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Abstract. In this paper we consider the problem of verification of large
dynamic models of biological systems. We present syntactical criteria
based on biochemical kinetics to ensure the plausibility of a model and
the positivity of its solution. These criteria include the positivity of the
rate functions, their kinetic type dependence on the reactant species
concentrations, and the absence of the negative cross-effects that together
guarantee the nonnegativity of the dynamics. Further, the stoichiometric
matrix of the truncated reaction system is checked against conservation
using its algebraic properties. Algorithmic procedures are then proposed
for checking these criteria with emphasis on good scaling up properties.
In addition to these verification procedures, we also provide, for certain
typical errors, model correcting methods. The capabilities and usefulness
of these procedures are illustrated on biochemical models taken from the
Biomodels database. In particular, a set of 11 kinetic models related with
E. coli are checked, finding two with deficiencies. Correcting actions for
these models are proposed.
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1 Introduction

Dynamics play a key role in the explanation of complex phenomena occurring in
living systems. Therefore, the dynamic modeling and model analysis of biochem-
ical networks is of high importance in systems biology, as quantitative mathe-
matical models allow the description, analysis and/or manipulation of a wide
range of biochemical processes.

The mathematical form of these models varies depending on the aim of mod-
eling and on the quality of measured data available. Petri-net models –both
deterministic and stochastic– are widely used for the analysis of qualitative dy-
namic properties, such as persistency [1], stability [2], etc. Qualitative dynamic



models in the form of nonlinear ordinary differential equations (ODEs) are also
widely used when good quality measured data are available for model parameter
estimation, model verification, validation and detailed dynamic analysis. More
in particular, the class of kinetic models [3] (with mass action type or other rate
functions) is a widely accepted description form.

In practice, however, many of the medium and large-scale kinetic models in
systems biology show problems when the space of parameters is explored. For
example, dynamic simulations for certain parameter values result in negative
concentrations (suggesting that mass-balance may not be correct), or simply
blow-up. Therefore, careful checks should be performed before the use of a pub-
lished model. This is routinely done in large biochemical model bases (see e.g.
[4]), but these checks cannot detect every deficiency that may arise from the
many different uses (simulation, parameter estimation, experiment design, etc.)
of these models.

A biologically valid model should be valid both from physical and chemi-
cal point of view. There are some tools which help the user to avoid making
modelling mistakes e.g. by offering predefined rate-functions, tracking the vari-
ables, or supporting measurement units and their consistency. These tools serve
mostly for syntactic checking purposes. Furthermore, some tools can also check
fundamental model properties, such as e.g. mass balance, the existence of ad-
missible steady states, or the characteristics of the dynamic behaviour near a
steady state, among others.

The Systems Biology Markup Language (SBML) [5] is a kind of accepted
“standard”, which offers model syntax checking, e.g. checking that the measure-
ment units are correct. Systems Biology Toolbox 2 offers in addition (i) moiety
conservation, (ii) steady state calculation, (iii) stoichiometry analysis, and (iv)
bifurcation analysis.

As another well-known example, COPASI [6] provides a systematic model
building framework to reduce the possibility of making modelling errors. Further
functions are: steady state analysis, mass conservation, time scale separation,
sensitivity calculation etc.

Despite the above efforts to ensure the acceptable quality of a biochemical
model, it is easy to find in the literature such models that do not possess very
basic properties, like positivity. This is usually the consequence of model sim-
plification based on assumptions [7]. However these assumptions are sometimes
forgotten or not known explicitly. Therefore, our aim was to formulate simple
syntactical and semantic criteria of biochemical origin that ensure the plausibil-
ity of the studied model and the positivity (more precisely, non-negativity) of
its solution. Similar ideas of model checking appear in [8] and [9].

The basic properties of dynamic models that describe reaction kinetic systems
are used for this purpose. Roughly speaking, the kinetic property of these mod-
els means that the individual reaction rates are non-negative and there cannot
be negative cross-effects between the dynamics of species [10]. Besides other im-
portant features, the kinetic property implies non-negativity which means that
the non-negative orthant of the coordinates system remains invariant for the



process dynamics (i.e. the differential variables that typically describe concen-
trations, always remain non-negative). However, as it is illustrated in this paper,
some models published in journals and/or in open access biological databases
do not fulfill fundamental kinetic properties, and this can be a serious obstacle
in tasks such as parameter estimation, or in the later use or extension of these
models.

In addition to the model verification procedures, we aim at localizing the
reaction, or set of reactions, that cause a particular problem (for example, possi-
ble negative solutions), and at giving advice on how to correct them. Note that
verification in this paper is used in the sense of checking for the presence of in-
correct dynamic behaviour of the model, and not in the sense of its experimental
(in)validation.

2 Plausible Biochemical Models

2.1 Mathematical Models of Biochemical Reactions

Biochemical reactions form an important sub-class in chemical reaction kinetics,
that are characterized by the generally large number of reaction steps, and by the
potentially complex, e.g. non-monotonous nature of the reaction rate functions.
The reaction scheme together with the appropriate reaction constants of the
most important biochemical reaction systems is collected in large biochemical
databases (such as the Biomodels database [4]), and special description languages
(such as SBML [5]) are developed for their standardized representation.

In order to develop a model representation of biochemical reaction systems
that is suitable for model verification, the model representation of chemical re-
action networks [3] can be used with some adjustments.

2.2 Basic Notions for Describing Biochemical Reactions

Complex biochemical reaction schemes are composed of elementary reaction
steps that are irreversible. This means, that a reversible reaction step is rep-
resented as two irreversible elementary reaction steps. An elementary reaction
step R` can be formally described using n species X1, . . . , Xn and associated
stoichiometric coefficients. The species are classified as reactants (with stoichio-
metric coefficients ν1, . . . , νn) and products (with µ1, . . . , µn).

R` :

n∑
k=1

νkiXk
rij−−−→

n∑
k=1

µkjXk. (1)

The non-negative linear combinations of the species
∑n
k=1 νkiXk and

∑n
k=1 µkjXk

are called the complexes and are denoted by C1, . . . Cm, e.g. C1 = 2X1 +X3.
It is important to note that some species may appear on both sides of a given

reaction with the same stoichiometric coefficients (νki = µki).
A reaction (elementary reaction step) Rij is an ordered pair of complexes

Ci, Cj ∈ C, which means that the reactant complex Ci is transformed to the



product complex Cj in the chemical reaction network i.e. Rij = (Ci, Cj). Re-
actant complexes are also called source complexes. To each of the reactions, a
reaction rate function rij is associated that may depend on the concentration
[Xi] = xi of any species Xi in the biochemical reaction system. The reaction
rate is usually measured in units [mols ] and shows how many moles of a reactant
Xk with νki = 1 is used, or how many moles of a product X` with µ`j = 1 is
produced by the reaction in one second.

2.3 Plausible Reaction Rate Functions

Because of the above chemical meaning of the reaction rate, the reaction rate
function should posses the following properties.

1. Rate positivity. As the elementary reaction steps are irreversible and the reac-
tion rate is defined as the rate of the consumption (decrease) of the reactant
concentrations, the inequality rij ≥ 0 should be fulfilled over the entire do-
main of the reaction rate function, i.e. for all non-negative concentration
values in its argument.

2. Kinetic dependence. Reaction rate functions in biochemical reactions include
the concentrations of the reactants such as substrates, which are consumed
in the reaction. Some species concentration may not change in the reaction
because the same amount is consumed as produced, i.e. νki = µkj . Further,
the reaction function may include other concentrations that modify the re-
action rate either in a catalytic way, or in the form of inhibitors, e.g. the
concentration of a product of that reaction. However, one only considers the
real reactants in the source complex which influence the reaction rate in a
dominant way that is described by the notion of kinetic dependence. rij is
said to be kinetic with respect to the species in the source complex (Xk ∈ Ci)
if

rij(xk = 0) = 0 for all k = {1, . . . , n|Xk ∈ Ci} , (2)

i.e., if the concentration of any species in the source complex is zero, then
the reaction rate becomes zero.

2.4 Plausibility of Some Common Biochemical Reaction Rate
Functions

Only a limited number of rate function types are usually present in biochemical
reaction systems, that are characterized by a functional form and the values of its
parameters [11]. A few of the most important ones are analysed for plausibility
below.

(i) Mass action kinetics
This is the simplest reaction rate function form rMA,i = ki ·

∏n
l=1 x

νli
l where

ki > 0 is the reaction rate constant, and the reactant complex is Ci =∑n
l=1 νliXl. It is easy to see that rMA,i is kinetic in each of the species in

complex Ci.



(ii) Michaelis-Menten kinetics
Recall, that elementary reaction steps are irreversible, then the rate function
is in the form

rMM,i = ki ·
xi

(Ki + xi)
(3)

where where ki > 0 and Ki > 0 are constant parameters, and the reactant
complex Ci = Xi. This reaction rate function is kinetic in Xi.

(iii) Constant level reactions
Here the rate function is simply a constant, i.e. rC,i = kMi , where kMi > 0 is a
constant. This rate function does not have kinetic dependence on any specie,
thus no reactant species can be associated to this reaction. Consequently it
is not a plausible reaction rate function, whenever it is a consuming reaction.
Note that, when this reaction stands for model input it always occurs with
positive sign in the balance equations.

Correcting Non-plausible Reaction Rates. There is unfortunately no general way
of correcting non-plausible reaction rates. However, in some cases, such rates
can be made plausible. An example of this case is, when a constant level type
reaction rate function is present in the kinetic equation of the species Xi with
negative sign. Then we can multiply the rate function with xi that will make
this rate function kinetic in Xi.

2.5 Positive (Non-negative) Kinetic Models

The dynamic variables xk of any biochemical model are species concentrations,
that are non-negative. Therefore, any plausible biochemical model should have
this property, that is based mathematically on the notion of essentially non-
negative functions [12]. A function f = [f1 . . . fn]T : [0,∞)n 7→ Rn is called
essentially non-negative if, for all i = 1, . . . , n, fi(x) ≥ 0 for all x ∈ [0,∞)n ,
whenever xi = 0. In the context of biochemical models, where the components
fi correspond to the right-hand sides of the kinetic differential equations, the
non-negativity of individual rate functions and the lack of negative cross-effects
between species together guarantee essential non-negativity of the model [10].

2.6 Component Mass Conservation

Kinetic models are constructed based on the conservation of the masses of species
assuming closed systems and isothermal conditions.

The conservation equations are constructed for species that are either reac-
tants or products of the chemical reactions in the form

dxk
dt

= −
m∑
i=1

νkiri +

m∑
i=1

µkiri =

m∑
i=1

skiri, (4)

where s is the element of the S ∈ Rn×m stoichiometric matrix. No dynamic
conservation equations are written to species with only catalytic or inhibitory
role.



In open systems one has in addition (i) input terms, that have positive sign
and may depend on externally set concentrations and/or mass flow of certain
non-conserved specie, and (ii) output terms, that are linear in one conserved
specie, have negative sign and appear only in the dynamic equation of that
particular specie. Therefore, all of the input and output terms should be set to
zero when checking the conservation property : this form of the dynamic model
will be called the truncated model.

A truncated stoichiometric matrix S̃ ∈ Rn×m is constructed from the trun-
cated model by associating a column Si to each complex Ci with [S̃]ki = µki−νki
for only the reactant species (but not to the catalytic or inhibitory ones). The
truncated biochemical model has the conservation property taking into consid-
eration all species, if there exists a strictly positive vector m such that mT S̃ = 0
(see [13], [14] and for efficient computation methods [15]).

Some biological models do not obey mass conservation on purpose, other-
wise the above property enables us to check the truncated stoichiometric matrix
S̃ against conservation, that is only a partial verification of the values of the
stoichiometric coefficients µki and νki in the model.

Plausible Model Structure. The model structure is said to be plausible, when
the stoichiometric constants in the conservation equations (4) are consistent with
the reactants and products of the reactions, i.e. νki is strictly positive if reaction
ri consumes the species Xk and µki is strictly positive if Xk is a product of the
reaction ri. The stoichiometric coefficient of a reaction which neither consumes
nor produces a species should be zero in the corresponding balance equation.

3 Model Checking and Correction in Practice

3.1 Steps of Model Verification

Given a biochemical reaction network in terms of the reaction rate functions
and the system of ordinary differential equations. The reaction rate functions
are assumed to be smooth functions of the time, some concentrations and pa-
rameters: ri = ri(t, x, k). The explicit time dependency of the reactions permits
to incorporate boundary conditions or model inputs for the dynamic system.
The ordinary differential equation form of the model is given by Eq. (4).

Inputs of the Algorithm. We can either start with the list of differential
equations and the algebraic equations of the reactions, or the model defined
in SBML. Since the SBML model does not contain explicitly the differential
equations, in this case the SBML import function of the System Biology Toolbox
2 [16] is used to translate the SBML into MATLAB structure and generate the
differential equations. It is important to note that the parameter values of the
rate functions are not needed for the verification.

A homogeneous, continuous flow stirred tank bioreactor serves as an tutorial
example depicted in Fig. 1. The reaction network consists of three species (A,



A, B

A + B ↔ C
C → A, B, C

A + B C

0

A B

r1

r2+r7

r3

r5 r6

r4

Fig. 1. Continuous flow stirred tank reactor and its reaction graph representation

B, C and their concentrations xA, xB and xC , respectively) and two elementary
reactions: a two substrate, one product reversible Michaelis-Menten kinetics (5)
and a non-plausible (see subsection 2.4 (iii)) constant reaction (6). The zero
complex denoted by a ”0” in the reaction graph corresponds to the environ-
ment of the system (for clarification see e.g. [17]). The reactor feed contains the

substrates A and B with xfA and xfB constant concentrations, respectively, the
corresponding pseudo-reactions [17] are in Eq. (7). The output stream that con-
tains all species is represented by the pseudo-reactions in Eq. (8). The reaction
rate functions and the ODEs of the system are

r1 = Vf

xA

KxA

xB

KxB

1 + xA

KxA
+ xB

KxB

− Vr
xC

KxC

1 + xC

KxC

(5)

r2 = Kd (6)

r3 = ζxfA; r4 = ζxfB (7)

r5 = ζxA; r6 = ζxB ; r7 = ζxC (8)

dxA
dt

= −r1 + r3 − r5 (9)

dxB
dt

= −r1 + r4 − r6 (10)

dxC
dt

= r1 − r2 − r7 . (11)

Splitting the Reversible Reactions. The irreversible forward and backward
reactions are created from the original reactions using regular expressions and
the Symbolic Math Toolbox of MATLAB. In this example the algorithm finds
the subtraction with two operands in Eq. (5) and separates to

rf1 = Vf

xA

KxA

xB

KxB

1 + xA

KxA
+ xB

KxB

and rb1 = Vr

xC

KxC

1 + xC

KxC

. (12)



Simultaneously the differential equations are updated to

dxA
dt

= −(rf1 − rb1) + r3 − r5 (13)

dxB
dt

= −(rf1 − rb1) + r4 − r6 (14)

dxC
dt

= (rf1 − rb1)− r2 − r7 . (15)

Model Positivity by Checking the Kinetic Property. Next, the stoichio-
metric matrix (S) is constructed by parsing the string of the ODEs and collecting
the coefficients of the rate functions. Whenever the vij element of S is negative,
i.e. reaction rj consumes the species xi, rj must be kinetic with respect to xi.
This can be checked by substituting zeros for the species xi in the rate function
and evaluating it; the result must be zero.

In our example the model Eqs. (13)-(15) give rise to the stoichiometric matrix

S =

−1 1 0 1 0 −1 0 0
−1 1 0 0 1 0 −1 0

1 −1 −1 0 0 0 0 −1

 (16)

and the irreversible reaction vector R = [rf1 , r
b
1, r2, r3, r4, r5, r6, r7]T . Consid-

ering the location of the negative entries of S reaction rf1 and r5 must be kinetic

to species A, rf1 and r6 with respect to B and rb1, r2 and r7 with respect to C. By

substituting zeros for the reactant species in the rate functions –e.g. rf1 (xA = 0),

r5(xA = 0), rf1 (xB = 0) etc. – the plausible ones give zeros. At this point reaction
r2 is found to be non-kinetic to the species C, and thus it is a non-plausible reac-
tion. We may correct the rate function by multiplying with its reactant species
concentration: r∗2 = KdxC . This reaction can be regarded as a model output,
too.

Component Mass Conservation. The truncated model without the input
reactions (Eqs. (7)) and the output reactions (Eqs. (8) and the corrected r∗2) is
represented by the first two columns of S. This sub–matrix is rank deficient and
has the m = [1 1 2]T strictly positive vector in the left nullspace indicating the
mass conservation law.

3.2 Verified Models

We have checked 11 E. coli curated models of the Biomodels database, and some
of them turned out to contain non-plausible reactions. Table 1 shows the unique
identifiers of the models in the database. The number of species, the number
of reactions and the computation time of the algorithm is also included in the
following columns. The 5th column contains the non-plausible reaction, while
the last column shows whether the truncated model admits mass conservation.
In the next section, the verification of two of these models will be presented in
detail.



Table 1. Verified models

BioModel No. of No. of Time Non-plausible Mass

ID species reactions [s] reaction conservation

BIOMD296 4 10 man.* plausible no
BIOMD413 5 9 0.3 plausible no
BIOMD200 22 46 2.3 plausible yes
BIOMD217 12 22 23 plausible yes
BIOMD051 18 62 5 reaction vMURSYNTH is not no

kinetic w.r.t. species CF6P
BIOMD066 11 10 man.* reaction vATPASE is not yes

kinetic w.r.t. species ATP
BIOMD012 6 12 0.8 plausible no
BIOMD067 7 16 0.6 plausible no
BIOMD221 8 22 1.9 reaction vSYN is not no

kinetic w.r.t. species AKG
BIOMD222 8 22 1.9 reaction vSYN is not no

kinetic w.r.t. species AKG
BIOMD065 8 16 0.5 plausible no

*the separation of some reaction rate function needed manual manipulation

3.3 Case Study 1: Central Carbon Metabolism of E. coli

Chassagnole et al. [18] describe the central carbon metabolism of the Escherichia
coli. Although we could reproduce the results in the paper [18] with the pub-
lished model (BIOMD0000000051), numerical simulations with CVODES [19]
during parameter estimation tasks gave errors, because negative concentrations
appeared.

About the Model. The metabolism is described by 48 reactions which are
grouped into kinetic types: reversible and irreversible Michealis-Menten kinet-
ics, two-substrate reversible and irreversible Michaelis-Menten kinetics, allosteric
enzyme reactions, allosteric regulation, allosteric activation, ordered uni-bi mech-
anism, Hill kinetics, constant level reaction and reversible mass action kinetics.
Appendix A contains examples of these reactions. The mass balance equations
for the 18 metabolites are in the following form

dCi
dt

=
∑
j

vijrj(C, k)− µCi , (17)

where C is the concentration of the metabolite, vij is the (i, j)th element of the
stoichiometric matrix, rj(C, k) denotes the j-th reaction rate function, which
depends on the concentrations and the k rate function parameters. Finally, µ is
the growth factor. The detailed equations are listed in [18] Tables I. and IV.

Checking the Rate Expressions. The first criteria of a plausible model is
the non-negativity of the reaction rate functions, for which the reversible reac-
tions have to be cut into a forward and a backward reaction. The separation of



the reactions are straightforward in this case study. It is also easy to see that
the reactions are always non-negative since the rate expressions contain only
such mathematical operators that preserve the positivity. The model have three
constant reactions: the Mureine synthesis, the Tryptophan synthesis and the
Methionine synthesis

rMurSynth = rmax
MurSynth, (18)

rTrpSynth = rmax
TrpSynth and rMetSynth = rmax

MetSynth , (19)

but only rMurSynth is not kinetic to its source specie, the others are input terms.

Checking the Model Structure. The positivity condition from Section 2.5
together with the model Eq. (17) give rise to the model specific positivity con-
dition

dCi
dt

=
∑
j

vijrj − µCi ≥ 0 whenever Ci = 0, for all i = 1, . . . 18.

This condition holds for plausible reaction rate functions which have the source
kinetic property according to Eq. (2). Furthermore, whenever a reaction is not
kinetic w.r.t. its source species and has negative stoichiometric coefficient, de-
pending on the numerical values of the parameters it can violate the condition
and cause negative concentrations during simulations.

This is exactly what happens in some parameter domain of this E.coli model.
From the following model equation ([18] Table I. Eq.(3)):

dCf6p

dt
= rPGI − rPFK + rTKb + rTKa − 2rMurSynth − µCf6p (20)

one can see that the stoichiometric coefficient of the Mureine synthesis rMurSynth

is negative, but it is not kinetic w.r.t. any metabolite. This may result in the
appearance of negative concentrations and thus in a non-plausible model.

Correction of the Non-plausible Reaction. There are several ways to cor-
rect the non-plausible reaction. A switching function can be included, which
turns off the reaction, whenever the concentration of fp6 reach zero. This pro-
cedure does not influence the model dynamics in the plausible concentration
domain, but the switching function may result in mathematical or numerical
simulation issues. Alternatively, one can make the reaction source kinetic by
multiplying it with Cfp6: rcuredMurSynth = rmax

MurSynthCf6p. It changes the dynamics of
the system, but results in a smooth, plausible reaction rate function.

Mass Conservation. The truncated model is created by omitting the reactions
which are either stand for inflows or outflows. We have found three linearly
independent non-negative vectors for which mT

i S = 0, for i = 1, 2, 3. This
implies three moiety conservation laws, but there is no strictly positive m vector
in the left kernel of S, and thus the model does not obey to the total mass
conservation.



3.4 Case Study 2: Verification of the Model BIOMD0000000221

Singh et al. [20] present two kinetic models of the tricarboxylic acid cycle and
glyoxylate bypass in the Mycobacterium tuberculosis. Both models are based
on a validated E. coli model, which is in the focus of this case study. The
kinetic model contains 12 metabolites and 12 reactions. The reactions and the
differential equations are listed in Appendix B.

The reaction rate functions can be categorized into three kinetic reaction
types: one substrate reversible Michaelis-Menten kinetics; two substrate reversible
Michaelis-Menten kinetics and ordered uni-bi mechanism. The separation of
them to irreversible forward and backward reactions is straightforward. The
irreversible forms fulfil the rate positivity condition.

For the positivity of the model the kinetic property of the rate expressions
should be analysed. The reactions must be kinetic to the species, which are
consumed in that reactions. However, due to a modelling assumption, the r11
reaction

rf11 = 0.0341 · rf3 = Vcell · 0.0341
V f11

Cicit

K11,icit

1 + Cicit

K11,icit
+

Cakg

K11,akg

. (21)

is not kinetic with respect to the akg source specie, which is consumed in this
reaction according to the balance equation:

dCakg

dt
= rf3 − rb3 − r

f
4 + rb4 − r

f
11 + rb11 (22)

Note that rf11 has a negative stoichiometric coefficient.
Thus, our algorithm detected the consequence of the modelling assumption

which lead the model out from the kinetic model system class.
The model has four boundary species, the concentrations of which are hold

constant. The omission of the reactions containing these species leads to the
truncated model and the corresponding reduced stoichiometric matrix S. There
is no strictly positive vector in the left null-space of S: actually, all species but
the glyoxylate participate in the mass conservation.

4 Conclusion

Using the syntax and semantics of biochemical models, simple syntactical criteria
were formulated in this paper that ensure the plausibility of the studied model
and the positivity of its solution.

First, the plausibility of reaction rate function was defined that include its
positivity, and its kinetic dependence on the real reactants of the reaction. The
absence of the negative cross-effects in the dynamic equations were used to ensure
the positivity of the species concentration functions. The stoichiometric matrix
of the truncated reaction system was checked against conservation using its
algebraic properties.



Algorithmic procedures were proposed for checking these criteria that scale
up well with the size of the biochemical model. For certain typical errors, model
correcting methods were also proposed.

The developed notions and tools are illustrated on biochemical kinetic models
of E. coli.
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Appendix

A Reaction Rate Functions of the First Case Study

Some examples of the reaction rate functions and their irreversible form can be
found in the following list.

1. Reversible mass action kinetics, e.g. Ribose phosphate isomerase reaction

rR5P1 = rmaxR5P1(Cribu5p −
Crib5p

KR5P1,eq
) ,

the forward and backward reactions of which are:

rfR5P1 = rmax
R5P1Cribu5p and rbR5P1 = rmax

R5P1

Crib5p

KR5P1,eq
.

2. Irreversible Michaelis-Menten kinetics, for example Serine synthesis

rSerSynth =
rmaxSerSynthC3pg

KSerSynth,3pg + C3pg
.

3. Allosteric enzyme activation, for example Glucose 1-phosphate adenyltrans-
ferase reaction

rGIPAT =
rmax
GIPATCglpCatp

(
1 +

(
Cfdp

KGIPAT,fdp

)nGIPAT,fdp
)

(KGIPAT,glp + Cglp)(KGIPAT,atp + Catp)

4. Constant level reaction, such as Mureine synthesis

rMurSynth = rmax
MurSynth



B Model Equations of the Second Case Study

This section contains the reaction rate functions and the dynamic model equa-
tions of the tricarboxylic acid cycle and glyoxylate bypass model of E. coli. The
1st and 10th reactions have two substrate reversible Michaelis-Menten kinetics:

ri = Vcell
V fi

S1

Ki,S1

S2

Ki,S2
− V ri P1

Ki,P1

P2

Ki,P2(
1 + S1

Ki,S1
+ P1

Ki,P1

)(
1 + S2

Ki,S2
+ P2

Ki,P2

) for i = {1, 10} ,

where S and P denote the concentrations of the substrates and products respec-
tively, K , are constant parameters and V r/b are the maximal rates of forward
and backward reactions.

The 2nd – 8th and 11th reactions belong to the one substrate Michaelis-
Menten kinetics

ri = Vcell
V fi

S1

Ki,S1
− V ri P1

Ki,P1

1 + S1

Ki,S1
+ P1

Ki,P1

for i = {2, . . . 8, 11} .

Finally, the 9th reaction has the form:

ri = Vcell
V fi

S1

Ki,S1
− V ri P1

Ki,P1

P2

Ki,2(
1 + S1

Ki,S1
+ P1

Ki,P1
+ P2

Ki,P2
+ S1

Ki,S1

P1

Ki,P1
+ P1

Ki,P1

P2

Ki,P2

) for i = 9 .

The system of differential equations expressed in terms of the reactions is

dCaca

dt
= 0,

dCoaa

dt
= 0,

dCcoa

dt
= 0,

dCbiosyn

dt
= 0

dCcit

dt
= rf1 − rb1 − r

f
2 + rb2

dCicit

dt
= rf2 − rb2 − r

f
3 + rb3 − r

f
9 + rb9

dCakg

dt
= rf3 − rb3 − r

f
4 + rb4 − r

f
11 + rb11

dCsca

dt
= rf4 − rb4 − r

f
5 + rb5

dCsuc

dt
= rf5 − v5b + rf9 − rb9 − r

f
6 + rb6

dCfa

dt
= rf6 − rb6 − r

f
7 + rb7

dCmal

dt
= rf7 − rb7 + rf10 − rb10 − r

f
8 + rb8

dCgly

dt
= rf9 − rb9 − r

f
10 + rb10


