
1

Temporal influence over the Last.fm social network
Róbert Pálovics1,2 András A. Benczúr1,3

1Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
2Technical University Budapest

3Eötvös University Budapest
{rpalovics,benczur}@ilab.sztaki.hu

Abstract—Several recent results show the influence of social
contacts to spread certain properties over the network, but others
question the methodology of these experiments by proposing that
the measured effects may be due to homophily or a shared
environment. In this paper we justify the existence of the social
influence by considering the temporal behavior of Last.fm users.
In order to clearly distinguish between friends sharing the same
interest, especially since Last.fm recommends friends based on
similarity of taste, we separated the timeless effect of similar
taste from the temporal impulses of immediately listening to
the same artist after a friend. We measured strong increase
of listening to a completely new artist in a few hours period
after a friend compared to non-friends representing a simple
trend or external influence. In our experiment to eliminate
network independent elements of taste, we improved collaborative
filtering and trend based methods by blending with simple time
aware recommendations based on the influence of friends. Our
experiments are carried over the two-year “scrobble” history of
70,000 Last.fm users.

I. INTRODUCTION

Several results show the influence of friends and contacts
to spread obesity [1], loneliness [2], alcohol consumption
[3], religious belief [4] and many similar properties in social
networks. Others question the methodology of these exper-
iments [5] by proposing that the measured effects may be
due to homophily, the fact that people tend to associate with
others like themselves, and a shared environment also called
confounding or contextual influence.

Part of the appeal of Web 2.0 is to find other people who
share similar interests. Last.fm organizes its social network
around music recommendation: users may automatically share
their listening habits and at the same time grow their friend-
ship. Based on the profiles shared, users may see what artists

Research supported in part by the EC FET Open project “New tools
and algorithms for directed network analysis” (NADINE No 288956) and
by the grant OTKA NK 105645. The work of Robert Palovics reported in
this paper has been developed in the framework of the project “Talent care
and cultivation in the scientific workshops of BME” project. This project is
supported by the grant TAMOP - 4.2.2.B-10/1–2010-0009. Work conducted
at the Eötvös University, Budapest was partially supported by the European
Union and the European Social Fund through project FuturICT.hu (grant
no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). The research was carried out
as part of the EITKIC_12-1-2012-0001 project, which is supported by the
Hungarian Government, managed by the National Development Agency,
financed by the Research and Technology Innovation Fund and was performed
in cooperation with the EIT ICT Labs Budapest Associate Partner Group.
(www.ictlabs.elte.hu)

friends really listen to the most. Companies such as Last.fm
use this data to organize and recommend music to people.

In this paper we exploit the timely information gathered by
the Last.fm service on users with public profile to investigate
how members of the social network may influence their
friends’ taste. Last.fm’s service is unique in that we may obtain
a detailed timeline and catch immediate effects by comparing
the history of friends in time and comparing to pairs of random
users instead of friends.

Our contribution to the dispute on whether social contacts
influence one another or whether the observed similarity in
taste and behavior is only due to homophily, we show a
carefully designed experiment to subtract external effects that
may result in friends listening to similar music. Homophily is
handled by collaborative filtering, a method that is capable of
learning patterns of similarity in taste without using friendship
information. Another possible source for users listening to the
same music may come from traditional media: news, album
releases, concerts and ads. While the sources are hard to
identify, common in them is that they cause temporal increase
in popularity for the targeted artist. These effects are filtered
by another method that measures popularity at the given time
and recommends based on the momentary popularity.

We blend collaborative filtering and temporal popularity
recommenders with a method for influence prediction that we
describe in this paper. We consider events where a user listens
to an artist for the first time closely after a friend listened to
the same artist. We obtain a 4% of increase in recommendation
quality, a strong result in view of the three-year Netflix Prize
competition [6] to improve recommender quality by 10%. Note
that we only give a single method that results in a stable strong
improvement over the baselines.

Our new method is a lightweight recommender based on
friends’ past items that can be very efficiently computed
even in real time. Part of the efficiency comes from the
fact that potential items from influencing friends are relative
rare. For this reason, the method in itself performs worse
than the baselines, however it combines very well with them.
Indeed, influence based predictions improve the accuracy of
a traditional factor model recommender by nearly as much
as measuring popularity at the given time, a prediction that
is strong in itself. The fact that influences bend well prove
that close events in the network bring in new information that
can be exploited in a recommender system and also prove the
existence of influence from friends beyond homophily.

www.ictlabs.elte.hu

2

A. Related results

The Netflix Prize competition [6] has recently generated
increased interest in recommender algorithms in the research
community and put recommender algorithms under a sys-
tematic thorough evaluation on standard data [7]. The final
best results blended a very large number of methods whose
reproduction is out of the scope of this paper. As one of
our baselines we selected a successful matrix factorization
recommender described by Simon Funk in [8] that is based
on an approach reminiscent of gradient boosting [9].

Closest to our results are the applications of network influ-
ence in collaborative filtering [10]. However in their data only
ratings and no social contacts are given. In another result [11]
over Flickr, both friendship and view information was present,
but the main goal was to measure the strength of the influence
and no measurements were designed to separate influence from
other effects.

Bonchi [12] summarizes the data mining aspects of research
on social influence. He concludes that “another extremely
important factor is the temporal dimension: nevertheless the
role of time in viral marketing is still largely (and surprisingly)
unexplored”, an aspect that is key in our result.

Since our goal is to recommend different artists at different
times, our evaluation must be based on the quality of the
top list produced by the recommender. This so-called top-k
recommender task is known to be hard [13]. For a recent result
on evaluating top-k recommenders is found in [14].

Music recommendation is considered in several results or-
thogonal to our methods that will likely combine well. Mood
data set is created in [15]. Similarity search based on audio
is given in [16]. Tag based music recommenders [17], [18,
and many more], a few of them based on Last.fm tags, use
annotation and fall into the class of content based methods
as opposed to collaborative filtering considered in our paper.
Best starting point for tag recommendation in general are the
papers [19], [20], [21]. Note that the Netflix Prize competition
put a strong vote towards the second class of methods [22].

As a social media service, Twitter is widely investigated
for influence and spread of information. Twitter influence
as followers has properties very different from usual social
networks [23]. Deep analysis of influence in terms of retweets
and mentions is given in [24]. Notion of influence similar to
ours is derived in [25], [26] for Fickr and Twitter cascades,
respectively. Note that by our measurement the Last.fm data
contains only a negligible amount of cascades as opposed to
Twitter or Flickr.

II. THE LAST.FM DATA SET

Last.fm became a relevant online service in music based
social networking. The idea of Last.fm is to create a rec-
ommendation system based on plugins nearly for all kind
of music listening platforms. For registered users it collects,
“scrobbles”1 what they have listened. Each user has its own
statistics on listened music that is shown in her profile.

1The name “scrobbling” is a word by Last.fm, meaning the collection of
information about user listening.

pe
rc

en
t

of
 2

01
2

0

10

20
30

40

50

60

70
80

90

100

time (years)
2002 2003 2005 2006 2008 2009 2010 2012

3
3

nodes
edges

Fig. 1. The number of the users and friendship edges in time as the fraction
of the values at the time of the data set creation (2012).

nu
m

be
r

of
 s

cr
ob

bl
es

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

time (hours)
0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 2. Daily periodicity of scrobble count.

Most user profiles are public, and each user of Last.fm may
have friends inside the Last.fm social network. Therefore one
relevant information for the users is that they see their own
and their friends’ listening statistics. We focus on two types
of user information,
• the timeline information of users: user u “scrobbled”

artist a at time t (u, a, t),
• and the social network of users.

Our data set hence consists of the contacts and the musical
taste of the users. Our goal is to justify the existence of the
influence of social contacts, i.e. certain correlation the taste
of friends in the user network. For privacy considerations,
throughout our research, we selected an anonymous sample
of users. Anonymity is provided by selecting random users
while maintaining a connected friendship network. We set the
following constraints for random selection:
• User location is stated in UK;
• Age between 14 and 50, inclusive;
• Profile displays scrobbles publicly (privacy constraint);
• Daily average activity between 5 and 500.
• At least 10 friends that meet the first four conditions.

3

P
(d

(i)
=

k)

1e−05

0.0001

0.001

0.01

0.1

1

degree k
1 10 100 1,000

2
2

Fig. 3. Degree distribution in the friendship network.

The above selection criteria were set to select a representative
part of Last.fm users and as much as possible avoid users
who artificially generate inflated scrobble figures. In this
anonymized data set of two years of artist scrobble timelime,
edges of the social network are undirected and timestamped
by creation date (Fig. 1). Note that no edges are ever deleted
from the network.

The number of users both in the time series and in the
network is 71,000 with 285,241 edges. The average degree
is therefore 8, while the degree distribution follows shifted
power-law as seen in Fig. 3

P (d(i) = k) ∼ (x+ s)−α

with exponent 3.8.
The time series contain 979,391,001 scrobbles from

2,073,395 artists and were collected between 01 January 2010
and 31 December 2011. Note that one user can scrobble an
artist at different times. The number of unique user-artist
scrobbles is 57,274,158. Fig. 2 shows the daily fluctuations
in the users scrobbling activity.

III. NOTION OF NETWORK INFLUENCE

The key concept in this paper is a user v influencing another
u to scrobble a. This happens if u scrobbles artist a the first
time at time t, after v last scrobbling the same artist at some
time t′ < t before. The time difference ∆t = t−t′ is the delay
of the influence, as seen in Fig. 4. Our key assumption is that,
in the above definition, we observe influences between non-
friends only by coincidence while some of the observed influ-
ence between friends is the result of certain interaction between
them. Our goal is to prove that friends indeed influence each
other and this effect can be exploited for recommendations.

Similar influence definitions are given in [11], [25], [26]. As
detailed in [26], one main difference between these definitions
is that in some papers t′ is defined as the first and not the last
time when user v scrobbles a.

For smaller influence delay ∆t, we are more certain that u
is affected by the previous scrobble of v. The distribution of
delay with respect to friends and non-friends will help us in

Fig. 4. Potential influence on u by some other user to scrobble (u, a, t).

determining the frequency and strength of influence over the
Last.fm social network. Each time user u first scrobbles a, we
compute the delay ∆t for all users v who scrobbled a before
u, if such users exist (see Fig. 4).

Out of the 57,274,158 first-time scrobbles of certain artist
a by some user, we find a friend who scrobbled a before
10,993,042 times (19%). Note that one user can be influenced
by more friends therefore the total number of influences is
24,204,977. There is no influencing user for the very first
scrobbler of a in the data set. For other scrobbles there is
always an earlier scrobble by some other user, however that
user may not be a friend of u.

Some of the observed influences may result by pure co-
incidence, especially when a new album is released or the
popularity of the artist increases for some other reason. In
order to identify real influence, we compare the frequency of
influence from friends and from non-friends along delay ∆t
as parameter. We compute the cumulative distribution function
of all influences as a function of the delay,

CDFA(t) = fraction of influences with delay ∆t ≤ t
among all influences.

(1)
Similarly, CDFF (t) stands for the same function among in-
fluences between friends only. Fig. 5 shows the functions for
all users and friends. The function of friends is above that of
all users, i.e. we observe shorter delay more frequently among
friends.

Next we quantify the importance of friendship in influencing
others as the effectivity function. The effectivity at ∆t is
defined as the increase of influenced scrobbles among friends
relative to all users that happen with delay at most t:

Eff(t) =
CDFF (t)− CDFA(t)

CDFF (t)
. (2)

4

P(
Δt

 ≤
 t

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (days)
0 100 200 300 400 500 600 700

3
3

influence of friends
all user pairs

P(
Δt

 ≤
 t

)

0

0.01

0.02

0.03

0.04

0.05

0.06

t (hours)
0 2 4 6 8 10 12 14 16 18 20 22 24

3
2

influence of friends
all user pairs

Fig. 5. Fraction of influences with delay ∆t ≤ t as the function of t as
in (1), in case of friends (CDFF) and non-friends (CDFA) over the entire
timeline (top) and the first 24 hours (bottom).

Fig. 6 shows the measured effectivity curve in the community.
As expected, Eff(t) is a monotonically decreasing function of t.
However, the decrease is slow unlike in some recent influence
models that propose exponential decay in time [11]. Therefore,
we approximate Eff(t) with a slowly decreasing logarithmic
function instead of an exponential decay.

IV. INFLUENCE BASED RECOMMENDATION

Next we use our notion of influence in the task of artist
recommendation. Influence depends on time and no matter how
relative slow but the effectivity of a friend scrobbling an artist
decays. For this reason the influence based recommendation
must be updated more frequently than traditional collaborative
filtering methods. Also note that for a given user, our recom-
mendation can be computed very efficiently by a pass over the
recent history of friends.

Based on the measurements in the previous Section, we give
a temporal network influence based recommender algorithm.
For a user u at time t, we recommend based on friends’
scrobbles before t. The predicted score r̂(u, a, t) of an artist a
is based on a function Γ of the time elapsed since the friend v
scrobbling a (the delay ∆t) and a function ω of the observed
frequency of v influencing u in the past, as summarized in

ef
fe

ct
iv

ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (days)
0.001 0.01 0.1 1 10 100 1,000

Fig. 6. The measured effectivity of the influence (ratio of increase among
friends compared to all users) as in (2) very closely follows a logarithmic
function of delay ∆t.

Fig. 7. Scheme of the influence based recommender algorithm.

Fig. 7. Formally the predicted rating becomes

r̂(u, a, t) =
∑

v∈n(u)

Γ(v, a,∆t)ω(v, u, t), (3)

where n(u) denotes the friends of u, ω(v, u, t) is the strength
of the influence between users u and v, and Γ(v, a,∆t) is the
weight between user v and artist a based on the delay.

Our implementation depends on the two functions ω and Γ
defined in the next two subsections. In an efficient algorithm,
the value of ω can be stored in memory for all pairs of friends.
Alternately, ω can only be batch updated as the strength
between two users are less time sensitive. The values of Γ,
however, depend on the actual time when the recommendation
is requested. As Γ quickly decays with ∆t, we only need to
retrieve the past srobbles of all v, the friends of u. This step can
be efficiently implemented unless u has too many friends. In
this latter case we could select only a few influencing friends
based on the values of ω, otherwise the recommendation is
noisy anyway. Our algorithm can hence be implemented even
in real time.

5

A. Influence as function of delay
The potential of influence decays as time elapses since

the influencer v scrobbled the given artist a. Based on the
effectivity curve (see Fig. 6) we approximate the strength of the
influence with a monotonically decreasing logarithmic function

Γ(v, a,∆t) = 1− C · log(∆t), (4)

where C is a global constant.

B. Strength of influence between user pairs
We recommend a recent scrobble by a friend by taking both

the recency of the scrobble and the observed relation between
the two users. For each pair of users u, the influenced and
v, the influencer, we define the strength ω(v, u, t) as a step
function in time as follows:
• We initialize ω(v, u, 0) = 0 for all pairs.
• Assume that u and v become friends at time t0. We take

a step and set ω(u, v, t0) = ω(v, u, t0) = 1.
• If we observe an influence from v to u at time t >

t0 with time difference ∆t, we take another step and
increase ω(v, u, t) by

ω(v, u, t)← ω(v, u, t) + (1− C · log(∆t)) , (5)

where C is a global constant. For simplicity we use the
same logarithmic function of the delay as in (4).

To speed up computations, we only consider influence with
delay not more than a predefined time frame τ . We apply τ
for defining both ω in (5) and Γ in (4) and hence in both cases
we set

C = 1/ log(τ). (6)

V. REAL TIME RECOMMENDATION EVALUATION

Recommender systems in practice need to rank the best k
items for the user in real time. In the so-called top-k rec-
ommendation task [13], [14], potentially we have to compute
a new top list for every single scrobble in the test period.
The top-k task is different from the standard recommender
evaluation settings and needs carefully selected metrics that
we describe next.

Out of the two year scrobbling data, we use the full first
year as training period. The second year becomes the testing
period where we consider scrobbles one by one. We allow a
recommender algorithm to use part or full of the data before
the scrobble in question for training and require a ranked top
list of artists as output. We evaluate the given single actual
scrobble a in question against the recommended top list by
computing the discounted cumulative gain with treshold K

DCG@K(a) =

{
0 if rank (a) > K;

1
log2(rank(a) + 1)

otherwise.
(7)

Note that in this unusual setting there is a single relevant
item and hence for example no normalization is needed as
in case of the NDCG measure. Also note that the DCG
values will be small since the NDCG of a relative short

P(
po

p(
a)

 =
 x

)

1e−06

0.0001

0.01

1

artist popularity x
1 100 10,000

P(
po

p(
a)

 ≤
 x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

artist popularity x
1 10 100 1,000 10,000 100,000

Fig. 8. Distribution of scrobble count to a given artist and the cumulative
distribution.

nu
m

be
r

of
 s

cr
ob

bl
es

 t
o

ar
tis

ts
 w

ith
po

pu
la

rit
y

>
 x

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

artist popularity x
1 10 100 1,000 10,000

Fig. 9. Fraction of scrobbles for artists with popularity at least a given value
x, as the function of x.

sequence of actual scrobbles will roughly be equal to the sum
of the individual DCG values. The DCG measured over 100
subsequent scrobbles of different artists cannot be more than
the ideal DCG, which is

∑100
i=1 1/ log2(i+ 1) = 20.64 in this

case (the ideal value is 6.58 for K = 20). Hence the DCG of
an individual scrobble will on average be less than 0.21 for
K = 100 and 0.33 for K = 20.

In our evaluation we discard infrequent artists from the data
set both for efficiency considerations and due to the fact that
our item based recommenders will have too little information
on them. As seen in Fig. 8, the number of artists with a given
scrobble count follow a power law distribution with near 60%
of the artists appearing only once. While 90% of the artists
gathered less than 20 scrobbles in two years, as seen in Fig. 9,
they attribute to only less than 10% of the data set. In other
words by discarding a large number of artists, we only loose a
small fraction of the scrobbles. For efficiency we only consider
artists of frequency more than 14.

As time elapses, we observe near linear increase in the
number of artists that appear in the data set in Fig. 10. This

6

nu
m

be
r

of
 a

rt
ist

s

0

200,000

400,000

600,000

800,000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

time (months)
0 5 10 15 20

all
pop(a)≧14

Fig. 10. The number of different artists scrobbled before a given time in the
two year period of the data set.

figure shows artists with at least 14 scrobbles separately. Their
count grows slower but still we observe a large number of new
artist that appear in time and exceed the minimum count of
14. Very fast growth for infrequent artists may be a result of
noise and unidentified artists from e.g. YouTube videos and
similar Web sources.

VI. MUSIC RECOMMENDATION BASELINE METHODS

We describe one baseline method based on dynamic pop-
ularity in Section VI-A and one based on factorization in
Section VI-B.

A. Dynamic popularity based recommendation

Given a predefined time frame τ as in Section IV, at time
t we recommend an artist based on the popularity in time not
earlier than t − τ but before t. In our algorithm we update
the counts and store artists sorted by the current popularity.
In one time step we may either add a new scrobble event or
remove the earliest one, corresponding to a count increment
or decrement. For globally popular items the sorted order can
be maintained by a few changes in the order only. To speed
up the procedure, we may completely ignore part of the long
tail and for others update the position only after a sufficiently
large change in count. As future work we could also consider
bursts and predict the popularity increase or decrease.

B. Factor model based recommendation

For our factor model based recommender we selected the
implementation of Funk [8]. In the testing period we trained
weekly models based on all data before the given week.
For each user, we constructed three times as many negative
training instances as positive by selecting random artists with
probability proportional to their popularity in the training
period. Each testing period lasted one week. For each user,
we compute a top list of predictions once for the entire week
and evaluate against the sequence of scrobbles in that week.

av
er

ag
e

D
C

G

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

time (days)
0 10 20 30 40 50 60 70

2
2
2
2
2
2
2

network top 20 pop top 20
network top 100 pop top 100
network all factor top 20

 factor top 100

Fig. 11. Daily average DCG@K as in (7) in a 70-day sample of the test
period. We show the three basic methods, from strongest to weakest, the
factorization, temporal popularity, and the network influence recommenders.
For K we measure two values, 20 and 100, except for network influence where
we also show K = ∞ as the entire ranked list can be efficiently computed
in this case.

av
er

ag
e

D
C

G

0

0.005

0.01

0.015

0.02

0.025

top K
0 10 20 30 40 50 60 70 80 90 100

network
pop
factor

Fig. 12. DCG@K as the function of K for the three basic algorithms, for a
time window τ equal to one week.

VII. EXPERIMENTS

First we give the daily average DCG@K defined by equation
(7) in the second year testing period for the influence based and
the two baseline recommenders. Parameter K in equation (7)
controls the length of the top list considered for evaluation.

7

av
er

ag
e

D
C

G

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

τ (hours)
0 24 48 72 96 120 144 168

2
2

network
pop

Fig. 13. DCG@100 defined by equation (7) as the function of the time
window threshold τ as in Section IV-A.

In other words, K can be interpreted as the size of the list
presented to the user. Practically K must be small in order not
to flood the user with information. The performance of the
three basic methods is shown in Fig. 11 for K = 20 and 100
and a time window τ in Section IV-A equal to one week.

The dependence on the top list size K is measured in Fig. 12
for K ≤ 100. We observe that our influence based method
saturates the fastest. This is due to the fact that the number of
items recommended to a given user is usually small unless the
user has a large number of very active friends. For this reason
we give blending results not just for the value K = 20 that we
consider practically feasible but also for 100 for comparison.

Next we investigate the parameters of the individual algo-
rithms. For a matrix factorization based method we use Funk’s
algorithm [8] with the following parameters that turned out to
perform best in our experiments: learning rate = 0.001, feature
number = 20, and initial feature value = 0.1. We re-train the
algorithm each week based on all past data. For this reason
we see weekly periodicity in the 10-week timeline of Fig. 11:
the factor model performs best immediately after the training
period and slowly degrades in the testing period.

The popularity and influence based methods depend on the
time frame: the longer we look back in time, the more artists
we can recommend. If we carefully set the rank as a function
of time, wider time frames are advantageous for quality but
put extra computational load. For the influence recommender τ
is the maximum delay ∆t that we consider as influence while
for the popularity one τ is the time interval that we use for
frequency computation. We ran measurements in the second
year test period with different time frames τ and computed
the average DCG performance of the recommender systems.
Figure 13 shows the average DCG scores with different time
frames. The performance only slowly increases for time frames
longer than a day. In what follows we set τ to be one week.

The final conclusion of the experiments is drawn by blend-
ing the three recommenders as shown in Figs. 15–14. In our
experiments we obtained the best results by linearly combining
1/rank instead of the predicted score. As an advantage of
1/rank, we need no score normalization.

D
C

G
 d

iff
er

en
ce

 (
%

)

0

1

2

3

4

5

weight of network to factor combination
0 0.1 0.2 0.3 0.4 0.5

3
3

3
3

top 20
top 100

D
C

G
 d

iff
er

en
ce

 (
%

)

0

2

4

6

8

weight of popularity to factor combination
0 0.1 0.2 0.3 0.4 0.5

3
3

3
3

top 20
top 100

D
C

G
 d

iff
er

en
ce

 (
%

)

0

1

2

3

4

5

weight of network to factor and popularity
combination

0 0.1 0.2 0.3 0.4 0.5

3
3

top 20
top 100

D
C

G
 d

iff
er

en
ce

 (
%

)

0

2

4

6

8

10

weight of network to popularity combination
0 0.1 0.2 0.3 0.4 0.5

3
3

3
3

top 20
top 100

Fig. 14. Blending DCG@K defined by (7) as the function of the linear
combination weight. From top to bottom: network influence and factor
model; temporal popularity and factor model; network influence and factor
model; finally network influence and the strogest combination of factor with
popularity.

Figure 14 shows the relative improvement of the rec-
ommenders as the function of the blending weights. After
blending the recommenders pairwise, we selected the strongest
popularity-factor combinations (3:7 and 2:8) and blended it
with the network recommender. One can see that the influence
recommender not only improves the results of the factor and
popularity recommenders, but combines well with their best
blended result: the combination of the three methods outper-
forms the best blend of the factor and popularity models both
for DCG@20 and DCG@100. The improvement is roughly
4%. Figure 15 shows the monthly average DCG@20 and
DCG@100 curves in the testing period in case of the different
blended recommenders. Each curve shows the result of the
best combination of the corresponnding recommenders. In each
case we observe stable improvement over the entire testing
period.

8

av
er

ag
e

D
C

G

0.019
0.02

0.021
0.022
0.023
0.024
0.025

time (months)
1 2 3 4 5 6 7 8 9 10 11 12

2
2
2
2

top 20

top 100

top 20
av

er
ag

e
D

C
G

0.01

0.011

0.012

0.013

time (months)
1 2 3 4 5 6 7 8 9 10 11 12

2
2
2
2

factor factor+network
factor+pop factor+pop+network

Fig. 15. Monthly average DCG@20 (top) and DCG@100 (bottom) as
defined by (7) in the test period for the factor model and its combinations.

CONCLUSIONS

Based on a 70,000 sample of Last.fm users, we were
able to measure the effect of certain user recommending an
artist to her friends. Our results confirm the existence of
influence through the social network as opposed to the pure
similarity of taste between friends. We disproved the opinion
that homophily could be the reason for friends listening to the
same music or behave similarly by constructing a baseline that
takes homophily and temporal effects into account. Over the
baseline recommender, we achieved a 4% improvement in rec-
ommendation accuracy when presenting artists from friends’
past scrobbles that the given user had never seen before. Our
system has very strong time awareness: when we recommend,
we look back in the near past and combine friends’ scrobbles
with the baseline methods. The influence from a friend at a
given time is certain function of the observed influence in the
past and the time elapsed since the friend scrobbled the given
artist. In addition, our method can efficiently be computed even
in real time.

For future work we plan to investigate whether the temporal
social influence is specific to Last.fm dataset or can match to
other kind of social network, e.g. Twitter. We also plan to
break down the analysis of influence spread by type of music,
by age range, or by artist.

ACKNOWLEDGEMENTS

To the Last.fm team for preparing us this volume of the
anonymized data set that cannot be efficiently fetched through
the public Last.fm API.

REFERENCES
[1] N. Christakis and J. Fowler, “The spread of obesity in a large social

network over 32 years,” New England Journal of Medicine, 357(4):370–
379, 2007.

[2] J. Cacioppo, J. Fowler, and N. Christakis, “Alone in the crowd: The
structure and spread of loneliness in a large social network.,” Journal
of Personality and Social Psychology, vol. 97, no. 6, p. 977, 2009.

[3] J. Rosenquist, J. Murabito, J. Fowler, and N. Christakis, “The spread
of alcohol consumption behavior in a large social network,” Annals of
Internal Medicine, vol. 152, no. 7, p. 426, 2010.

[4] S. Stroope, “Social networks and religion: The role of congregational
social embeddedness in religious belief and practice,” Sociology of
Religion, 2011.

[5] R. Lyons, “The spread of evidence-poor medicine via flawed social-
network analysis,” Statistics, Politics, and Policy, 2(1), p. 2, 2011.

[6] J. Bennett and S. Lanning, “The netflix prize,” in KDD Cup and
Workshop in conjunction with KDD 2007, 2007.

[7] R. Bell and Y. Koren, “Lessons from the Netflix prize challenge,” 2007.
[8] S. Funk, “Netflix update: Try this at home. http://sifter.org/˜ si-

mon/journal/20061211.html,” 2006.
[9] J. H. Friedman, “Greedy function approximation: A gradient boosting

machine,” The Annals of Statistics, 29(5):1189–1232, 2001.
[10] P. Domingos and M. Richardson, “Mining the network value of cus-

tomers,” in SIGKDD, pp. 57–66, ACM, 2001.
[11] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence

probabilities in social networks,” in WSDM, pp. 241–250, ACM, 2010.
[12] F. Bonchi, “Influence propagation in social networks: A data mining

perspective,” IEEE Intelligent Informatics Bulletin, 12(1):8–16, 2011.
[13] M. Deshpande and G. Karypis, “Item-based top-n recommendation

algorithms,” ACM TOIS, 22(1):143–177, 2004.
[14] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender

algorithms on top-n recommendation tasks,” in RecSys, pp. 39–46,
ACM, 2010.

[15] X. Hu, M. Bay, and J. Downie, “Creating a simplified music mood
classification ground-truth set,” in ISMIR, 2007.

[16] P. Knees, T. Pohle, M. Schedl, and G. Widmer, “A music search engine
built upon audio-based and web-based similarity measures,” in Proc
SIGIR, pp. 447–454, ACM, 2007.

[17] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green, “Automatic
generation of social tags for music recommendation,” Advances in
neural information processing systems, 20:385–392, 2007.

[18] K. Tso-Sutter, L. Marinho, and L. Schmidt-Thieme, “Tag-aware rec-
ommender systems by fusion of collaborative filtering algorithms,” in
ACM symposium on Applied Computing, pp. 1995–1999, ACM, 2008.

[19] R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme,
“Tag recommendations in folksonomies,” PKDD, pp. 506–514, 2007.

[20] C. Marlow, M. Naaman, D. Boyd, and M. Davis, “Ht06, tagging paper,
taxonomy, flickr, academic article, to read,” in Conf. on Hypertext and
Hypermedia, pp. 31–40, ACM, 2006.

[21] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and
G. Stumme, “Evaluating similarity measures for emergent semantics
of social tagging,” in WWW, pp. 641–641, 2009.

[22] I. Pilászy and D. Tikk, “Recommending new movies: even a few ratings
are more valuable than metadata,” in RecSys, pp. 93–100, ACM, 2009.

[23] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?,” in WWW, pp. 591–600, ACM, 2010.

[24] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi, “Measuring user
influence in Twitter: The million follower fallacy,” in ICWSM, 2010.

[25] M. Cha, A. Mislove, B. Adams, and K. P. Gummadi, “Characterizing
social cascades in flickr,” in Proc workshop on Online social networks,
pp. 13–18, ACM, 2008.

[26] E. Bakshy, J. M. H., W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: quantifying influence on twitter,” in WSDM, pp. 65–74,
ACM, 2011.

	Introduction
	Related results

	The Last.fm data set
	Notion of network influence
	Influence based recommendation
	Influence as function of delay
	Strength of influence between user pairs

	Real time recommendation evaluation
	Music Recommendation Baseline Methods
	Dynamic popularity based recommendation
	Factor model based recommendation

	Experiments
	References

