime number p. The quantum part of our algorithm is the same as in Et-
tinger and Høyer’s procedure [13]: it consists of performing Fourier sampling over the
abelian group Zn

p × Z2. But while their classical postprocessing requires exponential
time, here we are able to recover classically the translation in polynomial time from
the samples. It turns out that Fourier sampling produces vectors y nonorthogonal to
the translation u; that is, we obtain linear inequations for the unknown u. This is
different from the situation in the standard algorithm for the abelian Hidden Sub-

group, where only vectors orthogonal to the hidden subgroup are generated. We
show that, after a polynomial number of samplings, the system of linear inequations
has a unique solution with high probability, which we are able to determine in deter-
ministic polynomial time. An immediate consequence of Theorem 3.5 is that Hidden

Subgroup in Zn
p � Z2 is efficiently solvable by a quantum algorithm.

To solve Hidden Translation in other groups (which include abelian groups of
constant exponent), we embark in a radically new direction whose basic idea is self-
reducibility. Since Hidden Translation is not well-suited for this self-reducibility
based approach, we define a new paradigmatic group problem. Notice that there is a
natural combination of Hidden Translation with Hidden Subgroup. This is the
version of Hidden Translation where the functions f0 and f1 are not necessarily
injective, but they are certain subgroup hiding functions. Indeed, if f1 hides a sub-
group H and f0(x) = f1(xu) for some u ∈ G and for every x ∈ G, then the set of all
such elements u form a right coset of H . (In the context of graph isomorphisms, the
corresponding problem would be determining all the bijections between the vertex sets
which are isomorphisms. This set is a coset of the automorphism group of one of the
graphs.) The self-reducibility will be based on “averaging” over normal subgroups so
that we actually get a problem over the factor group. We will give an averaging pro-
cedure which results in quantum superpositions. Therefore our new problem, called
Translating Coset, is a combination of Hidden Translation and Hidden Sub-

group where we have quantum states as input.1 Translating Coset also involves
quantum group actions, that is, groups acting on a finite set of mutually orthogonal
quantum states. Given two such states, |φ0〉 and |φ1〉, the Translating Coset

problem consists of finding their translating coset, which is defined to be the stabilizer
subgroup of |φ1〉 and a group element that maps |φ1〉 to |φ0〉.

It turns out that with a slight modification, our algorithm of Theorem 3.5 also
works for Translating Coset in Zn

p whenever many copies of the input states

1In the preliminary version [15] of the present paper, the problem Translating Coset was called
Orbit Coset. This was due to the fact that the problem is actually a constructive version of testing
membership in orbits of permutation groups.
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are given. Moreover, we show that Translating Coset has the following self-
reducibility property in any finite solvable group G: it is reducible to instances
of Translating Coset in G/N and N for any normal subgroup N � G (Theo-
rem 4.11). This is the first general self-reducibility result for a problem subsum-
ing Hidden Subgroup. The proof of the result involves a new technique which
is based upon constructing the uniform superposition of the orbit of a given quan-
tum state (Orbit Superposition). The importance of generating specific super-
positions for solving important algorithmic problems has been observed before; see,
for instance, the paper of Aharonov and Ta-Shma [3]. For example, generating the
uniform superposition of all graphs isomorphic to a given graph, which in fact is
an instance of the Orbit Superposition problem of the symmetric group Sn act-
ing on an n-vertex graph, would allow us to solve the graph isomorphism problem.
We show how Orbit Superposition is related to Translating Coset (Theo-
rem 4.10). The self-reducibility of Translating Coset combined with its solvability
for Zn

p enables us to design an efficient quantum algorithm for Translating Coset

in groups that we call smoothly solvable groups (Theorem 4.16). These groups in-
clude solvable groups of constant exponent and constant length derived series, in
particular, unitriangular matrix groups of constant dimension over finite fields of con-
stant characteristic. For the special case of Stabilizer (i.e., Translating Coset

when |φ1〉 = |φ0〉), we obtain an efficient quantum algorithm for an even larger
class of solvable groups, i.e., for solvable groups having a smoothly solvable com-
mutator subgroup (Theorem 4.16). As an immediate consequence, we get efficient
quantum algorithms for Hidden Translation and Hidden Subgroup in the same
groups as Translating Coset and Stabilizer, respectively. By combining our
self-reducibility results above with Kuperberg’s subexponential time algorithm for
Hidden Translation in abelian groups [31], and using the fact that every solv-
able group G has derived series of length O(log log|G|) [17], we get subexponential
time algorithms for Hidden Translation and Hidden Subgroup in all solvable
groups (Theorem 4.18), and quasi-polynomial time quantum algorithm for Hidden

Translation and Hidden Subgroup in solvable groups of constant exponent (The-
orem 4.17).

2. Preliminaries.

2.1. Quantum computation background. For a background on standard
quantum computing, we refer the reader to [35, 30]. We will consider problems whose
inputs and outputs might be either classical or quantum. Moreover most of our prob-
lems are promise problems where a part of the input is given by an oracle. A problem
is a relation P ⊆ I×O, where I is the set of inputs, and O the set of possible outputs.
For a family of functions F , an oracle problem is a family of relations (Pf)f∈F , where
f ranges over the family F . The function f is given by a quantum oracle, that is,
a unitary matrix Uf implementing the map Uf |x〉|0〉 = |x〉|f(x)〉.

For any finite set S, we denote by |S〉 the uniform superposition of elements in S:
|S〉 = 1√

|S|
∑

x∈S |x〉 when S �= ∅, and |S〉 = |∅〉 when S = ∅, where |∅〉 is a specific

basis element.
A quantum algorithm is a quantum circuit consisting of a succession of quantum

gates. Sometimes we describe quantum algorithms using intermediate measurements,
but they can always be replaced by unitary operations acting on the system plus
ancilla qubits [2]. The output state of the algorithm is defined to be the reduced state
at the end of the algorithm of a special register of qubits, called the output register.
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Namely, the output state of the algorithm is obtained by tracing out all but the qubits
of the output register at the end of the algorithm.

In this paper, we consider problems with many possible correct answers. For
example, an algorithm for Hidden Subgroup is said to be correct if it outputs any
generating set for the hidden subgroup. Therefore we say that a quantum algorithm
or a unitary transformation solves a problem P with error ε if for every input i ∈ I it
produces an output state whose trace distance is at most ε from some mixture over
{o ∈ O : (i, o) ∈ P} (see, e.g., [2] for a definition of trace distance).

The time complexity of an algorithm is the number of gates and oracle calls in
the circuit. For every problem, the input size is the number of classical or quantum
bits of an input. We say that a computational problem can be solved in quantum
time t(n) if there exists a quantum algorithm which solves the problem with bounded
error in time t(n), where n is the input size.

2.2. Group theory background. Recall that the exponent of a finite group
is the least common multiple of the order of its elements, and an elementary abelian
group is a group isomorphic to Zn

p for some positive integer n and for some prime p.
Obviously, the exponent of Zn

p is p. Let G be a finite group. If X is a subset of G,
then 〈X〉 denotes the subgroup of G generated by X .

2.2.1. Black-box groups. Our results concern groups represented in the gen-
eral framework of black-box groups [5, 45] with unique encoding. In this model, the
elements of a finite group G are uniquely encoded by binary strings of length �, and
the group operations are performed by an oracle (the black box). The group is given
in terms of a collection of generators, and the oracle may actually define operations
for a potentially larger group. We formally denote the encoding by a mapping enc
from G to {0, 1}�. For quantum algorithms, the group operations are performed using
a reversible oracle; see [45] for a detailed description. The encoding length � has to
be at least log|G|, and is usually O(log|G|). We measure the running time of our
algorithm in terms of the input size �. Several times in this paper we will be dealing
with subgroups or factor groups of black-box groups wherein we will still continue to
measure the running time in terms of the input length � for the original group G,
since we continue to use the original encodings for the subgroup elements. But even
in this case, all the encoding lengths for all subgroups shall be O(log|G|), where G is
the original group.

We do assume in all our problems that the groups are input by at most log|G|
generators. This is legitimate as there are several efficient methods, e.g., the quantum
algorithms given in [46] or [26] that produce at most log|G| generators for a solvable
black-box group G, even if it is given by a larger set of generators. The input size
corresponding to G is set to �, instead of �× log|G|, for convenience.

2.2.2. Solvable groups. A sequence G0 ≥ G1 ≥ · · · ≥ Gm of subgroups is a
subnormal series of G if each Gi is a normal subgroup of Gi−1. We use the notation
G0 �G1 � · · ·�Gm for a subnormal series. The length of such a series is m.

The group G is a solvable group when there exists a subnormal series G0 �G1 �

· · ·�Gm such that G = G0, Gm = {1G} and the factors Gi/Gi+1 (i = 0, 1, . . . ,m−1)
are abelian.

A natural way of constructing a subnormal series of the solvable group G is
to consider its derived subgroups. For any group H , let us first define and denote
the commutator subgroup H ′ of H by H ′ = 〈{h−1k−1hk : h, k ∈ H}〉. Then the
derived subgroups G(i) (i = 0, 1, 2, . . .) are defined by induction: G(0) = G; and the
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(i + 1)th derived subgroup G(i+1) is defined as the commutator (G(i))′ of G(i). All
the subgroups G(i) are normal subgroups of G(j) for 0 ≤ j < i. Clearly the group
G is solvable if G(d) = {1G} for some positive integer d and the derived length of G
is the smallest such integer d. The derived series of a solvable group G is the chain
G = G(0) �G(1) � · · ·�G(d) = {1G}.

In the case of an abelian group G, we have at our disposal [9] an efficiently
computable isomorphism for the cyclic decomposition θ : Z

p
k1
1

× · · · × Zpkr
r

→ G,

where pki

i are prime powers for primes pi. Whenever G is solvable, the decomposition
of G into its derived series can be computed by a classical randomized procedure [4].

2.2.3. Smooth groups. We introduce a shorthand terminology for the specific
class of solvable groups for which our method works in polynomial time. We say
that an abelian group G is (e, s)-smooth if it has a subgroup N of index at most
s with exponent at most e. A subnormal series G = G0 � G1 � · · · � Gm = {1G}
of a solvable group G is (e, s)-smooth if each factor group Gi−1/Gi is (e, s)-smooth.
A solvable group G is (e, s)-smooth if its derived series is (e, s)-smooth.

The methods of this paper will work in polynomial time for (e, s)-smooth solvable
groups G with constant derived length and with constant e and s = poly(log|G|). We
introduce the shorthand terminology smoothly solvable for such groups. Solvable
groups having constant derived length and satisfying the property that the factors of
the consecutive derived subgroups are of exponent bounded by a constant are the most
typical examples of smoothly solvable groups. An example of such a solvable group
is a unitriangular matrix group of constant dimension over a finite field of constant
characteristic.

2.2.4. Quantum Fourier sampling. When G is a finite abelian group, we
identify with G the set Ĝ of characters of G via some fixed isomorphism y 
→ χy.

(For a group G isomorphic to Zn
k , it is usual to define χy(x) as e

2πi
k x·y, where x · y

stands for the standard inner product
∑n

i=1 xiyi (mod k). Of course, this definition
requires—and depends on—an isomorphism of G with Zn

k .) The orthogonal sub-
group of H ≤ G is defined as H⊥ = {y ∈ G : ∀h ∈ H,χy(h) = 1}. The quantum
Fourier transform over G is the unitary transformation defined for every x ∈ G by
QFTG|x〉 = 1√

|G|
∑

y∈G χy(x)|y〉. For the sake of convenience, we will use the exact

abelian quantum Fourier transform in our algorithm. Actual implementations [29, 34]
introduce only exponentially small errors.

The following well-known quantum Fourier sampling algorithm will be used as a
building block, where G is a finite abelian group, S is a finite set, and f : G → S is
given by a quantum oracle. This algorithm is actually the main ingredient for solving
Hidden Subgroup in abelian groups when the function f hides a subgroup H ≤ G.
In that case, FourierSamplingf (G) generates the uniform distribution over H⊥. In
the algorithm, |0〉S stands for an arbitrary but fixed element of S.

FourierSamplingf (G)

1. Create state 1√
|G|

∑
x∈G |x〉|0〉S.

2. Query function f.
3. Compute QFTG on first register.

4. Measure and output the first register.

A function f : G → CS is a quantum function if, for every x ∈ G, the vector
|f(x)〉 has unit norm and, for every x, y ∈ G, the vectors |f(x)〉 and |f(y)〉 are either
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the same or orthogonal. We say that the quantum function f is given by a quantum
oracle if we have at our disposal a unitary transformation Uf and its inverse U−1

f

satisfying Uf |x〉|0〉 = |x〉|f(x)〉 for every x ∈ G.

2.2.5. Order finding and generalized discrete logarithm. We also as-
sume for simplicity that we have at our disposal a zero-error quantum algorithm
for computing the generalized discrete logarithm and for order finding. Given a basis
h1, h2, . . . , hl of an abelian group H and h ∈ H , the generalized discrete logarithm
consists of finding nonnegative integers α1, α2, . . . , αl such that h = hα1

1 hα2
2 . . . hαl

l .
Given a group element g in any group, order finding consists of finding the smallest
positive integer r such that gr is the identity element.

The actual implementations for period finding [41], for the single basis element
case of discrete logarithm [41] and for the general case [26], introduce only exponen-
tially small errors. Note that for discrete logarithm, one can also use a generalization
of the single basis element case by [34] which runs without error if one has access to
single qubit rotation gates of arbitrary precision.

2.3. The problems. Here we define the problems we are dealing with. Each
problem is parametrized by some fixed group, and potentially by some group action.
These are given, as we specified above, by oracles. Some inputs, usually functions on
the group, can also be given by oracles; we will refer to them as oracle inputs.

Let G be a finite group and let f0, f1 be two injective functions from G to some
finite set S. The pair of functions (f0, f1) can equivalently be considered as a single
function f : G × Z2 → S, where by definition f(x, b) = fb(x). We will use f for
(f0, f1) when it is convenient in the coming discussion. We call an element u ∈ G the
translation of f if for every x ∈ G we have f1(xu) = f0(x).

Hidden Translation(G)
Oracle input: Two injective functions f0, f1 from G to some finite set S such
that f = (f0, f1) has a translation u ∈ G.
Output: u.

For a finite group G and a finite set Γ of mutually orthogonal quantum states,
we consider group actions of G on Γ. By definition, α : G× Γ → Γ is a group action
if for every x ∈ G the quantum function αx : |φ〉 
→ |α(x, |φ〉)〉 is a permutation
over Γ, such that the map x 
→ αx is a homomorphism from G to the symmetric
group on Γ, i.e., α1G is the identity map and αx ◦ αy−1 = αxy−1 for every x, y ∈ G.
We extend α linearly to superpositions over Γ. (The condition that G permutes
the orthonormal system Γ of states is essential; we do not consider general unitary
actions G on Hilbert spaces.) When the group action α is fixed, we use the notation
|x · φ〉 for the state |α(x, |φ〉)〉. Having a group action α at our disposal means having
a quantum oracle realizing the unitary transformation |x〉|φ〉 
→ |x〉|x · φ〉. For any
positive integer t, we denote by αt the group action of G on Γt = {|φ〉⊗t : |φ〉 ∈ Γ}
defined by αt(x, |φ〉⊗t

) = |x · φ〉⊗t
. Observe that one can construct a quantum oracle

for αt using t queries to a quantum oracle for α. We need the notion of αt for
the following reason. Below, we define problems involving group actions on quantum
superpositions where the input superpositions cannot, in general, be cloned (that is, it
may be impossible to make further copies of the input state from just one). However,
it will be possible to generate multiple independent copies of the input superpositions
by a separate process before the start of our algorithm. Hence, in the interests of
reducing the error of our algorithm, we start it off with several independent copies
of the input superpositions. Our self-reducibility arguments will reduce the main
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problem into a bunch of problems involving actions of smaller groups on quantum
superpositions. To solve each of these subproblems with small error, we will require
that the self-reduction process leave a sufficient number of independent copies of
the input superpositions for a subproblem. This is easy to ensure since we start
with a large number of independent copies of the input superpositions to the original
problem. However, in order to achieve this goal, the self-reduction process needs to
act on several independent superpositions simultaneously by the same group element.
The group action αt captures this notion. This notion will be crucial for our induction
arguments. Also note that the stabilizer and the translating coset, defined later, are
the same for group actions α and αt.

The stabilizer of a state |φ〉 ∈ Γ is the subgroup G|φ〉 = {x ∈ G : |x · φ〉 =
|φ〉}. Given |φ〉 ∈ Γ, the problem Stabilizer(G,α, t) consists of finding O(log|G|)
generators for the subgroup G|φ〉, given t copies of |φ〉.

Proposition 2.1. Let G be a finite abelian group given as a black-box group with
encoding length � and let α be a group action of G. When t = Ω(log(|G|) log(1/ε)),
then Stabilizer(G,α, t) can be solved in quantum time poly(�) log(1/ε) with error ε.

Proof. Let |φ〉⊗t
be the input of Stabilizer. Let f be the quantum function

on G defined by |f(x)〉 = |x · φ〉 for every x ∈ G. Observe that f is an instance of
the natural extension of Hidden Subgroup to quantum functions and it hides the
stabilizer G|φ〉.

The algorithm for Stabilizer is simply the standard algorithm for the abelian
Hidden Subgroup with error ε. In the standard algorithm, every query is of the form
|x〉G|0〉S . We simulate the ith query |x〉G|0〉S using the ith copy of |φ〉. The second
register of the query is swapped with |φ〉, and then we let x act on it. We remark that
the standard algorithm for abelian Hidden Subgroup outputs O(log|G|) generators
for the hidden subgroup.

Note that in general the input superposition |φ〉⊗t gets destroyed by the above
algorithm.

The orbit of a state |φ〉 ∈ Γ is the subset G(|φ〉) = {|x · φ〉 : x ∈ G}. Define
|G · ϕ〉 = 1√

|G(|φ〉)|
∑

|ϕ′〉∈G(|ϕ〉) |ϕ′〉. Equivalently, |G · φ〉 = 1√
|G|

∑
x∈G |x · φ〉. The

translating coset of two states |φ0〉 and |φ1〉 of Γ is the set {u ∈ G : |u · φ1〉 =
|φ0〉}. The translating coset of |φ0〉 and |φ1〉 is either empty or a left coset uG|φ1〉
(or equivalently a right coset G|φ0〉u) for some u ∈ G. If the latter case occurs, |φ0〉
and |φ1〉 have conjugate stabilizers: G|φ0〉 = uG|φ1〉u

−1. Translating Coset is a
generalization of Stabilizer:

Translating Coset(G,α, t)
Input: t copies of two quantum states |φ0〉, |φ1〉 ∈ Γ.
Output:

• reject if G(|φ0〉) ∩G(|φ1〉) = ∅;
• u ∈ G such that |u · φ1〉 = |φ0〉 and O(log|G|) generators for G|φ1〉
otherwise.

For a function f on G, define the superposition |f〉 = 1√
|G|

∑
g∈G |g〉|f(g)〉, and

for x ∈ G, define the function x · f : g 
→ f(gx). Let Γ(f) = {|x · f〉 : x ∈ G}. Then
a group element x acts naturally on |f ′〉 ∈ Γ(f) by mapping it to the superposition
|x · f ′〉. We call this group action the translation action. The mapping |x〉|f ′〉 
→
|x〉|x · f ′〉 is realized by right multiplying the first register of |f ′〉 by x−1.

Proposition 2.2. Suppose G is a finite group and let t = poly(log|G|). Then
Hidden Subgroup(G) (resp., Hidden Translation(G)) can be solved with a call
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to Stabilizer(G, τ, t) (resp., Translating Coset(G, τ, t)), where τ denotes the
translation action.

Proof. Let f be an instance of Hidden Subgroup. Then the stabilizer of |f〉 is
the group hidden by f . Let (f0, f1) be an instance of Hidden Translation. Then
the translating coset of |f0〉 and |f1〉 is a singleton whose element is the translation
of (f0, f1).

3. Hidden translation in Zn
p . In this section, we show thatHidden Transla-

tion(G) can be solved in quantum polynomial time in the special case when G = Zn
p

for any fixed prime number p > 2. In this section we use the additive notation for the
group operation, and x · y ∈ Zp stands for the standard inner product for x, y ∈ Zn

p .
Since Zn

2 �Z2 is isomorphic to the abelian group Zn
2 ×Z2, one already has a quantum

polynomial time algorithm for Hidden Translation in Zn
2 by reducing it to Hidden

Subgroup in Zn+1
2 by the method of [13].

For the convenience of the reader we present our method using intermediate mea-
surements. However, the measurements can always be eliminated (see [2]), giving a
unitary and therefore reversible algorithm, possibly with errors.

The quantum part of our algorithm consists of performing FourierSampling

over the abelian group Zn
p × Z2. It turns out that from the samples we will only use

elements of the form (y, 1). The important property of these elements y is that they
are not orthogonal to the hidden translation. Some properties of the distribution of
the samples are stated for general abelian groups in the following lemma.

Lemma 3.1. Let G be a finite abelian group. Let f = (f0, f1), f : G × Z2 → S
be an instance of Hidden Translation(G) having a translation u �= 0. Then
FourierSamplingf (G×Z2) outputs an element in G×{1} with probability 1/2. More-
over, the probability of sampling the element (y, 1) depends only on χy(u), and is 0 if
and only if y ∈ u⊥.

Proof. The state vector of FourierSamplingf (G × Z2) before the final observa-
tion is

1

2|G|
∑
x∈G

∑
y∈G

∑
c=0,1

χy(x)
(
1 + (−1)cχy(u)

)|y〉|c〉|f0(x)〉.

Therefore the probability of sampling (y, 1) is proportional to |1 − χy(u)|2, whence
the statement follows as χy(u) = 1 if and only if y ∈ u⊥ and

∑
y∈G |1 − χy(u)|2 =

2|G| − 2
∑

y∈G χy(u) = 2|G|.
When G = Zn

p , the value χy(u) = e
2πi
p y·u depends only on the inner product y · u

over Zp, and y ∈ u⊥ exactly when y · u = 0. Therefore every (y, 1) generated satisfies
y ·u �= 0. Thus the output distribution is different from the usual one obtained for the
abelian Hidden Subgroup where only vectors orthogonal to the hidden subgroup
are generated. We overcome the main obstacle, which is that we do not know the
actual value of the inner product y · u, by raising these inequations to the power
(p − 1). They become a system of polynomial equations of degree at most (p − 1)
since ap−1 = 1 for every nonzero a ∈ Zp. In general, solving systems of polynomial
equations over any finite field is NP-complete. But using the other special feature of
our distribution, which is that the probability of sampling (y, 1) depends only on the
inner product y · u, we are able to show that—for fixed prime p—after a polynomial
number of samplings, our system of equations has a unique solution with constant
probability, and the solution can be found in deterministic polynomial time.

To solve our system of polynomial equations, we linearize it in the (p−1)th sym-
metric power of Zn

p . We think of Zn
p as an n-dimensional vector space over Zp. For
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a prime number p and an integer k ≥ 0, let Z
(k)
p [x1, . . . , xn] be the kth symmetric

power of Zn
p which will be thought of as the vector space, over the finite field Zp,

of homogeneous polynomials of degree k in variables x1, . . . , xn. The monomials of

degree (p−1) form a basis of Z
(p−1)
p [x1, . . . , xn], whose dimension is therefore

(
n+p−2
p−1

)
,

which is polynomial in n when p is constant. Z
(1)
p [x1, . . . , xn] is isomorphic to Zn

p as

a vector space. For two vectors Y1, Y2 ∈ Z
(p−1)
p [x1, . . . , xn], we denote their standard

inner product over the monomial basis by Y1 · Y2.
For every y = (a1, . . . , an) ∈ Zn

p and positive integer k, we define y(k) ∈
Z
(k)
p [x1, . . . , xn] as the polynomial (

∑n
j=1 ajxj)

k. For y = (a1, . . . , an), z =

(b1, . . . , bn) in Zn
p , and positive integers k, l, we define the product y(k)z(l) ∈

Z
(k+l)
p [x1, . . . , xn] as the polynomial (

∑n
i=1 aixi)

k(
∑n

j=1 bjxj)
l. Now observe that if

u = (u1, . . . , un) is the hidden translation vector, then the vector u∗ ∈ Z
(k)
p [x1, . . . , xn]

which for every monomial xe11 · · ·xenn has coordinate ue11 · · ·uenn satisfies y(p−1) · u∗ =
(y · u)p−1. Therefore each linear inequation y · u �= 0 over Zn

p will be trans-

formed into the linear equation y(p−1) · U = 1 over Z
(p−1)
p [x1, . . . , xn], where U is

a dimZ
(p−1)
p [x1, . . . , xn]-sized vector of unknowns.

We will see below that the vectors y(p−1) span the space Z
(p−1)
p [x1, . . . , xn] when

y ranges over Zn
p . Moreover, in what is the main part of our proof, we show in

Lemma 3.4 that whenever the span of y(p−1) for the samples y is not Z
(p−1)
p [x1, . . . , xn],

our sampling process furnishes with probability at least 1/p a vector z ∈ Zn
p such

that z(p−1) is linearly independent from the y(p−1) for the previously sampled y’s.
This immediately implies that if our sample size is of the order of the dimension of

Z
(p−1)
p [x1, . . . , xn], the span of y(p−1) for the samples y is Z

(p−1)
p [x1, . . . , xn] with high

probability. In that case, the linear equations y(p−1) ·U = 1 have exactly one solution,
which is u∗. From this unique solution one can easily recover a vector v such that
v = au for some 0 < a < p (note that v∗ = u∗). Now u can be found by checking the
(p− 1) possibilities.

The following combinatorial lemma is at the basis of the correctness of our pro-
cedure.

Lemma 3.2 (line lemma). Let y, z ∈ Zn
p . For 1 ≤ k ≤ p − 1, define L

(k)
z,y =

{(z + ay)(k) : 0 ≤ a ≤ k}. Then for all 0 ≤ l ≤ k, z(l)y(k−l) ∈ Span(L
(k)
z,y), where the

span is taken with Zp-coefficients.

Proof. Let M
(k)
z,y = {z(l)y(k−l) : 0 ≤ l ≤ k}. Clearly, Span(L

(k)
z,y) ⊆ Span(M

(k)
z,y ).

We claim that the inverse inclusion is also true since the determinant of L
(k)
z,y in

M
(k)
z,y is nonzero in Zp. Indeed, it is

(∏k
l=0

(
k
l

))
V (0, 1, . . . , k), where V denotes the

Vandermonde determinant.
Proposition 3.3. For 1 ≤ k ≤ p − 1, Z

(k)
p [x1, . . . , xn] is spanned by y(k) as y

ranges over Zn
p .

Proof. We prove the proposition by induction on k. The base case k = 1 is
trivial. Suppose the statement holds for k, 1 ≤ k < p − 1. Consider a monomial M
in x1, . . . , xn of degree k + 1. If M = xk+1

i for some 1 ≤ i ≤ n, then M trivially
lies in the span of y(k+1) as y ranges over Zn

p . Else, M = xiM
′ for some 1 ≤ i ≤ n

and degree k monomial M ′. Let z ∈ Zn
p . From Lemma 3.2, we see that xiz

(k) ∈
Span({(xi + az)(k+1) : 0 ≤ a ≤ k + 1}). By induction hypothesis, M ′ lies in the span
of z(k) as z ranges over Zn

p . Hence, xiM
′ lies in the span of xiz

(k) as z ranges over
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Zn
p . Thus, M ∈ Span({(xi + az)(k+1) : 0 ≤ a ≤ k + 1, z ∈ Zn

p}). This shows that

Z
(k+1)
p [x1, . . . , xn] is spanned by y(k+1) as y ranges over Zn

p , completing the proof of
the induction step and also that of the proposition.

We are now ready to prove the main lemma.

Lemma 3.4. Let u ∈ Zn
p , u �= 0 and let W be a subspace of Z

(p−1)
p [x1, . . . , xn]. We

set R = {y ∈ Zn
p : y(p−1) ∈W}. For k = 0, . . . , p−1, let Vk = {y ∈ Zn

p : y ·u = k} and

Rk = R∩Vk. IfW �= Z
(p−1)
p [x1, . . . , xn], then |Rk|/|Vk| ≤ (p−1)/p for k = 1, . . . , p−1.

Proof. Observe that Rk = {ky : y ∈ R1} for 0 < k < p. Therefore the sets
Rk, 0 < k < p, have the same size. Observe also that the sets Vk, 0 ≤ k < p, have
the same size, and they partition Zn

p . Hence the values |Rk|/|Vk| are the same for
0 < k < p.

Since W �= Z
(p−1)
p [x1, . . . , xn], Proposition 3.3 implies that R �= Zn

p . We consider
two cases. In the first case, V0 ⊆ R. This implies that R1 is a proper subset of V1.
Choose any y ∈ V1 \R1. Then, by Lemma 3.2, in every coset of 〈y〉 there is an element
outside ofR. A coset of 〈y〉 contains exactly one element from each Vk, k = 0, . . . , p−1.
Hence ∪k 	=0Vk is partitioned into equal parts, each part of size (p− 1), by intersecting
with the cosets of 〈y〉. In each part, there is an element outside of R. Therefore
|∪k 	=0Rk|/|∪k 	=0Vk| ≤ (p− 2)/(p− 1). Hence, |Rk|/|Vk| ≤ (p− 2)/(p− 1) < (p− 1)/p
for k = 1, . . . , p− 1, and the statement follows.

In the second case, V0 �⊆ R. Therefore, there is an element y ∈ V0 \ R0. Then
every Vk, k = 0, . . . , p− 1, is a union of cosets of 〈y〉. Lemma 3.2 implies that every
coset of 〈y〉 contains an element outside of R. This proves that |Rk|/|Vk| ≤ (p− 1)/p
for k = 0, . . . , p− 1. This completes the proof of the lemma.

We now specify the algorithm TranslationFinding and prove that, with high
probability, it finds the hidden translation in quantum polynomial time when p is
constant.

TranslationFindingf (Zn
p )

0. If f0(0) = f1(0) then output 0.
1. N ← 13p

(
n+p−2
p−1

)
.

2. For i = 1, . . . , N do

(zi, bi)← FourierSamplingf (Zn
p × Z2).

3. {y1, . . . , yM} ← {zi : bi = 1}.
4. For i = 1, . . . ,M do Yi ← y

(p−1)
i .

5. Solve the system of linear equations

Y1 · U = 1, . . . , YM · U = 1.
6. If there are no solutions or more than one solution, then abort.

7. Let 1 ≤ j ≤ n be such that the coefficient of xp−1
j is 1 in U.

8. Let v = (v1, . . . , vn) ∈ Z
n
p be such that vj = 1 and vk is the

coordinate of xkx
p−2
j in U for k �= j.

9. Find 0 < a < p such that f0(0) = f1(av).
10. Output av.

Theorem 3.5. For every prime number p, every integer n ≥ 1, and every
function f : Zn

p × Z2 → S having a translation given via a quantum oracle, algorithm

TranslationFindingf (Zn
p ) aborts with probability less than 1/2, and when it does

not abort it outputs the translation of f . The query complexity of the algorithm is
O(p(n+ p)p−1), and its time complexity is (n+ p)O(p).

Proof. Because of Step 0 of the algorithm, we can suppose without loss of gener-
ality (w.l.o.g.) that the translation u of f is nonzero.
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If the algorithm does not abort, then U = u∗ is the unique solution of the system
in step 5. When the coefficient of xp−1

j is 1 in U , then uj �= 0. Also, uk = ujvk for
every k. Thus, u = ujv and u is found in step 9 for a = uj.

From Lemma 3.1, we see that the probability that the algorithm Fourier

Samplingf (Zn
p × Z2) outputs (y, 1) for some y is 1/2. Therefore the expected value

of M is N/2, and M < N/3 with probability at most e−N/18 < 1/4 because of Cher-
noff’s bound. If the system Y1, . . . , YM has full rank, then it has a unique solution.
By Lemmas 3.1 and 3.4, the expected number of linear equations that guarantee that
the system has full rank is at most p

(
n+p−2
p−1

)
. Since N/3 > 4p

(
n+p−2
p−1

)
, by Markov’s

inequality, the solution U is unique with probability at least 3/4. Thus, the total
probability of aborting is less than 1/2.

Corollary 3.6. Let p be a prime. Then the problem of Hidden Trans-

lation(Zn
p ) can be solved in quantum time (n + p)O(p) log(1/ε) with error ε using

t = Θ(p(n+ p)p−1 log(1/ε)) accesses to the oracles for f0, f1.
Proof. We perform two modifications in the algorithm TranslationFinding.

First, to get error ε, the integerN is multiplied by O(log(1/ε)). Moreover, we assumed
in the algorithm that there is an oracle for f = (f0, f1), which was used to choose fb
knowing b. This is not possible in general when f0 and f1 are given by two distinct
oracles. Therefore we replace the oracle access |x〉|b〉|0〉S 
→ |x〉|b〉|fb(x)〉S by

|x〉|b〉|0〉S |0〉S 
→ |x〉|b〉|fb(x)〉S |f1−b(−x)〉S .
This type of quantum oracle corresponds to the function f ′ = (f ′

0, f
′
1), where f

′
0(x) =

(f0(x), f1(x)) and f ′
1(x) = (f1(x), f0(−x)). Obviously, f ′

0 is injective and f ′
0(x) =

f ′
1(x+ u). We can apply Theorem 3.5 in this new setting.

Let us now show how to simulate this new oracle access. From |x〉|b〉|0〉S |0〉S we
compute |(−1)

bx〉|b〉|0〉S |0〉S , and then we call f0 and get |(−1)
bx〉|b〉|f0((−1)

bx)〉S |0〉S .
We multiply the first register by (−1) and call f1, which gives

|(−1)
b+1x〉|b〉|f0((−1)

bx)〉S |f1((−1)
b+1x)〉S .

Finally, we multiply the first register by (−1)
b+1 and swap the last two registers when

b = 1.
As there is a quantum reduction from Hidden Subgroup in Zn

p �Z2 to Hidden

Translation in Zn
p by the method of [13], we obtain the following corollary.

Corollary 3.7. Let p be a fixed prime. Then Hidden Subgroup(Zn
p �Z2) can

be solved in quantum time poly(n).
The algorithm TranslationFinding can also be extended to solve Translating

Coset in Zn
p .

Corollary 3.8. Let p be a prime. Let α be a group action of Zn
p . When

t = Ω(p(n+p)p−1 log(1/ε)), Translating Coset(Zn
p , α, t) can be solved in quantum

time (n+ p)O(p) log(1/ε) with error ε.
Proof. Let the input of the Translating Coset(Zn

p , α, t) be (|φ0〉⊗t
, |φ1〉⊗t

).
We can suppose w.l.o.g. that the stabilizers of |φ0〉 and |φ1〉 are trivial. Indeed the
stabilizers can be computed by Proposition 2.1. If they are different, then the algo-
rithm obviously has to reject; otherwise we work in the factor group Zn

p/G|φ0〉 ∼= Zn′
p

for some n′ ≤ n. To be more specific, we can compute a (Zp-basis for) a subgroup
G1 of Zn

p which is a direct complement of G|φ0〉 by augmenting a basis for G|φ0〉 to a
basis of Zn

p , and we can actually work with G1 in place of G.
For b = 0, 1, let fb be the injective quantum function on G defined by |fb(x)〉 =

|x · φb〉 for every x ∈ G. If the translating coset of (|φ0〉, |φ1〉) is empty, then f0 and
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f1 have distinct ranges. Otherwise the translating coset of (|φ0〉, |φ1〉) is a singleton
{u}, and (f0, f1) have the translation u.

The algorithm for Translating Coset on input (|φ0〉⊗t, |φ1〉⊗t) is the algorithm
TranslationFinding on input (f0, f1) with a few modifications described below. The
oracle access to (f0, f1) is modified in the same way as in Corollary 3.6. We simulate
the ith query |x〉|b〉|0〉S |0〉S using the ith copy of |φ0〉|φ1〉. The two registers |0〉S |0〉S
are swapped with |φb〉|φ1−b〉, and then we let act x on |φb〉 and (−x) on |φ1−b〉.

The equality tests in steps 0 and 9 are replaced by the swap test [7, 18] iterated
O(log(1/ε)) times. Finally, N is multiplied by O(log(1/ε)), and the algorithm re-
jects whenever the algorithm TranslationFinding aborts or there is no solution in
step 9.

4. Translating coset in solvable groups.

4.1. Preparation.

4.1.1. Quantization of the problems. Let G be a black-box group with
unique encoding, and let α be a group action on Γ.

We now describe quantum analogues of problems with classical outcomes, as
unitary transformations whose outputs are basically uniform superpositions on the
possible classical outcomes.

We will give quantum circuit implementations for the new problems. A quantum
circuit has both input/output registers and ancilla registers. The latter ones are
initialized to some default value, usually a 0-string, that we denote |0〉. We will
explicitly mention when we consider a different default value. We identify a quantum
circuit with the unitary transformation it defines.

Let U be a unitary transformation. A quantum circuit C implements U if
C = U ⊗ Id, where the tensor product is between input/output registers and ancilla
registers. Most often, our unitary transformations will be only partially specified, and
our quantum circuits will only approximately implement them. This motivates the
following generalization of implementation.

A partial unitary U is a transformation defined on a subset S of a Hilbert space
H , such that there exists a unitary transformation V on H which coincides with U
on S. A quantum circuit C implements U on S with error ε if C(|ψ〉 ⊗ |0〉) and
U |ψ〉 ⊗ |0〉 are of trace distance at most ε for every |ψ〉 ∈ S. We will omit ε when
ε = 0, and also S when it is understood from the context.

Given a circuit that implements a unitary U , one can design a circuit of the
same size that implements the unitary U−1 by applying backward the circuit for U ,
where each gate is replaced by its inverse. Therefore in our model, the complexity for
implementing a unitary transformation or its inverse is the same. Thus we will say that
a circuit uses as black boxes t implementations of U whenever it uses t gates U or U−1.

Our notion of implementation does not allow any garbage in the computation: at
the end of the computation the ancilla registers must come back to their initial default
value, potentially approximately. It is not always true for a quantum circuit, even if it
computes the desired outcomes. In that case we will say that the computation is with
garbage. Nonetheless, when a quantum circuit computes a classical function without
error, we can assume that the computation is without garbage using the standard
cleaning method: run the circuit C, XOR the output in a new register (initialized to
the 0-string), undo the circuit by running C−1. In such a situation, we will therefore
always assume that we have at our disposal such a circuit without garbage.

Definition 4.1. Let g1, g2, . . . , gk ∈ G and H = 〈g1, g2, . . . , gk〉. Subgroup
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Superposition(G, g1, g2, . . . , gk) is a partial unitary transformation that maps state
|1G〉 to state |H〉.

In the following description of a quantum circuit, we write in boldface the input
registers of the circuit, whereas fresh registers are in regular font. The output registers
are a priori the same as the input registers. We also assume for simplicity that we
have at our disposal a zero-error quantum algorithm for computing the generalized
discrete logarithm and for order finding. The actual implementations for the single
basis element case [41] and for the general case [26] introduce only exponentially small
errors. Note that one can also use a generalization for the single basis element case
of [34] which is without error. We also note that the heart of the circuit is not to
compute H from the generators, but rather to create the superposition over H by
uncomputing the discrete log.

AbelianGS(G, g1, g2, . . . , gk)
Hypothesis: H = 〈g1, g2, . . . , gl〉 is abelian.

Input: |1G〉
1. Compute a basis h1, h2, . . . , hl such that 〈h1〉×〈h2〉×· · ·×〈hl〉 = H, and

the respective orders rj of hj.

2. Compute in a fresh register the superposition

∑

0≤aj<rj

|a1, a2, . . . , al〉|1G〉.

3. Perform fast exponentiation h
aj

j in fresh register:

∑

0≤aj<rj

|a1, a2, . . . , al〉|ha1
1 , ha2

2 , . . . , h
al
l 〉|1G〉.

4. Multiply 1G by all the h
aj

j :

∑

0≤aj<rj

|a1, a2, . . . , al〉|ha1
1 , ha2

2 , . . . , hal
l 〉|ha1

1 ha2
2 . . . h

al
l 〉.

5. Undo step 3.

∑

0≤aj<rj

|a1, a2, . . . , al〉|ha1
1 ha2

2 . . . h
al
l 〉.

6. Undo the computation of the generalized discrete logarithm of the

group elements ha1
1 ha2

2 . . . hal
l in the basis (h1, h2, . . . , hl):

∑

0≤aj<rj

|ha1
1 ha2

2 . . . hal
l 〉 = |H〉.

7. Undo step 1.

Theorem 4.2. Let G be a black-box group with unique encoding of length
�. Let g1, g2, . . . , gk ∈ G be generators of an abelian subgroup H. Then
AbelianGS(G, g1, g2, . . . , gk) implements Subgroup Superposition(G, g1, g2, . . . ,
gk) in quantum time poly(k�).

Proof. Since the description of the algorithm is clear, the proof consists in checking
that all the tasks involved in AbelianGS(G, g1, g2, . . . , gk) can be done in the requested
complexity.

The main potential difficulty is for step 1. This step can be done in quantum
time poly(k�) using the method of [9] without error since we assume that we can do
quantum Fourier transform without error on abelian groups.
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For solvable groups, we consider the following extension, which produces the
required superposition, but with garbage.

Theorem 4.3 (see [46]). Let G be a black-box group with unique encoding of
length �. Given generators g1, g2, . . . , gk ∈ G of a solvable subgroup H, the state |H〉
can be produced with error ε and with garbage in quantum time poly(k�) log(1/ε).

Now we define the quantized versions of Translating Coset and Stabilizer.
(These are descriptions of certain unitary transformations.) Recall that if T is empty,
then |T 〉 = |∅〉, where |∅〉 is a specific basis element.

Definition 4.4. Translating Coset Superposition(G,α, t) is the partial
unitary transformation that maps state |φ0〉⊗t|φ1〉⊗t|1G〉 to state |φ0〉⊗t|φ1〉⊗t|T 〉,
where T = {u ∈ G : |u · φ1〉 = |φ0〉}. Stabilizer Superposition is the special
case of Translating Coset Superposition with |φ1〉 = |φ0〉.

In general O(log|G| log 1
ε ) copies of the coset superposition |T 〉 are sufficient to

determine T classically with error probability ε. To see this, assume that we have
state |T 〉⊗s

. We then multiply the contents of the second, third, etc., register by the
inverse of the group element in the first register. Then the first register will contain an
element representing the coset, while in the remaining register there are elements of
the stabilizer subgroup which, if s is large enough, will contain a system of generators
with high probability.

ElementaryAbelianTCS(G, α, t)
Hypothesis: G ∼= Zn

p

Input: |φ0〉⊗t|φ1〉⊗t|1G〉
1. Apply the algorithm of Corollary 3.8 on the first 2t input

registers, using a fresh register for the computation:

∑

u∈G,X∈G≤log|G|
αu,X |u,X〉|θu,X〉|1G〉,

where |u,X〉 denotes the output of the algorithm of Corollary 3.8,

and |θu,X〉 denotes the other remaining registers.2

2. Apply AbelianGS(G, X) to the last input register:

∑

u∈G,X∈G≤log|G|
αu,X |u,X〉|θu,X〉|〈X〉〉.

3. Left multiply the last input register by u:

∑

u∈G,X∈G≤log|G|
αu,X |u,X〉|θu,X〉|u〈X〉〉.

4. Undo step 1.

Corollary 4.5. Let G ∼= Zn
p be a black-box group with unique encoding of

length �. Let α be a group action of G and let t = Ω(p(n+p)p−1 log(1/ε)) be a positive
integer. Then ElementaryAbelianTCS(G,α, t) implements Translating Coset

Superposition(G,α, t) with error ε in quantum time �O(1)(n+ p)O(p) log(1/ε).
Proof. In the first step of the algorithm, X denotes a set of generators for G|φ1〉

and u a group element such that |u · φ1〉 = |φ0〉. When no solution exists, we simply

2The sum is over all elements u ∈ G and all lists X consisting of at most log|G| elements of G. If
there were no errors, αu,X would be zero for pairs (u,X) which do not describe the coset translating
φ0 to φ1. Due to errors of the algorithm, some such coefficients can be nonzero, although very small.
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request the algorithm of Corollary 3.8 to set X = ∅, and let u be any group element,
instead of rejecting.

Let v be a fixed group element such that |v · φ1〉 = |φ0〉. Because of the choice
of the parameters and by Corollary 3.8, the states |u〈X〉〉 and |vG|φ1〉〉 are of trace
distance at most ε. This implies that the final state of the algorithm is of trace distance
at most ε from the following state without garbage: |φ0〉⊗t|φ1〉⊗t|vG|φ1〉〉.

For an arbitrary abelian group G, we can modify procedure Elementary-
AbelianTCS(G,α, t) by replacing the algorithm of Corollary 3.8 with an adapted
version of Kuperberg’s subexponential method (see Theorem 7.1 of [31]) to solve
Translating Coset. (We only need modifications to Kuperberg’s algorithm like
the ones to TranslationFinding described in the proof of Corollary 3.8: We use
the “conditionally swapped pairs of functions” trick presented in the proof of Corol-
lary 3.6 and simulate the oracle with input quantum states.) Let us call the resulting
procedure ArbitraryAbelianTCS(G,α, t). We obtain the following.

Corollary 4.6. Let G be a black-box abelian group with unique encoding of

length �. Let α be a group action of G, and let t = 2Ω(
√

log|G|) be a positive inte-
ger. Then ArbitraryAbelianTCS(G,α, t) implements Translating Coset Super-

position(G,α, t) with error ε in quantum time �O(1)2O(
√

log|G|) log(1/ε).

4.1.2. Compatible encodings. We will apply recursion into factor groups of
solvable groups. Therefore we need an efficient procedure to design a unique encoding
for these factor groups. Moreover, for the purpose of our algorithm we will require
this encoding to be compatible with the original encoding of the group in the following
sense.

Definition 4.7. Let G be a black-box group with unique encoding enc of length �.
Let N be a normal subgroup of G. A unique encoding encN for G/N is compatible
with enc if

1. for every x ∈ G, there is y ∈ xN such that encN (xN) = enc(y);
2. the partial unitary |enc(x)〉|0〉 
→ |enc(x)〉|encN (xN)〉, where x ∈ G, can be

implemented in quantum time poly(�).
Note that if G has encoding length �, then a compatible encoding for G/N also

has encoding length �.
From now on, we assume for simplicity that we have at our disposal a multiple r

of |G| such that r = O(�). This multiple is given or computed once for a group, and
we keep the same value for all its subgroups. This assumption is reasonable since for
solvable groups the cardinality of G can be computed in time poly(�) [46].

In the following theorem, we assume for simplicity that we have at our disposal
a zero-error quantum algorithm for computing the generalized discrete logarithm and
for order finding.

Theorem 4.8. Let G be a black-box solvable group with unique encoding enc of
length �. Let N be a normal subgroup of G such that G/N is abelian. Assume that
O(�) copies of |N〉 are given. There exists a unique encoding encN for G/N such that

1. a set of generators for G/N , whose size is at most log|G/N |, can be computed
in quantum time poly(�);

2. group operations over G/N using encoding encN can be computed in quantum
time poly(�);

3. encN is compatible with enc.
Note that even if all the tasks (1) and (2) will use as ancilla several copies of

|N〉, these copies are always restored at the end of the computations. Indeed, since
the outcomes of tasks (1) and (2) are classical, one can XOR their value in a fresh
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register, and reverse the procedure in order to be garbage free and restore the used
copies of |N〉.

Proof. Let g1, g2, . . . , gk ∈ G be the generators defining G, where k = O(�), and
let r be a known multiple of |G| such that log r = O(�). The cosets g1N, g2N, . . . , gkN
are generators of G/N . We now show how to learn the structure of the abelian group
G/N , and in particular how to extract a subset of at most log|G/N | generators.

Following the approach of [26], we consider extensions of the quantum algorithms
for computing the generalized discrete logarithm and for order finding to functions
having quantum ranges. More precisely, for order finding, the function a ∈ Zr 
→
|xaN〉 hides the subgroup Zrx , where rx is the order of xN . This function is encoded
by the partial unitary map |a〉|N〉 
→ |a〉|xaN〉, which admits a poly(�)-size circuit,
since it can be implemented using O(log r) group operations. Thus the algorithm
requires as many copies of |N〉 as the number of function evaluations, that is, O(�).
Similarly, given x ∈ G and y ∈ xaN , for some unknown 0 ≤ a < |G/N |, one can
compute a using O(�) copies of |N〉.

More generally, one can learn the structure of G/N as in [9] using O(�) copies of
|N〉 and the unitary

|a1, a2, . . . , ak〉|N〉 
→ |a1, a2, . . . , ak〉|ga1
1 ga2

2 . . . gak

k N〉,
where ai ∈ Zr, and the group elements gi are implicitly encoded using enc. Given
the structure of G/N , we are able to find the lexicographically smallest nonredundant
subset of generators for G/N from g1N, g2N, . . . , gkN by throwing out gi if it is
contained in the subgroup of G generated by g1, . . . , gi−1 and N . Without loss of
generality we can assume that this set is g1N, g2N, . . . , gjN . By nonredundancy, we
must have j ≤ log|G/N |. This full construction of generators g1N, g2N, . . . , gjN can
be done in quantum time poly(�), and therefore condition (1) is satisfied.

For every i = 1, 2, . . . , j, let li be the least positive integer such that glii ∈
〈N, g1, g2, . . . , gi−1〉. Then we can define our compatible encoding by

encN (xN) = enc(ga1
1 ga2

2 . . . g
aj

j ), where xN = ga1
1 ga2

2 . . . g
aj

j N and 0 ≤ ai < li.

Since the exponents ai are uniquely defined, the encoding is unique and satisfies
condition (1) of the definition of compatible encodings (Definition 4.7). In order to
satisfy the conditions of compatible encodings, and therefore condition (3) of the
theorem, we show how to compute in quantum time poly(�) encN (xN) from enc(x).
Again we follow the approach of [26]. Consider the unitary

|b, b1, b2, . . . , bj〉|N〉 
→ |b, b1, b2, . . . , bj〉|x−bgb11 g
b2
2 . . . g

bj
j N〉.

This unitary hides a subgroup H of Zr × Zl1 × · · · × Zj generated by a generator
of type u = (1, a1, a2, . . . , aj), where xN = ga1

1 ga2
2 . . . g

aj

j N . Therefore encN (xN) =

enc(ga1
1 ga2

2 . . . g
aj

j ). The subgroup H , and therefore the generator u of this particular
form, can be found in quantum time poly(�) since this is the solution of Hidden

Subgroup for abelian groups extended to functions having quantum ranges [26].
Finally, condition (2) is easily satisfied. Indeed, by the compatibility of our en-

coding, group operations over G/N can be simulated by one call to the group oracle
for G. Then the result enc(x), for some x ∈ G, has to be converted to encN (xN)
using the above procedure.

4.2. Orbit superposition. In this section, we show that computing the uniform
superposition of the orbit of a given state is reducible to instances of Translating
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Coset Superposition. In the following definition, we denote by |G · ϕ〉 the state
1√

|G(|φ〉)|
∑

|φ′〉∈G(|φ〉) |φ′〉⊗s
, where |ϕ〉 = |φ〉⊗s

.

Definition 4.9. Let |φ〉 ∈ Γ. Let s be a positive integer and let |ϕ〉 = |φ〉⊗s.
Orbit Superposition(G,α, s) is the partial unitary transformation that maps state
|ϕ〉|ϕ〉|G〉 to |G · ϕ〉|ϕ〉|1G〉.

Then the following algorithm implements Orbit Superposition.

OS(G, α, s)
Input: |φ〉⊗2s|G〉
1. Apply the group element in 3rd register to the first s registers:

∑

x∈G

|x · φ〉⊗s|φ〉⊗s|x〉 =
∑

|ϕ′〉∈G(|ϕ〉)
|ϕ′〉|ϕ〉|xG|φ〉〉,

where |ϕ〉 = |φ〉⊗s

2. Perform the inverse of Translating Coset Superposition(G, α, s)
(which maps |x · φ〉⊗s|φ〉⊗s|1G〉 to |x · φ〉⊗s|φ〉⊗s|xG|φ〉〉):

|G · ϕ〉|ϕ〉|1G〉.

Theorem 4.10. Let G be a black-box group with unique encoding of length �,
and let α be a group action on Γ. Let |φ〉 ∈ Γ. Let s be a positive integer and |ϕ〉 =
|φ〉⊗s. OS(G,α, s) implements Orbit Superposition(G,α, s) using as a black box
one implementation of Translating Coset Superposition(G,α, s) and quantum
time poly(�s) for the remaining computation.

4.3. Translating coset self-reducibility in solvable groups. The purpose of
this section is to prove Theorem 4.11 stating the reducibility of Translating Coset

in some solvable group G to Translating Coset in proper normal subgroups and
factors of G under some conditions. Given a group action α of G on a finite set Γ
of mutually orthogonal quantum states, we define for every proper normal subgroup
N � G the group action αN of G/N on {|N · φ〉 : |φ〉 ∈ Γ} by αN (xN, |N · φ〉) =
|x · (N · φ)〉 for every x ∈ G and |φ〉 ∈ Γ. Note that this action is independent of the
chosen coset representative x; it depends only on the coset xN .

For a group action like αs on Γs the group action (αs)N will act on states such
as |N · ϕ〉 = 1√

|N(|φ〉)|
∑

|φ′〉∈N(|φ〉) |φ′〉⊗s
, where |φ〉 ∈ Γ and |ϕ〉 = |φ〉⊗s

.

Note that the use of our notion of compatible encodings allows us to treat the
oracle for α as an oracle for αN .

In the following algorithm, we implicitly use the encoding enc of G for its elements
z ∈ G, and a compatible encoding encN for G/N (given by Theorem 4.8) for its cosets
zN ∈ G/N . Last, for a subset S ⊆ G, the notation S/N is the following subset of
G/N : S/N = {xN : x ∈ S}. In particular, for any subgroup H ≤ G, we have
uHN/N = {uhN : hN ∈ HN/N}.

TCS(G,N,α, s(t+ 1))
Hypothesis: N �G with compatible encoding for G/N

Input: |φ0〉⊗s(t+1)|φ1〉⊗s(t+1)|1G〉
Ancilla: |N〉⊗2t|0〉
1. Perform t times OS(N, α, s) on blocks |φ0〉⊗s|N〉

and then t times on blocks |φ1〉⊗s|N〉:
|N · ϕ0〉⊗t|φ0〉⊗s|N · ϕ1〉⊗t|φ1〉⊗s|1G〉|1G〉⊗2t|0〉,

where |ϕ0〉 = |φ0〉⊗s
and |ϕ1〉 = |φ1〉⊗s

.
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2. XOR the compatible encoding of 1G/N into the ancilla register

|0〉:
|N · ϕ0〉⊗t|φ0〉⊗s|N · ϕ1〉⊗t|φ1〉⊗s|1G〉|1G〉⊗2t|1G/N 〉.

3. Perform Translating Coset Superposition(G/N, (αs)N , t) on

|N · ϕ0〉⊗t|N · ϕ1〉⊗t|1G/N 〉:

|N · ϕ0〉⊗t|φ0〉⊗s|N · ϕ1〉⊗t|φ1〉⊗s|1G〉|1G〉⊗2t|uHN/N〉,

where H = G|φ1〉 and |u · φ1〉 = |φ0〉, if there is any;

|N · ϕ0〉⊗t|φ0〉⊗s|N · ϕ1〉⊗t|φ1〉⊗s|1G〉|1G〉⊗2t|∅〉

otherwise

4. Undo step 1:

|φ0〉⊗s(t+1)|φ1〉⊗s(t+1)|1G〉|N〉⊗2t|uHN/N〉,

or

|φ0〉⊗s(t+1)|φ1〉⊗s(t+1)|1G〉|N〉⊗2t|∅〉.
In the second case, Stop the algorithm here.

5. Perform s applications of inverse of group element in the last

register to registers |φ0〉 (viewed as an element of G thanks to

the compatible encoding of G/N):

∑

zN∈uHN/N

|z−1 · φ0〉⊗s|φ0〉⊗st|φ1〉⊗s|φ1〉⊗st|1G〉|N〉⊗2t|encN(zN)〉.3

6. Perform Translating Coset Superposition(N, α, s) on

|z−1 · φ0〉⊗s|φ1〉⊗s|1G〉:
∑

zN∈uHN/N

|z−1 · φ0〉⊗s|φ0〉⊗st|φ1〉⊗s|φ1〉⊗st|nz(H ∩ N)〉|N〉⊗2t|encN (zN)〉.

(See the proof of Theorem 4.11 for notation and justification.)
7. Apply the group element in the last register to the first s

registers |z−1 · φ0〉:
∑

zN∈uHN/N

|φ0〉⊗s(t+1)|φ1〉⊗s(t+1)|nz(H ∩ N)〉|N〉⊗2t|encN (zN)〉.

8. Left multiply by the group element in the last register the group

element in the 2s(t+ 1) + 1st register

∑

zN∈uHN/N

|φ0〉⊗s(t+1)|φ1〉⊗s(t+1)|znz(H ∩ N)〉|N〉⊗2t|encN (zN)〉.

9. Inverse in the last and the 2s(t+1)+1st registers the computation

of the compatible encoding |zn〉|0〉 �→ |zn〉|encN (zN)〉 for every n∈N:

|φ0〉⊗s(t+1)|φ1〉⊗s(t+1)|uH〉|N〉⊗2t|0〉.

3We explicitly mention here the encoding used for the last register in order to avoid any ambiguity
in the notation. Observe also that z has the same encoding as zN (encN (zN) = enc(z)).
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Theorem 4.11. Let G be a black-box solvable group with unique encoding of
length � and let N be a normal subgroup of G such that G/N is abelian. Let α be a
group action of G and let s, t be positive integers. Then TCS(G,α, s(t+ 1)) implements
Translating Coset Superposition(G,α, s(t+1)) using (4t+1) implementations of
Translating Coset Superposition(N,α, s), 2 implementations of Translating

Coset Superposition(G/N, (αs)N , t), 2t copies of |N〉 as ancilla, and quantum time
poly(�ts) for the remaining computation.

Proof. The complexity analysis of the algorithm is direct; only its analysis needs
to be detailed. First observe that when the translating coset of |φ0〉 and |φ1〉 is empty,
the algorithm sets H = ∅, and its correctness is clear.

From now on, we assume that the translating coset is not empty, and it is uH , for
some unknown u ∈ G, where H is the unknown stabilizer of |φ0〉 and |φ1〉. Note that
the translating coset of |N · φ0〉 and |N · φ1〉 for αN in G/N is uHN/N , and therefore
nonempty. At step 1, Theorem 4.10 is applied, then after step 4, the algorithm has
therefore computed the state |uHN/N〉 in its last register.

In step 5, the group element in the last register is encoded using encN . But when
its inverse is applied to the first register as an element of G, we mean to use the
encoding enc. Thanks to our definition of compatible encoding, this makes sense as
long as z satisfies encN (zN) = enc(z). That is why the computed state becomes a

uniform superposition of states |z−1 · φ0〉⊗s
. . . |φ1〉⊗s . . . |encN (zN)〉, where the su-

perposition is over zN ∈ uHN/N , and z is chosen such that encN (zN) = enc(z).
For each such z, we prove that states |z−1 · φ0〉 and |φ1〉 have the translating coset
nz(H ∩ N) over the subgroup N for some nz ∈ N such that |nz · φ1〉 = |z−1 · φ0〉,
meaning that znz ∈ uH .

Indeed, since |u · φ1〉 = |φ0〉, we get |(z−1u) · φ1〉 = |z−1 · φ0〉. Therefore |z−1 · φ0〉
and |φ1〉 have the translating coset z−1uH overG. Since zN ∈ uHN/N , one can write
znz = uhz for some hz ∈ H and nz ∈ N . Note that both hz and nz are uniquely
defined up to some element in H ∩ N . Then the translating coset can be rewritten
as nzH , implying that |z−1 · φ0〉 and |φ1〉 have a nonempty translating coset over N ,
which is nz(H ∩N).

Now set H1 =
⋃

z

(
hz(H ∩N)

)
. Then after step 9, the state of the input register

is |uH1〉. The end of the proof consists in proving that H1 = H . First observe that
by definition H1 ⊆ H . For the reverse inclusion, define for every h ∈ H the coset
zN = uhN ∈ uHN/N . Choose a representative z of zN such that encN (zN) =
enc(z). Since by construction zN = uhN = uhzN , we get hz(H ∩ N) = h(H ∩ N),
and therefore h ∈ H1.

If |φ1〉 = |φ0〉, then |N · ϕ1〉 = |N · ϕ0〉 as well. Therefore the same proof shows
the following.

Theorem 4.12. Let G, N , α, s, and t be as in Theorem 4.11. Then TCS(G,α,
s(t + 1)) implements Stabilizer Superposition(G,α, s(t + 1)) using as
black boxes (4t + 1) implementations of Translating Coset Superposition

(N,α, s), 2 implementations of Stabilizer Superposition(G/N, (αs)N , t), 2t
copies of |N〉 as ancilla, and quantum time poly(�ts) for the remaining computation.

4.4. Applications to various groups. In this section, we study the conse-
quences of the self-reducibility of Translating Coset for various families of solvable
groups. We start by proving the following technical statement.

Theorem 4.13. Let G be a solvable black-box group with unique encoding
of length � and let α be a group action of G on Γ. Assume that we are given
a subnormal series G = G0 � G1 � · · · � Gr−1 � Gr = {1G} such that for
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every 1 ≤ i ≤ r, either the factor group is elementary abelian of prime expo-
nent bounded by e, or Gi−1/Gi is an abelian group of order at most s. Let T =((

log|G|+ e+2
√
log s

)Ω(e)
log(1/ε)

)r
. Then there exists a quantum circuit that imple-

ments Translating Coset Superposition(G,α, T ) with error ε in quantum time
poly(�T ).

Proof. We actually show that, given a subnormal series G = G0 � G1 � · · · �
Gr−1 �Gr = {1G} such that for every 1 ≤ i ≤ r, the factor group Gi−1/Gi is either
isomorphic to Zni

pi
, where pi is a prime not greater than e and ni < n, or Gi−1/Gi is

an abelian group of order at most s; then, for T =
((
r+n+e+2

√
log s

)Ω(e)
log(1/ε)

)r
,

there exists a quantum circuit that implements Translating Coset Superposi-

tion(G,α, T ) with error ε in quantum time poly(�T ). From this the assertion follows
as ni and r are obviously bounded by log|G|.

Set u =
(
n + e + 2

√
log s)θ(e) so that for every prime p ≤ e and integer

0 < n′ ≤ n, for every ε > 0 and for every permutation action α′, by Corollary 4.5
ElementaryAbelianTCS(Zn′

p , α
′, �u log 1

ε� − 1) implements Translating Coset Su-

perposition(Zn′
p , α

′, �u log 1
ε�−1) with error less than ε/4 and also, for every abelian

group A of size at most s, Translating Coset Superposition(A,α′, �u log 1
ε�−1)

is implemented by ArbitraryAbelianTCS(A,α′, �u log 1
ε� − 1) (by Corollary 4.6) with

error at most ε/4 in quantum time less than c1(u log
1
ε )

d1 .
Define ε1 = ε and εj+1 = εj/(9u log

1
εj
). Put T ′ =

∏r
j=1�u log 1

εj
�. We de-

fine a circuit by induction on r that implements Translating Coset Super-

position(G,α, T ′) with error at most ε. In the base case r = 1 we use either of
the two circuits discussed above.

For r > 1, we construct the circuit by induction. Put s =
∏r

j=2�u log 1
εj
� and

t = �u log 1
ε�−1. LetN = G1. Then, by Theorem 4.11, TCS(G,α, s(t+ 1)) implements

Translating Coset(G,α, s(t+1)) using (4t+1) implementations of Translating

Coset(N,α, s), 2 implementations of Translating Coset(G/N, (αs)N , t), 2t copies
of |Nr−1〉, and quantum time less than c2(�st)

d2 .
By the assumption on u, Translating Coset(G/N, (αs)N , t) can be imple-

mented with error less than ε/4 in quantum time less than c1(�ts)
d1 . (The oracle for

αs is implemented by s applications of the oracle for α.) Now, by induction Trans-

lating Coset(N,α, s) can be implemented with error ε/9t < ε/(8t+2) in quantum
time c(�s)d, using O(s) copies of |Ni〉 for 1 ≤ i ≤ r − 2. The overall error is clearly
less than ε.

We show that T ′ =
(
(ru)O(1) log 1

ε

)r
. To see this, observe that log 1

εj+1
= log 1

εj
+

log 9u+log log 1
εj
. By induction on j, we can show that log 1

εj
≤ j2u log 1

ε if u is larger

than an appropriate constant. (Indeed, the induction hypothesis gives log 1
εj+1

≤
j2u log 1

ε+log 9u+2 log j+log log 1
ε ≤ (j+1)2u log 1

ε if u is sufficiently large.) Therefore

T ′ ≤ ur
∏r

j=1 log
1
εj

≤ (ru)2r
(
1
ε

)r
.

The quantum time is bounded by c2(�st)
d2 + c1(�st)

d1 + c(4t+ 2)sd < c�T ′d if c
and d are sufficiently large.

The theorem above gives a polynomial time algorithm for Translating Coset

in abelian groups of constant exponent. More generally, we have the following.
Theorem 4.14. Let G be an abelian black-box group with unique encoding

of length � and let α be a group action of G on Γ. Assume that G has a sub-
group N of exponent at most e such that G/N has size an most s. Let T =(
(log|G| + e + 2

√
log s)Ω(e) log(1/ε)

)log e
. Then there exists a quantum circuit that
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implements Translating Coset Superposition(G,α, T ) with error ε in quantum
time poly(�T ).

Proof. Using, for instance, [34], a decomposition of G as a direct product of cyclic
subgroups H1, . . . , Hm of prime power order pαi

i can be computed in quantum time
poly(�). Considering only indices i such that pi ≤ e, by an exhaustive search we can
find in time polynomial in log|G|O(e) integers βi ≤ αi (i = 1, . . . ,m) subject to the

constraint lcm{pβi

i |i = 1, . . . ,m} ≤ e such that
∏m

i=1 p
βi

i is maximal. Then the sum

G1 of the subgroups H
p
αi−βi
i

i is the largest (by cardinality) subgroup of exponent at
most e, and consequently |G/G1| ≤ s. Let e = q2 · · · qr, where qi are not necessarily
distinct primes, and let Gi+1 = Gqi

i (i = 2, . . . , r). Then r ≤ log e and we can apply
Theorem 4.13 to the sequence G > G1 > · · · > Gr.

Using a similar proof we obtain the following generalization.
Theorem 4.15. Let G be a solvable black-box group with unique encoding of

length � and let α be a group action of G on Γ. Assume that G has derived lengthm and

that for every index 0 < i ≤ m, the factor of the subsequent derived subgroups G̃i−1 =

G(i−1)/G(i) have a subgroup Ñi−1 of exponent at most e such that |Ñi−1/Ñi−1| ≤ s.

Let T =
(
s
(
(log|G|+ e)Ω(e) log(1/ε)

)log e)m
. Then there exists a quantum circuit that

implements Translating Coset Superposition(G,α, T ) with error ε in quantum
time poly(�T ).

The following theorem describes the class of groups for which our methods give
polynomial time hidden subgroup algorithms. Recall that a smoothly solvable group

has constant derived length, and the factors G̃i−1 = G(i−1)/G(i) satisfy the condition
of the preceding corollary with constant e and s = poly(|log|G).

Theorem 4.16. Translating Coset and Hidden Translation can be solved
over smoothly solvable groups in quantum polynomial time. Furthermore, Stabilizer
and Hidden Subgroup can be solved over solvable groups having a smoothly solvable
commutator subgroup in quantum polynomial time.

Proof. The first statement follows directly from the preceding theorem, using
Proposition 2.2. For the second part we additionally use Theorem 4.12.

By [17], every solvable group has derived series of lengthm = O(log log|G|). Using
this result and Theorem 4.15, we get a quasi-polynomial quantum algorithm for all
solvable groups of constant exponent.

Theorem 4.17. Let G be a solvable black-box group with unique encoding of
length � and of constant exponent. Then Hidden Translation(G) can be solved in
quantum time �O(1)(log|G|)O(log log|G|). Furthermore, the Hidden Subgroup can be
solved in quantum time �O(1)(log|G|)O(log log|G|) in groups G for which G′ has constant
exponent.

Finally, an application of Theorem 4.13 with e = 1 and s = |G| to the derived
series of a solvable group gives the following.

Theorem 4.18. Let G be a solvable black-box group with unique encoding of
length �. Then Hidden Subgroup(G) and Hidden Translation(G) can be solved

with constant error in quantum time �O(1)(log|G|)O(
√

log|G|·log log|G|).
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Rötteler for several useful discussions on Hidden Subgroup. We are also grateful
to Cris Moore, Csaba Schneider, and Yong Zhang for helpful discussions regarding a
previous version of this article, and for pointing out reference [17]. Part of the work of



HIDDEN TRANSLATION AND TRANSLATING COSET 23

the last three authors was done while visiting MSRI, Berkeley, and part of the work
of the second author was done during visits at the CQT in Singapore.

REFERENCES

[1] D. Aharonov, Quantum computation: A review, in Annual Review of Computational Physics,
Vol. VI, World Scientific, Singapore, 1998, pp. 1–77.

[2] D. Aharonov, A. Kitaev, and N. Nisan, Quantum circuits with mixed states, in Proceedings
of the 30th ACM Symposium on Theory of Computing, 1998, pp. 20–30.

[3] D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowl-
edge, in Proceedings of the 35th ACM Symposium on Theory of Computing, 2003, pp. 20–
29.

[4] L. Babai, G. Cooperman, L. Finkelstein, E. Luks, and A. Seress, Fast Monte Carlo
algorithms for permutation groups, J. Comput. System Sci., 50 (1995), pp. 296–308.
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