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Abstract

In this paper we consider a simple Markov chain for bipartite graphs with given
degree sequence on n vertices. We show that the mixing time of this Markov chain
is bounded above by a polynomial in n in case of half-regular degree sequence.
The novelty of our approach lies in the construction of the multicommodity flow in
Sinclair’s method.

1 Introduction

The degree sequence, d(G), of a graph G is the non-increasing sequence of its vertex
degrees. A sequence d = (d1, . . . , dn) is graphical iff d(G) = d for some simple graph G,
and G is a graphical realization of d.

Already at the beginning of the systematic graph theoretical research (late fifties and
early sixties) there were serious efforts to decide whether a non-increasing sequence is
graphical. Erdős and Gallai (1960, [3]) gave a necessary and sufficient condition, while
Havel (1955, [6]) and Hakimi (1962, [5]) independently developed a greedy algorithm to
built a graphical realization if there exists any. (For more details see for example [8].)
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Generating some (or all possible) graphs realizing a given degree sequence or finding a
typical one among the different realizations are ubiquitous problems in network modeling,
ranging from social sciences to chemical compounds and biochemical reaction networks
in the cell. (See for example the book [10] for a detailed analysis, or the paper [8] for a
short explanation.)

When the number of different realizations is small, then the uniform sampling of the
different realizations can be carried out by generating all possible ones and choosing among
them uniformly.

However in cases where there are many different realizations this approach can not
work. In these cases some stochastic processes can provide solutions. Here we mention
only one of the preceding results: Molloy and Reed (1995, [9]) applied the configuration
model (Bollobás (1980, [1]) for the problem. (In fact, Wormald had used it already in
1984 to generate random regular graphs of moderate degrees [14].) They successfully used
the model to generate random graphs with given degree sequences where the degrees are
(universally) bounded. It is well known that this method is computationally infeasible in
case of general, unbounded degree sequences.

A different method was proposed by Kannan, Tetali and Vempala (1995, [7]), which
is based on the powerful Metropolis-Hastings algorithm: some local transformation gen-
erates a random walk on the family of all realizations. They conjectured that this process
is rapidly mixing i.e. starting from an arbitrary realization of the degree sequence the
process reaches a completely random realization in reasonable (i.e. polynomial) time.
However, they could prove it only for bipartite regular graphs. Their conjecture was
proved for arbitrary regular graphs by Cooper, Dyer and Greenhill (2007, [2]).

The original goal of this paper was to attack Kannan, Tetali and Vempala’s conjecture
for arbitrary bipartite degree sequences, performing a more subtle choice of multicommod-
ity flow. We obtained the following result:

Theorem 1.1. The Markov process - defined by Kannan, Tetali and Vempala - is rapidly
mixing on each bipartite half-regular degree sequence. (In these bipartite graphs the degrees
in one vertex class are constant.)

Actually, we achieved somewhat more: our construction method can be used as a plug-
in to a more advanced method for general degree sequences: if two particular graphical
realizations at hand differ in edges which can be partitioned into alternating cycles, such
that no cycle contains a chord which is an edge of another cycle in the partition, then our
friendly path method provides a good multicommodity flow.

2 Basic definitions and preliminaries

Let G = (U, V ;E) be a simple bipartite graph (no parallel edges) with vertex classes
U = {u1, . . . , uk}, V = {v1, . . . , vl}. The (bipartite) degree sequence of G, bd(G) is
defined as follows:

bd(G) =
((
d(u1), . . . , d(uk)

)
,
(
d(v1), . . . , d(vl)

))
,
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where the vertices are ordered such that both sequences are non-increasing. From now on
when we say “degree sequence” of a bipartite graph, we will always mean the bipartite
degree sequence. We will use n to denote the number of vertices, that is n = k + l.

A pair (a,b) of sequences is a (bipartite) graphical sequence (BGS for short) if (a,b) =
bd (G) for some simple bipartite graph G, while the graph G is a (graphical) realization
of (a,b).

Next we define the swaps, our basic operation on bipartite graphs.

Definition 2.1. Let G = (U, V ;E) be a bipartite graph, u1, u2 ∈ U , v1, v2,∈ V , such
that induced subgraph G[u1, u2; v1, v2] is a 1-factor, (i.e. (u1, vj), (u2, v3−j) ∈ E, but
(u1, v3−j), (u2, vj) /∈ E for some j.) Then we say that the swap on (u1, u2; v1, v2) is
allowed, and it transforms the graph G into a graph G′ = (U, V ;E ′) by replacing the
edges (u1, vj), (u2, v3−j) by edges (u1, v3−j) and (u2, vj), i.e.

E ′ = E \ {(u1, vj), (u2, v3−j)} ∪ {(u1, v3−j), (u2, vj)}. (2.1)

So a swap transforms one realization of the BGS to another (bipartite graph) realization
of the same BGS. The following proposition is a classical result of Ryser (1957, [11]).

Theorem 2.2 (Ryser). Let G1 = (U, V ;E1) and G2 = (U, V ;E2) be two realizations of the
same BGS. Then there exists a sequence of swaps which transforms G1 into G2 through
different realizations of the same BGS.

Ryser’s result used the language of 0 - 1 matrices. Here, to make the paper self contained,
we give a short proof, using the notion of swaps. The proof is based on a well known
observation of Havel and Hakimi ([6, 5]):

Lemma 2.3 (Havel and Hakimi). Let G = (U, V ;E) be a simple bipartite graph, and
assume that d(u′) 6 d(u), furthermore (u′, v) ∈ E and (u, v) 6∈ E. Then there exists a
vertex v′ such that the swap on (u, u′; v, v′) is allowed, and so it produces a bipartite graph
G′ from G such that ΓG′(v) = (ΓG(v) \ {u′}) ∪ {u}, where, as usual, ΓG(v) is the set of
neighbors of v in G.

Proof: By the pigeonhole principle there exists a vertex v′ 6= v such that (u, v′) ∈ E and
(u′, v′) 6∈ E. So the swap defined on vertices (u, u′; v, v′) is allowed. �

We say that the previous operation is pushing up the neighbors of vertex v. Applying the
pushing up operation d times we obtain the following push up lemma.

Lemma 2.4 (Havel and Hakimi). If G = (U, V ;E) is a simple bipartite graph, d(u1) >
d(u2) > . . . > d(uk) and v ∈ V , d = d(v). Then there is a sequence S of d many swaps
which transforms G into a graph G′ such that ΓG′(v) = {u1, . . . , ud}.

This pushing-up lemma also suggests (and proves the correctness of) a greedy algorithm
to construct a concrete realization of a BGS

(
a,b

)
.

Proof of Theorem 2.2: We prove the following stronger statement:
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(z) there exists a sequence of 2e swaps which transforms G1 into G2, where e is the
number of edges of Gi.

We will show that any particular realization can be transformed into the same canonical
realization with at most e swaps. We will do it recursively: taking one by one the vertices
v1, v2, . . . , vl from V we will define their neighbors in U. After every step of the process
we update the remaining degree sequence of U , and reorder its actual content.

To do so we introduce the following lexicographic order on the actual remaining d(u)
degree sequence. We always take them non-increasing order, and whenever two vertices
have the same actual degree, then we take first the vertex with bigger subscript.

So take v1 and by multiple applications of the Push-up Lemma 2.4 there is a sequence
T1 of at most d = d(v1) many swaps which transforms G1 into a G′1 such that ΓG′1(v1) =
{u1, . . . , ud} (The actually required push up operations can be smaller if some of the first
d vertices were originally adjacent to v1.)

We consider the bipartite graphs G′′1 = G′1 \ {v1} i.e. we remove the vertex v1 and all
the edges connected to v1. Now we reorder the vertices in the actual U according to our
lexicographic order, and repeat the recursive operation.

In this way after at most
∑l

i=1 d(vi) = e swaps we transformed G1 into a well defined
canonical realization R, furthermore this R is independent from the original realization.

Now we can easily finish the proof of Theorem 2.2 observing that if a swap transforms
H into H ′, then the “inverse swap” (choosing the same four vertices, and changing back
the edges) transforms H ′ into H. So if the swap sequence T1 transforms G1 into R then
it has an inverse swap-sequence T ′1 which transforms R into G1. �

We use this upper bound for convenience: for us a linear upper bound on this value
is enough to show the polynomial upper bound of the sampling process. If somebody
wanted to get tight (or at least better) upper bounds on the sampling process, then a
better estimation is necessary for the swap-distance. Recently it was shown that the
swap-distance dist(G1, G2) for any two realizations is smaller than

∆ :=
1

2

∣∣E(G1)∆E(G2)
∣∣.

In the forthcoming paper [4] a formula for dist(G1, G2) is determined: this is in the form
of ∆−α where the parameter α > 1. Unfortunately the parameter α is hard to determine.

3 The Markov chain (G, P )
For a bipartite graphical sequence

(
a,b

)
(on the fixed vertex bipartition (U, V )) - following

Kannan, Tetali and Vempala’s lead - we define a Markov chain (G, P ) in the following
way. G is a graph, the vertex set V (G) of the graph G consists of all possible realizations
of our BGS, while the edges represent the possible swap operations: two realizations are
connected if there is a swap operation which transforms one realization into the other one
(and, recall, the inverse swap transforms the second one to the first one as well).
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Let P denote the transition matrix, which is defined as follows: if the current realization
(state of the process) is G then with probability 1

2
we stay in the current state (namely, we

define a lazy Markov chain) and with probability 1
2

we choose uniformly two-two vertices
u1, u2; v1, v2 from classes U and V respectively and perform the swap if it is possible and
move to G′. Otherwise we do not perform a move. The swap moving from G to G′ is
unique, therefore the probability of this transformation (the jumping probability from G
to G′ 6= G) is:

Prob(G→ G′) := P (G′|G) =
1

2
(
k
2

)(
l
2

) . (3.1)

The probability of transforming G′ to G is time-independent. The transition probabilities
are time and edge independent and they are also symmetric. Therefore P is a symmetric
matrix, where all off-diagonal, non-zero elements are the same, while the entries in the
main-diagonal are non-zero, but (probably) different values.

We use the convention that upper case letters X, Y and Z stands for vertices of V (G).
The graph G clearly may have exponentially many vertices (that many different real-

izations of the degree sequence). However, by the statement (z) (in the proof of Theo-
rem 2.2), its diameter is always relatively small:

Corollary 3.1. The swap distance of any two realizations is at most 2e, where e is the
number of edges.

As we observed, the graph G is connected, therefore the Markov process is irreducible.
Since our Markov chain is lazy, it is clearly aperiodic. Finally since, as we saw, the
jumping probabilities are symmetric, that is P (G|G′) = P (G′|G), therefore our lazy
Markov process is reversible with the uniform distribution as the globally stable stationary
distribution.

4 Sinclair’s Method

To start with we recall some definitions and notations from the literature. Since our
Markov chain converges to the uniform distribution, we write all theorems for the special
uniform distribution case even if the theorem holds for more general distribution, to
simplify the notations. Let P t denote the tth power of the transition probability matrix
and define

∆X(t) :=
1

2

∑
Y ∈V (G)

∣∣P t(Y |X)− 1/N
∣∣ ,

where X is an element of the state space of the Markov chain and N is the size of the
state space. We define the mixing time as

τX(ε) := min
t

{
∆X(t′) 6 ε for all t′ > t

}
.

Our Markov chain is said to be rapidly mixing iff

τX(ε) 6 O
(

poly
(
log(N/ε)

))
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for any X in the state space. Consider the different eigenvalues of P in non-increasing
order:

1 = λ1 > λ2 > . . . > λN > −1.

The relaxation time τrel is defined as

τrel =
1

1− λ∗
where λ∗ is the second largest eigenvalue modulus,

λ∗ := max{λ2, |λN |}.

However, the eigenvalues of any lazy Markov chain are non-negative, so we do know that
λ∗ = λ2 for our Markov chain. The following result was proved implicitly by Diaconis
and Strook in 1991, and explicitly stated by Sinclair: [12, Theorem 5’]

Theorem 4.1 (Sinclair). τx(ε) 6 τrel · poly
(
log(N/ε)

)
. �

So one way to prove that our Markov chain is rapidly mixing is to find a polynomial upper
bound on τrel. We need rapid convergence of the process to the stationary distribution
otherwise the method cannot be used in practice.

Kannan, Tetali and Vempala in [7] could prove that the relaxation time of the Markov
chain (G, P ) is a polynomial function of the size n := 2k of

(
a,b

)
if it is a regular bipartite

degree sequence. Here we extend their proof to show that the process is rapidly mixing
for the half-regular bipartite case.

There are several different methods to prove fast convergence, here we use - similarly to
[7] - Sinclair’s multicommodity flow method ([12]).

Theorem 4.2. Let H be a graph whose vertices represent the possible states of a time
reversible finite state Markov chainM, and where (U, V ) ∈ E(H) iff the transition proba-
bilities ofM satisfy P (U |V )P (V |U) 6= 0. For all X 6= Y ∈ V (H) let ΓX,Y be a set of paths
in H connecting X and Y and let πX,Y be a probability distribution on ΓX,Y . Furthermore
let

Γ :=
⋃

X 6=Y ∈V (H)

ΓX,Y

where the elements of Γ are called paths. We also assume that there is a stationary
distribution π on the vertices V (H). We define the capacity of an edge e = (W,Z) as

Q(e) := π(W )P (Z|W )

and we denote the length of a path γ by |γ|. Finally let

κΓ := max
e∈E(H)

1

Q(e)

∑
X,Y ∈V (H)

γ∈ΓX,Y : e∈γ

π(X)π(Y )πX,Y(γ)|γ|. (4.1)

Then
τrel(M) 6 κΓ (4.2)

holds. �
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We are going to apply Theorem 4.2 for our Markov chain (G, P ). Using the notation
|V (G)| := N , the (uniform) stationary distribution has the value π(X) = 1/N for each ver-
tex X ∈ V (G). Furthermore each transition probability has the property P (X|Y ) > 1/n4

(recall that n = k+ l, that is n denotes the number of the vertices of any realization). So
if we can design a multicommodity flow such that each path is shorter then an appropri-
ate poly(n) function, then simplifying inequality (4.1) we can turn inequality (4.2) to the
form:

τrel 6
poly(n)

N

 max
e∈E(H)

∑
X,Y ∈V (H)

γ∈ΓX,Y : e∈γ

πX,Y(γ)

 . (4.3)

If Z ∈ e, then ∑
X,Y ∈V (H)

γ∈ΓX,Y : e∈γ

πX,Y(γ) 6
∑

X,Y ∈V (H)
γ∈ΓX,Y : Z∈γ

πX,Y(γ), (4.4)

so we have

τrel 6
poly(n)

N

 max
Z∈V (H)

∑
X,Y ∈V (H)

γ∈ΓX,Y : Z∈γ

πX,Y(γ)

 . (4.5)

We make one more assumption. Namely, that for each X, Y ∈ V (G) there is a non-
empty finite set SX,Y (which draws its elements from a pool of symbols) and for each
s ∈ SX,Y there is a path Υ (X, Y, s) from X to Y such that

ΓX,Y = {Υ (X, Y, s) : s ∈ SX,Y }. (4.6)

It can happen that Υ (X, Y, s) = Υ (X, Y, s′) for s 6= s′, so we consider ΓX,Y as a “multiset”
and so we should take

πX,Y (γ) =

∣∣{s ∈ SX,Y : γ = Υ (X, Y, s)
}∣∣

|SX,Y |
for γ ∈ ΓX,Y .

Putting together the observations and simplifications above we obtain the
Simplified Sinclair’s method:
For each X 6= Y ∈ V (G) find a non-empty finite set SX,Y and for each s ∈ SX,Y find a
path Υ (X, Y, s) from X to Y such that

• each path is shorter than an appropriate poly(n) function,

• for each Z ∈ V (G)∑
X,Y ∈V (G)

∣∣{s ∈ SX,Y : Z ∈ Υ (X, Y, s)
}∣∣

|SX,Y |
6 poly(n) ·N. (4.7)

Then our Markov chain (G, P ) is rapidly mixing.
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5 Multicommodity flow - general considerations

Our construction method for multicommodity flow commences on the trail of Kannan,
Tetali and Vempala ([7]), and Cooper, Dyer and Greenhill ([2]). However the main dif-
ference among these papers lies in the method of the construction of the multicommodity
flow.

We fix a bipartite graphical sequence
(
a,b

)
, and consider the graph G where the

vertices of G are the realizations of
(
a,b

)
, while the edges correspond to the possible

swap operations. Therefore if X ∈ G, then X is a simple bipartite graph (U, V ;E(X)),
where U and V are fixed finite sets.

We can outline the construction of the path system from X ∈ G to Y ∈ G as follows:

(Step 1) We decompose the symmetric difference ∆ of E(X) and E(Y ) into alternating
circuits:

W1,W2 . . . ,Wks .

The construction uses the method of [2] to parameterize all the possible decom-
positions (see Subsection 5.1). Roughly speaking, the parameter set SX,Y will
be the collection of all pairings of edges E(X)\E(Y ) and E(Y )\E(X) adjacent
to w, for all w ∈ U ∪ V .

(Step 2) We decompose every alternating circuit Wi into alternating cycles

Ci
1, C

i
2 . . . , C

i
ki
,

and we will construct the canonical path from X to Y in such a way that first
we switch the edges E(X) \ E(Y ) and E(Y ) \ E(X) in Ci

1, then in Ci
2, etc.

Let Z denote an arbitrary vertex along the canonical path. To apply Sinclair’s
method we will need that the elements of SX,Y can be reconstructed from ele-
ments of S∆∩E(Z),∆\E(Z) (using another small parameter set). In [2] the authors
could prove that the elements of SX,Y are “almost” in S∆∩E(Z),∆\E(Z). Unfor-
tunately, it is not true for our construction. This is the reason that we should
introduce a much more complicated “reconstruction” method in Subsection 5.2
below.

5.1 Alternating circuit decompositions

Before we start this subsection we should recall some definitions:

Definition 5.1. In a simple graph, a sequence of pairwise disjoint edges e1, . . . , et forms
a circuit iff there are vertices v1, . . . , vt such that ei = (vi, vi+1) (the summation is per-
formed modulo t). This circuit is a cycle iff the vertices v1, . . . , vt are pairwise distinct.

Now let K = (W,F ∪ F ′) be a simple graph where F ∩ F ′ = ∅ and assume that for each
vertex w ∈ W the F -degree and F ′-degree of w are the same: d(w) = d′(w) for all w ∈ W .

the electronic journal of combinatorics 20(1) (2013), #P16 8



An alternating circuit decomposition of (F, F ′) is a circuit decomposition such that no two
consecutive edges of any circuit are in F or in F ′. Next we are going to parameterize the
alternating circuit decompositions.

The set of all edges in F (in F ′) which are incident to a vertex w is denoted by F (w)
(by F ′(w), respectively).

If A and B are sets, denote by [A,B] the complete bipartite graph with classes A and
B. Let

S(F, F ′) =
{
s : s is a function, dom(s) = W , and for all w ∈ W
s(w) is a 1-factor of the complete bipartite graph [F (w), F ′(w)]

}
. (5.1)

Lemma 5.2. There is a natural one-to-one correspondence between the family of all
alternating circuit decompositions of (F, F ′) and the elements of S(F, F ′).

Proof. If C = {C1, C2, . . . , Cn} is an alternating circuit decomposition of (F, F ′), then
define sC ∈ S(F, F ′) as follows:

sC(w) :=
{(

(w, u), (w, u′)
)
∈ [F (w), F ′(w)] :

(w, u) and (w, u′) are consecutive edges in some Ci ∈ C
}
. (5.2)

On the other hand, to each s ∈ S(F, F ′) assign an alternating circuit decomposition

Cs = {W s
1 ,W

s
2 . . . ,W

s
ks}

of (F, F ′) as follows: Consider the bipartite graph F =
(
F, F ′, R(s)

)
, where

R(s) =
{(

(u,w), (u′, w)
)

: w ∈ W and
(
(u,w), (u′, w)

)
∈ s(w)

}
.

F is a 2-regular graph because for each edge (u, v) ∈ F ∪ F ′ there is exactly one (u,w) ∈
F∪F ′ with

(
(u,w), (u,w)

)
∈ s(u), there is exactly one (t, v) ∈ F∪F ′ with

(
(u, v), (t, v)

)
∈

s(v), therefore the F -neighbors of (u, v) are (u,w) and (t, v).
F is a 2-regular, so it is the union of vertex disjoint cycles {W s

i : i ∈ I}. Now W s
i

can also be viewed as a sequence of edges in F ∪ F ′, which is an alternating circuit in
〈W,F ∪ F ′〉, so {W s

i : i ∈ I} is an alternating circuit decomposition of (F, F ′). Since

sCs = s,

we proved the Lemma. �

If the F -degree sequence (and therefore the F ′-degree sequence) is d1, . . . dk, then write

tF,F ′ =
k∏
i=1

(di!). (5.3)

Clearly ∣∣S(F, F ′)∣∣ = tF,F ′ .
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5.2 Cycle decompositions and circuit reconstructions

In this subsection we make preparations for constructing our multicommodity flow: we
describe how we decompose an alternating circuit into alternating cycles.

The problem of this venture is the following: we know along the process the symmetric
difference of the edge sets of realizations X and Y but we do not know the distribution of
the edges among E(X) and E(Y ). If the alternating circuit under investigation is large
then its cycle decomposition can contain a linear number of alternating cycles. Each
cycle consists of an even number of edges, equally distributed between X and Y . Along
the process each cycle needs a parameter representing whether that particular cycle was
already processed or not (which, in turn, tells which edges belong to X and Y ). Therefore
along all decompositions the set of all possible parameter values can be exponentially big,
which is not suitable to prove fast mixing property. Therefore we need to find another
way to deal with the reconstruction problem. We can proceed as follows:

Let x = (x1, x2, . . . , xm) be a sequence, then we write ←−x = (xm, . . . , x2, x1) for the
oppositely ordered sequence. (Here we consider ←−. to be an operator.)

Assume that K = (W,F ∪ F ′) is a simple bipartite graph where F ∩ F ′ = ∅ (in our
applications we have |F | = |F ′|), and the sequence

e = (e1, e2, . . . , em)

of edges is an (F, F ′)-alternating trail in K, (i.e. no two consecutive edges from e are in
F or in F ′, moreover the edges in e are pairwise different). In this subsection we also use
extensively the notation e = e1e2 · · · em for the same sequence. When e′ and e′′ are two
sequences, then e′e′′ stands for their concatenation. We will write ei = vivi+1. We will
also use b(ei) = vi (for the bottom of the edge) and t(ei) = vi+1 (for the top of the edge,
considering the actual orientations along the trail). So b(ei+1) = t(ei), and t(em) = b(e1)
iff e is a circuit.

We will use the notations e(i) = ei and ve(j) = vj for 1 6 i 6 m and 1 6 j 6 m + 1
(the ith edge and the jth vertex of the trail). If c = ei · · · ej is a consecutive subsequence
of e, we will also write b(c) = b(ei) and t(c) = t(ej). Finally first(e′) denotes the first
edge, while last(e′) denotes the last edge of trail e′.

Now let f be a coloration of the edges along the trail f : e → {green, red}. One
can imagine it as an indicator whether the edges were processed already along the trans-
formation of the realization X into realization Y. (Green edges are ready for processing
while red edges are processed already.)

For 1 6 i < j 6 m denote greenf [ei, ej] the (not necessarily consecutive) subsequence
of greenf edges from the sequence ei · · · ej. (The notation greenf is a shorthand for
greenf [e1, em], and the notations redf [ei, ej] are defined analogously.) We will maintain
the following property along our algorithm:

(£) any maximal consecutive red subsequence in e forms a closed alternating trail.

Let f be a coloration on the current alternating trail e satisfying property (£). Further-
more let

j = min{j : ∃i < j greenf [ei, ej] is a cycle}, (5.4)
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and let
i = max{i : greenf [ei, ej] is a cycle}. (5.5)

Since e is not necessarily a closed trail therefore such j does not always exist. However
if e is a closed trail and greenf is not empty, then such j exists. Indeed, if a closed trail
is deleted from a bigger closed trail then the remnant is a closed trail. Furthermore it is
clear that integer j determines uniquely the green cycle ending at ej. However before this
cycle (along the original circuit) there may be several red edges. Therefore there may be
several different integer i defining the same green cycle. One way to handle this fact is
equation (5.5).

Now we are ready to introduce our main tool to control the decomposition of an alternating
circuit into alternating cycles.

For that end we define the operator T on the edges of trail e and the current coloration
f (satisfying condition (£)) as follows:

Definition 5.3. T(e, f) will be a triple (e′, f ′, C ′), where

(i) C ′ is the alternating cycle in e defined by equalities (5.4) and (5.5), so

C ′ = greenf [ei, ej];

(ii) e′ is an alternating trail obtained by rearranging the edges from e as explained
below;

(iii) f ′ : e′ → {green, red} is defined with

redf ′ = redf ∪ C ′.

If j is undefined, then T(e, f) is undefined. Let us remark that the length of C ′ is even,
because (K,F ∪ F ′) was a bipartite graph, so C ′ is an alternating cycle.

We introduce the following notation:

T(e, f) = e′, f(e, f) = f ′, and C(e, f) = C ′.

What is missing is the description of the new alternating trail e′. Next we do just that.
(Let’s recall that two sequences written next to each other denotes their concatenation.)
Write

[ei, ej] = g1r1 · · · rk−1gk,

where
greenf [ei, ej] = g1g2 · · ·gk−1gk

and
redf [ei, ej] = r1r2 · · · rk−1.
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In words: the gi and ri represent the maximal consecutive greenf and redf subsequences.
Let

i′ =

{
min
`
{` < i : [e`, ei−1] is redf}, if f(ei−1) = redf ,

i, otherwise.

Furthermore let

j′ =

{
max
`
{` > j : [ej+1, e`] is redf}, if f(ej+1) = redf ,

j, otherwise.

We define

r− =

{
[ei′ , ei−1], if i′ < i,
∅, if i′ = i;

and

r+ =

{
[ej+1, ej′ ], if j′ > j,
∅, if j′ = j.

Let
e′ = e1 · · · ei′−1r

+←−gkrk−1
←−−gk−1 · · · r1

←−g1r
−ej′+1 · · · em. (5.6)

This last formula requires some explanation: the cycle C ′ consists of the greenf segments
of [ei, ej]. All the redf segments form alternating closed trails that were processed ear-
lier. We may assume without loss of generality, that the very first edge ei belongs to F,
consequently the last edge ej belongs to F ′.

When we finish the required swap operations exchanging the edges from F into edges
from F ′ along cycle C ′ (and transferring the actual degree realization closer to realization
Y ), then listing the edges of C ′ in the same way as before would not produce an alternating
closed trail anymore. To form an alternating trail again we must consider the edges of C ′
in the opposite order. This is done by the subsegments ←−gi s. Listing C ′ in opposite order
must list the closed trails ris also in opposite order (see (5.6)), which in turns takes care
automatically for keeping the alternating order of edges from F and F ′.

One can ask the reason to exchange r− and r+ since this is not necessary to keep the
trail alternating. This reason lies in equation (5.10).

By induction on i ∈ N, we can define Ti(e, f) and f i(e, f) as follows: T0(e, f) := e,
f0(e, f) := f , and

Ti(e, f) := T
(
Ti−1(e, f), f i−1(e, f)

)
and f i(e, f) := f

(
Ti−1(e, f), f i−1(e, f)

)
for i > 0. Let us remark that Ti(e, f) and f i(e, f) are not necessarily defined.

Now we are ready to describe the control mechanism to govern the swap sequence to
change the edges of the current realization belonging to F into the edges belonging to F ′

along the alternating closed trail e. For that end denote g the constant green function on
e, i.e. greeng = [e1, em], furthermore let e0 := e and f0 := g. Now we define the sequence

(e1, f1, C1), (e2, f2, C2), . . . , (en, fn, Cn)
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by the formula
(e`+1, f`+1, C`+1) := T(e`, f`)

for ` = 0, 1, . . .. We stop when T(en, fn) is undefined. We define n(e) := n and observe
that

Ti(e, g) = ei and f i(e, g) = fi for 0 6 i 6 n(e). (5.7)

We also define the sequence

(F0, F
′
0), (F1, F

′
1), . . . , (Fn, F

′
n)

of partitions of F ∪ F ′ as follows:

(1) let F0 := F and F ′0 := F ′,

(2) let Fi+1 := Fi ∪ (Ci+1 \ Fi) \ (Ci+1 ∩ Fi) and F ′i+1 := (F ∪ F ′) \ Fi+1.

It is easy to see, and we will show formally in Lemma 5.5, that if e is a circuit then
C1, . . . , Cn(e) will be a circuit decomposition of e. Later we will use this decomposition to
obtain our canonical path system.

We will prove a series of observations. We start with some easy direct consequences
of definitions (5.4), (5.5) and (5.6). In Lemmas 5.4, 5.5 and 5.6 below we will use the
notation ei = Ti(e, g) and fi = f i(e, g) for 0 6 i 6 n(e).

Lemma 5.4. During the algorithm, at any given iteration κ we have:

(i) in the current alternating trail eκ−1 the edge ejκ is after all redfκ−1 edges, where jκ
denotes the value j used in the κth iteration of the construction;

(ii) for any red edge the size of the maximal red subsequence containing it cannot de-
crease;

(iii) the number of maximal red subsequences can be increased by at most one, but can
drop to 1. �

Lemma 5.5. For each 0 6 ν 6 n(e) we have:

(i) maximal redfν intervals [eν(k), eν(`)] in eν are circuits (recall, eν(d) is the dth edge
along eν);

(ii) the edge sequence eν is a trail which alternates between Fν and F ′ν;

(iii) veν (1) = ve(1) and veν (m+ 1) = ve(m+ 1) (these are the very first and very last
vertices in e);

(iv) greenfν [eν ] is a trail from ve(1) to ve(m+ 1) (while only just a part of the edges of
eν are green they still provide an alternating trail between those vertices).

(v) if e is circuit, then fn(e) is the constant red function, i.e. we processed all edges,
while C1, . . . , Cn is an alternating cycle decomposition of e.
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Proof. We prove the statements by induction on ν. For ν = 0 the statements are trivial
because greenf0 = [e1, em]. Consider now the inductive step ν − 1→ ν. Assume that

eν−1 = e1 · · · ei′−1r
−g1r1 · · ·gk−1rk−1gkr

+ej′ · · · em (5.8)

and
eν = e1 · · · ei′−1r

+←−gkrk−1
←−−gk−1 · · · r1

←−g1r
−ej′ · · · em.

(Here it is important to recall, that when r− and/or r+ is empty, then i′ = i− 1 and/or
j′ = j+ 1. If some of these cases apply, then the corresponding remarks on r− and r+ are
void.)

(i) The intervals r` are maximal red intervals, so by the inductive assumption they are
circuits, i.e. b(r`) = t(r`). Moreover, by the construction, the first vertex of g1 and the
last vertex of gk are the same: b(g1) = t(gk), and g` is a path from b(g`) to t(g`). Since
t(g`) = b(r`) = t(r`) = b(g`+1), we have that

c = ←−gkrk−1
←−−gk−1 · · · r1

←−g1

is a redfν circuit.
To finish the proof of (i) there is only one remaining case: if the maximal redfν

interval [el, e`] in eν properly contains the interval [ei, ej]. (This is the case when at least
one of r− and r+ are not empty.) Then both [el, ei−1] and [ej+1, e`] are maximal redfν−1

intervals in eν−1 so [el, ei−1] = r− and [ej+1, e`] = r+, therefore [el, ei−1] = r−[ei, ej]r
+ is

the concatenation of at most three circuits (since r− or r+, but not both, can be empty),
so it is also a circuit.

(ii) The vertices vr−(1) = vr+(1) = vg1(1) are identical in eν−1. Therefore ei′ ∈ Fν−1

if and only if ej+1 ∈ Fν−1, and the same applies for the edges lastν−1(r−) = ei−1 and
lastν−1(r+) = ej′ . (Here the index in lastν−1() refers to the order of the trail eν−1.) So,
since e1 · · · ei′−1r

− an alternating trail in eν−1 therefore the same applies for e1 · · · ei′−1r
+

(and analogously for r−ej′+1 · · · em) in eν . In other words it makes no difference in the
behavior (relating to the sub-trail [ei, ej]) of the trails [e1, ei−1] and [ej+1, em] whether r−

and/or r+ is/are empty.
Furthermore we have

t(e1 · · · ei′−1r
+) = b(g1) = b(c) = t(gk) = t(c) = b(r−ej′+1 · · · em),

so eν is a trail.
Next we check whether eν alternates between Fν and F ′ν .
Since we have Fν∩{e0 · · · ei′−1∪r+} = Fν−1∩{e0 · · · ei′−1∪r+}, the interval e0 · · · ei′−1r

+

alternates between Fν and F ′ν and the analogous statements holds for r−ej′+1 · · · em.
We know that

ei−1 ∈ Fν−1 ⇔ ei ∈ F ′ν−1 ⇔ ej ∈ Fν−1,

since [ei, ej] is a circuit in eν−1. We also have that

ej′ ∈ Fν ⇔ ei ∈ Fν ⇔ ej ∈ F ′ν .
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Since ej is the first edge of ←−gk, the path e0 · · · ei′−1r
+←−gk alternates between Fν and F ′ν .

Assume that rk−1 = ep · · · er. Then

ep ∈ Fν−1 ⇔ er ∈ F ′ν−1 ⇔ er+1 ∈ Fν−1.

Thus
ep ∈ Fν ⇔ er ∈ F ′ν ⇔ er+1 ∈ F ′ν .

Therefore the path e1 · · · ei′−1r
+←−gkrk−1 alternates between Fν and F ′ν because lastν(

←−gk) is
er+1 and firstν(rk−1) is ep.

Repeating the arguments above we obtain that the whole path eν alternates between
Fν and F ′ν which finishes the proof of (ii).

(iii) Here everything is trivial - except if i = 1 and/or j = m. By symmetry, it is enough
to study one of these, let say j = m. Then the last segment of eν is r+←−gk · · ·←−g1r

− which
is a circuit, so the current end point of eν is the same as the original end point of eν−1.

(iv) All maximal redfν intervals are circuits, therefore removing them one by one from
eν does not destroy the connectivity in greenfν from b(eν) to t(eν) (as far as there are
green edges).

(v) It follows immediately from (iii) and (iv): a non-empty green remainder is a circuit,
so the process will not finish while there still exists some green remainder. Consequently
ν < n(e). �

Lemma 5.6. (a) For each 0 6 ν 6 n and 1 6 r < s 6 m, if eν(r) is greenfν and eν(s)
is redfν , then b(eν(r)) 6∈ eν(s).
(b) Furthermore if eν(r

′) is also greenfν where r < r′ < s, then b(eν(r)) 6= t(eν(r
′)).

Proof. To prove (a) assume on the contrary that for some 1 6 r < s 6 m we have
b(eν(r)) ∈ eν(s), eν(r) is greenfν and eν(s) is redfν .

Consider a counterexample where ν is minimal. Assume that

eν−1 = e1 · · · ei′−1r
−g1r1 · · ·gk−1rk−1gkr

+ej′+1 · · · em

and
eν = e1 · · · ei′−1r

+←−gkrk−1
←−−gk−1 · · · r1

←−g1r
−ej′+1 · · · em.

The edge sequence g1r1 · · ·gk−1rk−1gk (in eν−1) is a circuit.
Since eν(r) is unprocessed in eν therefore eν(r) ∈ e0 . . . ei′−1∪ej′+1 · · · em. Furthermore

eν(s) ∈ ←−gk ∪ ←−−gk−1 ∪ · · · ∪ ←−g1 otherwise its color would be the same under fν−1 and fν
therefore ν would not be a minimal counterexample. But then the property r < s infers
that eν(r) ∈ e0 . . . ei′−1.

Moreover b(eν−1(r)) = b(eν(r)) 6= b(ei) = t(ej). Indeed, if r− is not empty, then
eν−1(r) and ei−1 would form a counterexample to Lemma 5.6(a) in eν−1, which contra-
dicts the minimality of ν (the other case is similar). If both r− and r+ are empty, then
[eν−1(r), eν−1(i − 1)] would be a circuit and it would contain a greenfν cycle, a contra-
diction to the definition of Cν (in eν−1).
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Therefore b(eν(r)) must be an inner vertex of the cycle ei . . . ej. Now if this vertex is not
the last vertex of a←−g` , that is we have b(eν(r)) = b(eν(s)) then greenfν−1

[eν−1(r), eν−1(s)]
would be a circuit, containing a greenfν−1

cycle with smaller maximal element than ej,
which contradicts to the definition of Cν in eν−1. Finally, if this vertex is the last vertex of
a←−g` then it is also the first vertex of r`−1 therefore edges (eν(r)) and first(r`−1) would form
already in eν−1 the forbidden configuration of the statement, contradicting the minimality
of ν.

The proof of (b) uses a similar argument. �

Lemma 5.7. Assume that for some r > 0,

Tr(e, g) = g1r1g2r2 . . . rkgk+1, (5.9)

where the first and/or the last green subsequence can be empty. Then

e = g1
←−r1g2
←−r2 . . .

←−rkgk+1, (5.10)

so we obtain back the original edge sequence e.

It is important to understand that here we do not have any realization in the background
(and no alternation is considered on the edges), we consider only the order of the edges.
The operations above are nothing else, just turning back all maximal redfr(e) intervals in
Tr(e, g).

Proof. We apply mathematical induction on r. For r = 0 the statement is trivial because
T0(e, g) = e = g1.

Now we assume that the statement is true for (r− 1) and we are going to prove it for
r. For that end assume that

Tr−1(e, g) = g1r1 · · · r−gtrt · · · ru−1gur
+︸ ︷︷ ︸gu+1 · · · · · · rkgk+1. (5.11)

where the formulas 5.4 and 5.5 select the intervals r−gtrt · · · ru−1gur
+ to process (where

r− and/or r+ can be empty).
To compute Tr(e, g) we should check if r− and r+ are empty or not. Altogether there

are four cases to investigate, however the properties of one end of the sequence of Cr does
not influence the other end, therefore it is enough to consider one “generic case”, say,
when r− is empty but r+ is not empty. Then

Tr(e, g) = g1r1 · · · r+←−guru−1
←−−gu−1 · · · rt←−gt︸ ︷︷ ︸

red in fr(e, g)

gu+1 · · · · · · rkgk+1. (5.12)

Now r+←−guru−1
←−−gu−1 · · · rt←−gt is a maximal red interval in f r(e, g). When we “turn back” the

f r(e, g)-red maximal intervals in Tr(e, g) we get:

g1
←−r1 · · ·gt−1

(←−−−−−−−−−−−−
r+←−guru−1 · · · rt←−gt

)
gu+1
←−−ru+1 · · · · · ·←−rkgk+1 =

g1
←−r1 · · ·gt−1

(
gt
←−rt · · ·gu−1

←−−ru−1gu
←−
r+
)
gu+1 · · · · · ·←−rkgk+1 =

g1
←−r1 · · ·gt−1gt

←−rt · · ·gu−1
←−−ru−1gu

←−
r+gu+1 · · · · · ·←−rkgk+1 = e (5.13)

where (5.13) is just the inductive assumption. �
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Lemma 5.8. Let e′ = Tr(e, g) for some r > 0, and assume that (5.9) holds, and define
n` := n(r`) for 1 6 ` 6 k. Furthermore let t0 = 0 and t` := n1 + · · ·+n` for all 1 6 ` 6 k.
Then

Tt`(e′, g) = g1
←−r1 . . .g`

←−r`g`+1r`+1 · · · rkgk+1.

Remark 5.9. It is important to emphases that there is no reason that the algorithm
running on e′ would provide the same cycle decompositions of circuits ri as the the same
algorithm, running on the original e would do. As a matter of fact one can construct
example where this is not the case.

Proof of the Lemma 5.8. We apply induction on `. For ` = 0 there is no processed edge
in e′, moreover t0 = 0, so nothing to prove. So assume that ` > 1 and we know the
statement for `− 1. For v = 0, . . . , n` let τv := t`−1 + v. We are going to show that

Tτv(e′, g) = g1
←−r1 · · ·←−−r`−1g`T

v(r`, g)g`+1r`+1 · · ·gk+1. (5.14)

In words: iterations t`−1+1, . . . , t` of our algorithm work on r` and completely process it,
furthermore at each iteration we have

f τv(e′, g)
∣∣
r`

= fv(r`, g). (5.15)

We prove it with induction on v. When v = 0 then we have nothing to prove, since case
τ0 coincides with t`−1. Assume now that (5.14) and (5.15) hold for τv−1 and prove it for
τv = τv−1 + 1.

Now we compute

Tτv(e′, g) = T
(
Tτv−1(e′, g), f τv−1(e′, g)

)
.

Let jτv and iτv be the natural numbers j and i given by formulas (5.4) and (5.5) for
Tτv−1(e′, g) and f τv−1(e′, g)).

By Lemma 5.4 (i) the current ejτv , the jτvth element of Tτv−1(e′, g), is after all
redfτv−1 (e′,g)) edges. However it is within r` since the original execution of our algorithm
producing e′ fully processed the closed trail r` while in Tτv−1(e′, g) it is not achieved yet:
there exists at least one unprocessed cycle. Finally, for the same reason, eiτv , the iτvth
element of Tτv−1(e′, g), also should be in [r`]. So we know that [eiτv , ejτv ] (computed in
Tτv−1(e′, g)) is inside r`.

Thus, by the inductive hypothesis (5.15), the operation T described in Definition
5.3 produces the same circles for Tτv−1(e′, g) and f τv−1(e′, g), and for Tv−1(r`, g) and
fv−1(r`, g), i.e.,

C
(
Tτv−1(e′, g), f τv−1(e′, g)

)
= C

(
Tv−1(r`, g), fv−1(r`, g)

)
.

which, in turn, proves (5.15) and (5.14) for τv. �

Now we are ready to formalize the center piece of our control mechanism to govern the
construction of the required multicommodity flow (or, in other words, the swap sequences
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between different realizations). With the previous definitions one can quantify the size
of a parameter set to follow the current status of the cycles in the decomposition of the
alternating circuit e. It clearly can be exponentially big, so this cannot prove fast mixing
time.

However, we do not need to know the status of those cycles. What we really have
to know is the original trail e. And, surprisingly enough, we can determine it with high
probability. More precisely the following property holds:

Theorem 5.10. If e is a circuit, and 0 6 s 6 n(e), then

Ts(Tr(e, g), g) = e (5.16)

for some 0 6 s 6 n(Tr(e), g).

Proof. Write e′ = Tr(e, g) and assume (5.9) that is

e′ = g1r1g2r2 . . . rkgk+1.

The application of Lemma 5.8 for ` = k proves the statement, noting Lemma 5.7. �

What this statement says is the following. Assume that we performed a certain amount
of swaps along the cycle decomposition of the original alternating circuit (using our de-
composition algorithm) and we have the alternating circuit Tr(e, g) in our hands. Then,
if we consider this alternating circuit as a totally fresh one and we use our decomposition
algorithm, furthermore we perform our swap operations along this decomposition, then
this procedure will process the red r` subsequences one by one. But our problem here is
that we do not know - yet - when this procedure processes fully all necessary rks. In other
words: when we should halt the algorithm.

However knowing the number of processed edges in the fully processed circuits of e′

completely solves this problem, since we can use this parameter to halt our algorithm on
e′. And the size of the set of the possible numbers is simply quadratic. This set together
with the polynomial running time of the algorithm named in (5.16) provides a polynomial
means to determine e with its alternations.

One can ask the reason why this newly developed method is so effective. In the
attempted approach described shortly at the beginning of Subsection 5.2 we tried to deal
with all possible cycle decompositions of the circuits (this consist of all cycles and all their
order). Analysis of the new method only requires consideration of a quadratic number of
possible cycle decompositions.

5.3 Construction

If X, Y ∈ V (G) let E(X 4 Y ) be the symmetric difference of the edge sets E(X) and
E(Y ), set E(X − Y ) = E(X) \ E(Y ), and E(Y −X) = E(Y ) \ E(X).

Before we describe the construction of our multicommodity flow we need some further
definitions:
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Definition 5.11. For T ∈ V (G) let MT be the bipartite k× l adjacency matrix of T . For

X, Y, Z ∈ V (G) write M̂(X + Y − Z) = MX +MY −MZ . (As we will see in the proof of
the Key Lemma, these k× l matrices essentially encode the paths from X to Y along Z.)

If M and M ′ are m×m′ matrices then let d(M,M ′) be the number of non-zero elements
in M −M ′ (the well-known Hamming distance).

Outline of the construction of the path system. Fix a total order � on U ×V. This
will induce a total order �′ on all subsets of that product (namely we take the induced
lexicographic order), in particular also on circuits in [U, V ]. This will also induce a total
order �∗ on all sets of circuits in [U, V ] (we can take again the induced lexicographic
order).

For each X 6= Y ∈ V (G) do the following.

(A) Let SX,Y = S(E(X−Y ), E(Y −X)). (This notation was introduced at (5.2).) To each
s ∈ S(E(X−Y ), E(Y −X)) consider the unordered alternating circuit decomposition
Cs of (E(X − Y ), E(Y −X)). (This is described in Lemma 5.2.)

(B) Order Cs using �′ to obtain the ordered alternating circuit decomposition

W s
1 ,W

s
2 . . . ,W

s
ks

of (E(X − Y ), E(Y −X)).

(C) EveryW s
i is an alternating circuit in the bipartite graph (U∪V,E(X−Y )∪E(Y −X)).

Consider the enumeration e1 . . . em of W s
i , where e1 is the ≺′-minimal edge in W s

i , and
e2 is the smaller edge for ≺′ among its two neighboring edges, while em is the bigger.
(This fixes uniquely the trail which traverses this circuit.) Now we can apply the
method of Subsection 5.2 to determine the cycle decomposition of W s

i for 1 6 i 6 ks:

Cs,i
1 , Cs,i

2 , . . . , Cs,i
`s,i
.

Actually, we obtain cycle Cs,i
j as a sequence of edges. We keep this order to process

Cs,i
j further in (F).

(D) Let
C1, C2, . . . , Cms .

be the short hand notation for the (alternating) cycle decomposition

Cs,1
1 , Cs,1

2 , . . . , Cs,1
`s,1
, Cs,2

1 , Cs,2
2 , . . . , Cs,2

`s,2
, . . . , Cs,ks

1 , Cs,ks
2 , . . . , Cs,ks

`s,ks

of E(X 4 Y ). We will call it a canonical cycle decomposition.

(E) For each cycle C in this decomposition we inherit an enumeration of that cycle (see
(C)), which also determines a direction on the cycle. So for a, b ∈ C we can define
[a, b]C as the trail from a to b in C according to this fixed direction.
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The following observation plays a crucial role in our method:

Observation 5.12. The function s itself determines this canonical decomposition, and
also determines the direction of the cycles in the decomposition. So we do not need to
know E(X − Y ) and E(Y −X) to compute the Cs,i

j , or even [a, b]Cs,ij
from s.

(F) Let Υ (X, Y, s) be a path of realizations

X = G0, G1, . . . , Gn1 , Gn1+1, . . . , Gn2 , . . . , Gnms = Y (5.17)

in G from X to Y such that

(a) nms 6 c · n2,

(b) E(Gni) =
(
E(Gni−1

) ∪ (E(Y ) ∩ E(Ci)
)
\
(
E(X) ∩ E(Ci)

)
for i = 1, 2, . . . ,ms,

(c) if for i < ms we denote the first vertex of the cycle Ci+1 in the order inherited
from the construction by ai+1, then for each ni 6 j 6 ni+1 there is is a vertex
bj in Ci+1 such that ∣∣E(Gj)4 F

∣∣ 6 Ω1,

where

F =
(
E(Gni) ∪

(
[ai+1, bj]Ci+1

∩ E(Y )
)
\
(
[ai+1, bj]Ci+1

∩ E(X)
))
,

(d) for each j = 1, 2, . . . , nms there is T ∈ V (G) such that

d
(
M̂(X + Y −Gj),MT

)
6 Ω2,

where c,Ω1 and Ω2 are fixed “small” natural numbers. (Recall here, that by the
definition of the Markov chain, in this path each graph G`+1 is constructed from the
previous one G` by a valid swap operation.)

Key Lemma 5.13. Let X 6= Y ∈ G. If we can assign paths〈
Υ (X, Y, s) : s ∈ S(E(X − Y ), E(Y −X)), X, Y ∈ V (G)

〉
according to (A)-(F) then (4.7) holds and so our Markov chain is rapidly mixing.

Proof of the Key Lemma: Fix Z ∈ V (G). We need to prove (4.7):

∑
X,Y ∈V (G)

∣∣{s ∈ SX,Y : Z ∈ Υ (X, Y, s)
}∣∣

|SX,Y |
6 poly(n) ·N.

Let

M =
{
M̂(X + Y − Z) : Z ∈ Υ (X, Y, s) for some X, Y ∈ V (G) and s ∈ S(X, Y )

}
.
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By (F)(d) for each M̂ = M̂(X+Y −Z) ∈M there is T ∈ V (G) such that d(M̂,MT ) 6 Ω2,

i.e. there are at most Ω2 positions where MT and M̂(X + Y − Z) are different, so we have

at most (n2)Ω2 = n2Ω2 difference sets. Furthermore every entry of M̂(X + Y − Z) lies in
the set {−1, 0, 1, 2}, so a fixed difference set we have most 3Ω2 possibilities. So

|M| 6 |V (G)| · n2Ω2 · 3Ω2 6 poly(n) · |V (G)| = poly(n) ·N.

For M̂ ∈M let

X(Z, M̂) =
{

(X, Y, s) : s ∈ S(X, Y ), Z ∈ Υ (X, Y, s), M̂(X + Y − Z) = M̂
}
. (5.18)

Since |M| 6 poly(n) ·N , if we can prove that∑
(X,Y,s)∈X(Z,M̂)

1

|SX,Y |
6 poly(n) (5.19)

for all M̂ ∈M, then (4.7) holds.

To verify (5.19) fix M̂ ∈ M. Let (X, Y, s) ∈ X(Z, M̂) be arbitrary. Since MZ + M̂ =
MX +MY , we can compute

∆ = E(X 4 Y )

from Z and M̂ . Denote by (2d1, . . . , 2dh) the degree sequence of E(X 4 Y ). Put

t∆ =
h∏
1

(di!).

Clearly
t∆ = |SX,Y | ,

and so ∑
(X,Y,s)∈X(Z,M̂)

1

|SX,Y |
=

∑
(X,Y,s)∈X(Z,M̂)

1

t∆
=

∣∣∣X(Z, M̂)
∣∣∣

t∆
.

Thus to prove (5.19) we need to show that∣∣∣X(Z, M̂)
∣∣∣ 6 poly(n) · t∆. (5.20)

Let
S =

{
s : for some (X, Y ) we have (X, Y, s) ∈ X(Z, M̂)

}
. (5.21)

To get (5.20) it is enough to show the following statement.

Lemma 5.14. For each possible Z and the corresponding set S we have:

(a) |S| 6 poly(n) · t∆,
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(b) for each s ∈ S we have∣∣∣{(X, Y ) : (X, Y, s) ∈ X(Z, M̂)
}∣∣∣ 6 poly(n). (5.22)

To prove this lemma fix (X, Y, s) ∈ X(Z, M̂). We should recall the construction of the
path Υ (X, Y, s) which can be demonstrated as:

W1, · · · · · · Wk, · · · · · · Wks︷ ︸︸ ︷
Ck

1 , · · · , Ck
` , · · · , Ck

`k︷ ︸︸ ︷
Gk,`

1 , · · · , Gk,`
m , · · · , Gk,`

mk,`
(5.23)

where

(1) we consider first the circuit decomposition of (E(X − Y ), E(Y −X)) determined by
s:

W1,W2 . . . ,Wks ;

(2) then, using the method of subsection 5.2 for each 1 6 k 6 ks we define an alternating
circuit decomposition of Wk:

Ck
1 , C

k
2 , . . . , C

k
`k

;

(3) then in (F) for each 1 6 k 6 ks and 1 6 ` 6 `k we define a sequence of elements of G:

Gk,`
1 , . . . , Gk,`

m , . . . Gk,`
mk,`

,

such that

E
(
Gk,`

1

)
=

[
E(Y ) ∩

( ⋃
k′<k

E(Wk′) ∪
⋃
`′<`

E
(
Ck
`′

) )] ⋃
[
E(X) ∩

( ⋃
k′>k

E(Wk′) ∪
⋃
`′>`

E
(
Ck
`′

) )]
, (5.24)

and Gk,`
mk,`

= Gk,`+1
1 if ` < `k, G

k,`k
mk,`k

= Gk+1,1
1 if k < ks, and G

ks,`ks
mks,`ks

= Y (the

equation 5.24 is just a reformulation of (F)(b));

(4) finally Υ (X, Y, s) is the path

X = G1,1
1 , G1,1

2 , . . . , Gk,`
m , . . . , Gks,`ks

mks,`ks
= Y (5.25)

in G from X to Y (see (5.17)). As we observed in (3) above, Gk,`
mk,`

= Gk,`+1
1 if ` < `k,

Gk,`k
mk,`k

= Gk+1,1
1 if k < ks. We include just one copy of each of these graphs in the

sequence above.
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Fix k, `, m such that Z = Gk,`
m , which means that we are processing the `th cycle from

the kth circuit.
By (F)(c) there are two vertices a and b in Ck

` such that∣∣E(Gk,`
m )4 F

∣∣ 6 Ω1, (5.26)

where
F =

(
E
(
Gk,`

1

)
∪
(
[a, b]Ck` ∩ E(Y )

)
\
(
[a, b]Ck` ∩ E(X)

))
. (5.27)

To prove Lemma 5.14 (b) we show that

(†) there is a function Ψ and a parameter set B such that B has poly(n) elements, and

for each (X, Y, s) ∈ X(Z, M̂) there is B ∈ B such that

Ψ
(
Z, M̂(X + Y − Z), s, B

)
= (X, Y ). (5.28)

Recall that Z = Gk,`
m so we have E

(
Gk,`
m

)
. If we choose the parameter B as the quadru-

ple
(
i, a, b, E

(
Gk,`
m

)
∆F

)
, then we can compute F = E(Gk,`

m )∆
(
E(Gk,`

m )∆F
)

using this

parameter, and so

E(X) \ E(Y ) =
(

[a, b]Ck` \ F
)⋃(

[b, a]Ck` ∩ F
)⋃

[( ⋃
k′<k

E(Wk′) ∪
⋃
`′<`

E
(
Ck
`′

) )
\ F

]⋃[
F ∩

( ⋃
k′>k

E(Wk′) ∪
⋃
`′>`

E
(
Ck
`′

) )]
. (5.29)

Since i 6 n2, a, b 6 n and
(
E(X)\E(Y )

)
4F is an at most Ω1 element subset of [U ∪V ]2,

the size of the parameter set is polynomial:

|B| 6 n2 · n · n · (n2)Ω1 .

Since Z and M̂(X + Y − Z) determine E(X) ∩ E(Y ), we can compute E(X). Similarly
we can compute E(Y ). So we verified (†), and so Lemma 5.14 (b) holds.

Now we turn to prove Lemma 5.14 (a). We will do it in steps (a1) – (a3).

(a1) Each function s ∈ S, which corresponds to the circuit decomposition

W1, . . .Wk−1,Wk,Wk+1 . . . ,Wks

(see Lemma 5.2), is computable - using a small parameter set - from the function
s′ corresponding to the circuit decomposition

W1, . . .Wk−1,T
`−1(Wk, g),Wk+1 . . . ,Wks .
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Indeed, by Theorem 5.10, Tt(T`−1(Wk, g), g) = Wk for some t. So, as we described after
Theorem 5.10, the parameter k and the number of the processed edges in circuit Wk

together determine fully e, and k 6 n2 and the number of processed edges is also 6 n2.
So (a1) holds. �(a1)

We need some preparation before we can formulate and prove (a2): Recall that Lemma
5.5 (ii) infers

s′ ∈ S
(

∆ ∩ E
(
Gk,`

1

)
,∆ \ E

(
Gk,`

1

))
.

The sequence
e′ = e1e2 . . . eµ = T`−1(Wk, g)

is an alternating circuit in Gk,`
1 . (All circuits of the decomposition with k′ < k are already

fully processed. No circuit after Wk is touched yet. So it is enough to consider only this.)
We use the notations f = f `−1(Wk) and

e′ = g1r1 . . .gu

where gs are maximal greenf , and ro are maximal redf intervals. We know that the
current cycle:

Ck
` = greenf [ei, ej]

(for some 0 6 i < j 6 n) is undergoing a series of swaps operations which will exchange
its edges between the realizations X and Y. When this swap sequence is completed then
the processing of this cycle in the cycle decomposition of circuit Wk will be done, and
the coloration of its edges will become redf` . Now the assumption (F)(c) about our swap
sequence generation, applying for Gk,`

m , gives us an interval

[a, b]Ck` = greenf [ei, ej′ ],

for some i 6 j′ 6 j.
Assume that ei ∈ go and ej′ ∈ gt. Write go = go,0go,1, where ei is the first edge of go,1,

and write gt = gt,0gt,1, where ej′ is the last edge of gt,0.
Consider the sequence

e′′ = g1r1 . . . ro−1go
←−rogo+1 . . .

←−−rt−1gtrt . . .gu.

Now e′′ is the concatenation of three (∆ ∩ F,∆ \ F )-alternating paths: g1r1 . . . ro−1go,0
and go,1

←−rogo+1 . . .
←−−rr−1gt,0, and finally gt,1rt+1 . . .gu. However in general this trail is not

necessarily alternating, because on the border of gt,0 and gt,1 furthermore on the border
of gt,0 and gt,1 is not alternating anymore. (However, if one or both of the red circuits r−

and/or r+ exist then this problem will not occur there (see equation (5.11)).

(a2) The trail e′ is computable (using a small parameter set) from e′′.
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Indeed, e+ = go,1
←−ro . . .←−−rt−1gt,0 is computable from e′′ because it is a subsequence. Since

[ei, ej] = go,1ro . . . rt−1gt,0gt,1 . . . rt+1 . . . ej

is a circuit, we can apply Theorem 5.10 to find some v 6 n2 such that Tv(e+, g) =
go,1ro+1 . . . rt−1gt,0. Thus [ei, ej] (in e′) is computable from e′′. Since e′ and e′′ agree
outside [ei, ej], we proved (a2).

We turn our attention now to the third obstacle: till now we showed that knowledge
of [a, b]Ck` would determine fully s from s′. However we do not know exactly the sequence

s′, since the assumption of (F) (c) allowed that
∣∣E(Gj)4 F

∣∣ 6 Ω1, so a small number of
edges of the current realization are not on the alternating path determined by s′. Next
we will deal with this problem:

(a3) The sequence s′′ corresponding to the circuit decomposition

W1, . . . ,W`−1, e
′′,W`+1, . . . ,Wk

is “almost” in S (∆ ∩ E (Z) ,∆ \ E (Z)), (see formula 5.30 below) so it is computable
from some element of S (∆ ∩ E (Z) ,∆ \ E (Z)) using a small parameter set.

Recall first that Z = Gk,`
m . Let

E∗ = (E (Z)4 F ) ∪ Ck
` (b(ei)) ∪ Ck

` (t(ej′)).

The last two expressions stand for the two edge pairs which are adjacent to the vertices
b(ei) and t(ej′) in the actual cycle Ck

` . Since Ck
` is a cycle indeed, we have |E∗| 6 Ω1 + 4

(due to (5.26)).
For w ∈ U ∪ V , let

t(w) = s′′(w) ∩ [(∆ ∩ E (Z)) (w), (∆ \ E (Z)) (w)] ,

i.e t(w) is those elements of s′′(w) which alternate between ∆ ∩ E (Z) and ∆ \ E (Z).
Since t(w) is a set of independent edges in

H = [(∆ ∩ E(Z)) (w), (∆ \ E (Z)) (w)] ,

we can find a perfect matching extension s∗(w) of t(w) in the complete bipartite graph
H, because both side of the H have the same number of vertices. Then for this perfect
matching we have

s∗ ∈ S (∆ ∩ E (Z) ,∆ \ E (Z)) .

Next we show that the difference between s′′ and s∗ is small, namely∑
w∈U∪V

|s′′(w)4 s∗(w)| 6 4Ω1 + 16. (5.30)
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For that end let w ∈ U∪V and (e, e′) ∈ s′′(w) such that e, e′ /∈ E∗. Then, by the definition
of E∗, we have

e ∈ ∆ ∩ E(Z)⇔ e ∈ ∆ ∩ F and e′ ∈ ∆ ∩ E(Z)⇔ e′ ∈ ∆ ∩ F.

So since (e, e′) alternates between ∆∩F and ∆\F , (e, e′) also alternates between ∆∩E(Z)
and ∆ \ E(Z). So (e, e′) ∈ t(w) ⊂ s∗(w), and so (e, e′) /∈ s′′(w)4 s∗(w). Thus∑

w∈U∪V

|s′′(w) \ s∗(w)| 6∣∣∣ ⋃
w∈U∪V

{
(w, e, e′) : (e, e′) ∈ s′′(w), e ∈ E∗ or e′ ∈ E∗

}∣∣∣ 6
2 · |E∗| 6 2Ω1 + 8. (5.31)

Since |s′′(w)| = |s∗(w)|, we have 2 · |s′′(w)\s∗(w)| = |s′′(w)4s∗(w)|, so (5.31) gives (5.30).
Therefore s∗ together with a small parameter set which describes the symmetric dif-

ferences s′′(w) 4 s∗(w) for w ∈ U ∪ V determines completely s′′, thus (a3) is true as
well.

Putting together (a1)–(a3) we obtain

|S| 6 poly1(n) · poly2(n) · poly3(n) ·
∣∣S(∆ ∩ E(Z),∆ \ E(Z)

)∣∣
= poly(n) · t∆.

So Lemma 5.14 (a) holds, which in turns completes the proof of the Key Lemma. �

We try to carry out the plan we just described. So:

• Fix X 6= Y ∈ V (G).

• Pick s ∈ S(X, Y ).

• s gives an alternating cycle decomposition

C0, C1, . . . , C` (5.32)

of E(X 4 Y ).

We want to define a path

X = G0, . . . , Gi, . . . , Gm = Y (5.33)

from X into Y in G - denoted by Υ (X, Y, s) - such that

(i) the length of this path is 6 c · n2 (where c is a suitable constant),
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(ii) for some increasing indices 0 < n1 < n2 < . . . n` we have Gni = Hi, where

E(Hi) = E(X)4

(⋃
i′<i

E(Ci′)

)
. (5.34)

So we have certain “fixed points” of our path Υ (X, Y, s), and this observation reduces our
task to the following:

• for each i < ` construct the path

Hi = G′0, G
′
1, . . . , G

′
m′ = Hi+1 (5.35)

between Gni and Gni+1
such that m′ 6 c · |Ci| and (F)(d) holds, i.e. for each j there

is Kj ∈ V (G) such that d
(
M̂(X, Y,G′j), Kj

)
6 Ω2.

From now on we work on that construction. To simplify the notation we write G = Hi

and G′ = Hi+1. We know that the symmetric difference of G and G′ is just the cycle Ci.
Now we are in the following situation:

Generic situation - construction of a path along a cycle

(i) X, Y,G,G′ ∈ V (G).

(ii) The symmetric difference of E(G) and E(G′) is a cycle C.

(iii) the symmetric differences E(X4G), E(G4G′) and E(G′4Y ) are pairwise disjoint.

Construct a path
G = G0, . . . , Gm = G′ (5.36)

in the graph G of all realizations such that

(I) m 6 c · |C|, and the requirement of (F)(c) also holds,

(II) for each j there is Kj ∈ V (G) such that d
(
M̂(X, Y,Gj),MKj

)
6 Ω2.

We will carry out this construction in the next sections. The burden of such a construction
is to meet requirement (II). In [7] and in [2] the regularity of the realizations was used.

The “friendly path method”.
In the next sections we describe a new general method based on the notion of friendly
paths (see Definition 6.3) to construct the paths Υ (X, Y, s).

The novelty of our friendly path method can be summarized as follows:

• if our bipartite degree sequence is half-regular then the paths Υ (X, Y, s) satisfy the
previous condition (II)

• if our bipartite degree sequence is arbitrary, then Υ (X, Y, s) satisfies (II) provided
the symmetric difference of X and Y is a cycle.

Originally we conjectured, that our friendly path method always produces paths which
satisfy (II). However we were unable to prove it, and now we think that essentially new
ideas are needed to prove the case of general bipartite degree sequences.
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6 Multicommodity flow - along a cycle

Let X, Y and Z be three realizations of a given bi-graphical degree sequence. Assume
that E(X) ∩ E(Y ) ⊂ E(Z), furthermore E(Z) ⊆ E(X) ∪ E(Y ). Then the realization Z
is an intermediate realization between X and Y.

In this section we describe the construction a path along an alternating cycle C. Here
we have the intermediate realizations G and G′ between X to Y , and these two realizations
differ only in this cycle C, where G ∩ C = X ∩ C and G′ ∩ C = Y ∩ C. At the beginning
of this phase our canonical path is between X and G. Along the process we extend it to
reach realization G′. Within the process all swaps will happen between vertices V (C) of
the cycle C and the end of the process each chord will be at the same state as it was at
the beginning, except the edges along the cycle, where the X-edges will be exchanged by
the Y -edges.

In what follows we will imagine our cycles as convex polygons in the plane, and we will
denote by the vertices of any particular cycle of 2` edges with u1, v1, u2, v2, . . . , u`, v`. The
edges of the cycle are (u1, v1), (v1, u2), . . . , (u`, v`), (v`, u1) and they belong alternately to
X and Y. All the other (possible, but not necessarily existing) edges among vertices of a
particular cycle are the chords. (In other words we will use the notion of chord if we want
to emphasis that we do not know whether the two vertices form an edge or not in the
current graph.) A chord is a shortest one, if in one direction there are only two vertices
(that is three edges) of the cycle between its end points. The middle edge of this three is
the root of the chord.

W.l.o.g. we may assume that (u1, v1) is an edge in G while (v1, u2) belongs to G′. We
are going to construct now a sequence of graphical realizations between G and G′ such
that any two consecutive elements in this sequence differ from each other in one swap
operation. The general element of this sequence will be denoted by Z.

We have to control which graphs belong to this sequence. For that purpose we assigned
a matrix M̂ to each graph Z. If G is a vertex in G then MG denotes the adjacency matrix of
the bipartite realization G where the columns are indexed by the vertices of V , numbered
from left to right, and the rows are indexed by the vertices of U, numbered from bottom
to top. Hence the entry in row i, column j of the matrix will be written as (j, i) and
corresponds to the chord (vj, ui). With some abuse of notation we also will use the word
“chord” to refer to the matrix position as well. This is nonstandard notation for the
entries of a matrix, but matches the Cartesian coordinate system. Then let

M̂(X + Y − Z) = MX +MY −MZ .

By definition each entry of an adjacency matrix is 0 or 1. Therefore only −1, 0, 1, 2 can be
the entries of M̂. An entry is −1 if the corresponding edge is missing from both X and Y
but it exists in Z. The entry is 2 if the corresponding edge is missing from Z but exists in
both X and Y. The entry is 1 if the corresponding edge exists in all three graphs (X, Y, Z)
or it is there only in one of X and Y but not in Z. Finally it is 0 if the corresponding
edge is missing from all three graphs, or the edge exists in exactly one of X and Y and is
also present in Z. (Therefore if a chord denotes an existing edge in exactly one of X and
Y then the entry corresponding to this chord is always 0 or 1.)
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Observation 6.1. Let X, Y and Z be some realizations of a bipartite degree sequence.

(i) The row and column sums of M̂(X + Y − Z) are the same as the row and column
sums in MX (or MY or MZ).

(ii) If Z is an intermediate realization between X and Y then M̂(X +Y −Z) is another
realization of the same degree sequence (and all entries are 0 or 1).

Before we define some further notions we introduce our main tool that we will use later
in this paper to illustrate different procedures in our current realizations.

Usually each cycle under processing is small comparing with the full graph, therefore
we always consider a “comfortably reordered” adjacency matrix (in other words, we apply
a suitable permutation on the vertices) such that the vertices forming the cycle will be
associated to an ` × ` submatrices of our adjacency matrices, and our figures will show
only these submatrices. The positions (1, 1), . . . , (`, `) form the main-diagonal while the
positions right above the main-diagonal as well as the rightmost bottom one (these are
(1, 2), (2, 3), . . . , (` − 1, `) finally (`, 1)) form the small-diagonal. (This placement was
our goal using this numbering system for rows and columns. For example, the element
(1, 2) corresponds to the chord (v1, u2). If this is 1, then there is an edge there, otherwise
the edge is missing.)

Now we introduce a new tool to give a slightly different view about this “central
region”. Let Z be a realization such that the symmetric difference of E(Z) and E(G)
only involves vertices of C. The new tool is the ` × ` matrix FZ defined as follows. In
V (C) (so at this central region) for i, j = 1, . . . , ` we have:

FZ(j, i) =

{
MZ(j, i) if (j, i) ∈ main- or small-diagonals,

[MG +MG′ +MZ ] (j, i) otherwise.

In that way in the main- and small-diagonal’s elements are 0 or 1 while the others (the
off-diagonal entries) can be 0, 1, 2, 3. There is an easy algorithm to construct FZ from

the corresponding M̂(G+G′−Z) and vice versa (please recognize that here we use G and
G′ instead of X and Y ): In the main-diagonal and in the small-diagonal the zeros and

ones must be interchanged. Outside of these diagonal entries −1, 0, 1, 2 of M̂(G+G′−Z)
become 1, 0, 3, 2 in FZ . (In case we need a second realization, similar to Z, we will denote
it with Z ′.)

Since G and G′ coincide outside the alternating cycle C therefore the off-diagonal
elements in FZ are odd when the edge exists in the actual Z and even otherwise. When
Z = G then the main-diagonal entries are 1 while the small-diagonal elements are 0. This
matrix FZ will be used in our illustrating figures and also to conduct the construction of
our canonical path system.

We are ready now to introduce the central notions of our proof:

Definition 6.2. The type of a chord is 1 if it is present in G, and 0 otherwise. Note
that a chord is present in G if and only if it is present in G′. Let (vβ, uα) be a chord so
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δ 6∈ {β, β + 1}. A chord (vβ, uα) is a cousin of a chord (vδ, uε), if the other two corners
of the submatrix, which is spanned by this position and the chord are on the main- or on
the small-diagonals of FZ (see Figure 1). We can describe it with formulae as well: this
chord (vβ, uα) is a cousin of a chord (vδ, uε), if α 6∈ {β, β + 1} and one of the following
holds: {

ε < δ, α ∈ {δ, δ + 1} and β ∈ {ε− 1, ε},
ε > δ, α ∈ {δ − 1, δ} and β ∈ {ε, ε+ 1}.

A chord e is friendly if at least one of its cousins has the same type as e itself, otherwise
it is unfriendly. (Please recall that here “chord” also refers to the position itself within
the matrix therefore we also say that the position is friendly.)

Now Figure 1 illustrates the cousins of the chord (v6, u2) in the initial realization Z =
G. (They are (v1, u6), (v1, u7), (v2, u6), finally (v2, u7) and let’s recall that the word chord
indicates that the definition does not depend on the actual existence or non-existence of
that edge.)

Figure 1: A chord and its cousins
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Before the next important definition we introduce a metric on pairs of positions of this
matrix: ‖A, Ā‖ says how many steps are necessary to go from A to Ā if in every step
we can move to a (horizontally or vertically) neighboring position, we cannot cross the
main-diagonal, finally the position (i, 1) is neighboring to (i, `) and analogously (`, i) is
neighboring to (1, i).

Definition 6.3. A sequence of pairwise distinct positions A1, . . . , Aj is a friendly path
in FG if

(i) each position is friendly (in the matrix FG),

(ii) ‖Ah, Ah+1‖ = 1,

(iii) the chords e1 and ej - defined by the positions A1 and Aj - are shortest chords and
the root of e1 belongs to G while the root of ej does not.
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Figure 2: A friendly path
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A friendly path goes from the main-diagonal to the small-diagonal and it can be quite
complicated, and it is important to remark that such a friendly path is NOT a path in a
particular graph. Furthermore the friendly path is fixed for the entire process determining
the swap sequence from realization G to realization G′, while the notions of chord or cousin
apply for each matrix FZ along the swap sequence.

The name is justified by the image of the friendly path in the illustration of FG, shown
in Figure 2. (It shows the path itself, but it does not show why the individual elements
of the path are friendly.) The figures like this are not for illustration only: whenever we
consider a friendly path we always work on the matrix itself.

6.1 The case that a friendly path exists

In this subsection we describe the construction of the path along this cycle in the case
that a friendly path exists. Fix one friendly path: if there are more than one, then take,
say, the lexicographically smallest one (relative to the subscripts of the positions). Let
the chords of the existing friendly path correspond to the positions A1, . . . , AΛ where
Aj = (a1

j , a
2
j).

By definition our friendly path has the following properties: (i) a1
j 6= a2

j and a1
j+1 6= a2

j ,
(ii) ‖Aj, Aj+1‖ = 1, and finally (iii) A1 is at distance 1 from the main-diagonal, while AΛ

is at distance 1 from the small-diagonal.

First we introduce two new structures:

Definition 6.4. Let 1 6 α, β 6 ` with β 6∈ {α, α+1}. We say an `×`-matrix FZ = (mi,j)
is (α, β)-OK matrix iff

(i) mα,β = 2,

(ii) mi,i =

{
0 for i = α + 1, α + 2, . . . , β − 1,

1 for i = β, β + 1, . . . , α− 1, α,
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(iii) mi,i+1 =

{
1 for i = α, α + 1, . . . , β − 2, β − 1,

0 for i = β, β + 1, . . . , α− 2, α− 1.

(See the LHS of Figure 3.) Please recall that the entry 2 in FZ is an edge which is missing
from Z but exists in both G and G′ (the off-diagonal entries are the same in MG and
MG′).

Figure 3: An (α, β)-OK matrix and an (β, α)-KO matrix

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

2

1

1

1

0

0

0

1

0 1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1 α β 10

1

α

β

10

10

1

1

1

0

0

0

01

0

Definition 6.5. Let 1 6 α, β 6 ` with β 6∈ {α−1, α}. We say an `×`-matrix FZ = (mi,j)
is (β, α)-KO matrix iff

(i) mβ,α = 1,

(ii) mi,i =

{
0 for i = α, α + 1, . . . , β − 1, β,

1 for i = β + 1, . . . , α− 1,

(iii) mi,i+1 =

{
1 for i = α, α + 1, . . . , β − 1,

0 for i = β, β + 1, . . . , α− 2, α− 1.

(See the RHS of Figure 3.) Please recall that the entry 1 in FZ is an edge which exists in
Z but missing from both G and G′.

Lemma 6.6. Let FZ = (mi,j) be an (α, β)-OK matrix and mα−1,β+2 = 3. Assume that
FZ′ = (m′i,j) is an (α−1, β+2)-OK matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, β), (α− 1, β + 2).
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Then there exists an absolute constant Θ such that one can transform Z to Z ′ by at most
Θ swaps (and, meanwhile, transform FZ into FZ′).
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Proof: : It is enough to observe that the symmetric difference of Z and Z ′ is a single
alternating cycle. Indeed, in the next figure the entry 1 indicates edges in E(Z ′−Z) and
the entry 0 indicates edges in E(Z −Z ′). (The non-empty positions of this figure are the
circled positions in the previous matrix FZ′ .)

E(Z ′ − Z) ∪ E(Z − Z ′)

1 0

0

1 0

1 0

1

α

β Therefore
(α− 1, α), (α, α), (α, β),
(β, β), (β, β + 1), (β + 1, β + 1),
(β + 1, β + 2), (α− 1, β + 2) is
an alternating cycle of length 8.

So the difference of the realizations lay in the subgraphs induced by V̄ , which subset
contains 8 vertices. The subgraphs Z[V̄ ] and Z ′[V̄ ] induced by V̄ have the same (bipartite)
degree sequence and they contain alternately the edges of the cycle. By Theorem 2.2 we
know one of them can be transformed by swaps into the other one. Since the cycle
contains four-four vertices from both classes, and there are at most 12 edges, therefore
the canonical swap sequence (by Corollary 3.1) is at most 2× 12 long therefore Θ = 24
is an upper bound on the number of the necessary swaps. �
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Clearly the same argument gives the following more general lemma.

Lemma 6.7. For each natural number u there is a natural number Θu with the following
property: assume that FZ = (mi,j) is an (α, β)-OK matrix and mα′,β′ = 3 where∥∥(α, β); (α′, β′)

∥∥ = u,

furthermore FZ′ = (m′i,j) is an (α′, β′)-OK matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, β), (α′, β′).

Then at most Θu swaps transform Z into Z ′ (and along this FZ is transformed into FZ′).

Proof: The only difference is that here the symmetric difference of Z and Z ′ is a cycle of
length at most 2 + 2u which alternates between Z and Z ′. �

We also have the analogous general result for KO matrices.

Lemma 6.8. For each natural number u there is a natural number Θ′u with the following
property: assume that FZ = (mi,j) is an (β, α)-KO matrix and mβ′,α′ = 0 where∥∥ (β, α); (β′, α′)

∥∥ = u,

furthermore FZ′ =
(
m′i,j

)
is an (β′, α′)-KO matrix such that

(1) m′β,α = 0,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (β, α), (β′, α′).

Then at most Θ′u swaps transform Z into Z ′ (and FZ is transformed into FZ′).

Proof: The proof is very similar to the proof of Lemma 6.7 which is left to the diligent
reader. �

Lemma 6.9. Assume that FZ = (mi,j) is (α, β)-OK matrix and mβ+2,α−1 = 0. Assume
that FZ′ = (m′i,j) is a (β + 2, α− 1)-KO matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, l), (β + 2, α− 1).

Then there exists a natural number Ω such that one can transform Z into Z ′ by at most
Ω swaps (and FZ goes into FZ′).
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Proof: It is enough to observe that the symmetric difference of Z and Z ′ is a single
alternating cycle. Indeed, in the next figure values 1 indicate edges in E(Z ′ − Z) and
values 0 indicate edges in E(Z − Z ′).

E(Z ′ − Z) ∪ E(Z − Z ′)

0 1

01

01

01

01

α

β

Therefore
(α− 1, α− 1), (β + 2, α− 1),
(β + 2, β + 2), (β + 1, β + 2),
(β + 1, β + 1)(β, β + 1),
(β, β), (α, β),
(α, α), (α− 1, α)
is an alternating cycle of
length 10.

The proof goes like the proof of Lemma 6.6: The difference of the realizations lies in the
subgraphs induced by V̄ , which subset contains 10 vertices. The subgraphs Z[V̄ ] and Z ′[V̄ ]
induced by V̄ have the same (bipartite) degree sequence and they contain alternately the
edges of the cycle. By Theorem 2.2 we know one can be transformed by swaps into the
other one. Since the cycle contains five vertices from both classes, and there are at most
20 edges, the number of the necessary swaps (by Corollary 3.1) is at most 2×20 therefore
there exists a constant upper bound Ω 6 40 on the number of the necessary swaps. �

Lemma 6.10. For each natural number u there is a natural number Ωu with the following
property: assume that FZ = (mi,j) is (α, β)-OK and mβ′,α′ = 0 where∥∥(α, β); (α′, β′)

∥∥ = u,
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and FZ′ = (m′i,j) is a (β′, α′)-KO matrix such that

(1) m′α,β = 3,

(2) m′i,j = mi,j if i 6= j, i+ 1 6= j, and (i, j) 6= (α, `), (β′, α′).

Then at most Ωu swaps transform Z into Z ′ (and FZ into FZ′).

Proof: Similar to Lemma 6.7. �

Now using our friendly path we are going to define a sequence of OK- and KO-matrices,
such that we can achieve the required edge changes in G obtaining G′ along this sequence,
using operations described in the previous Lemmas. At first we define a new sequence
A′1, . . . , A

′
Λ from A1, . . . , AΛ in the following way:

A′i =

{
Ai, if FG(Ai) = 0,
Cousin(Ai), if FG(Ai) = 3,

(6.1)

where Cousin(A) denotes one of the cousins of A. If there are more than one positions of
the same type among the corresponding positions, then we choose the lexicographically-
least one. We will use the following notation: the mirror image of the position (α, β) to
the main-diagonal is Mirror(α, β) = (β, α).

Observation 6.11. By definitions,

(i) if FG(Ai) = FG(Ai+1) then
∥∥A′i, A′i+1

∥∥ 6 3,

(ii) if FG(Ai) 6= FG(Ai+1) then
∥∥Mirror(A′i), A

′
i+1

∥∥ 6 3.

Definition 6.12. We define the matrix sequence FG = L0, L1, . . . , LΛ, LΛ+1 = FG′ and
the corresponding realizations Z1, . . . , ZΛ, where Li = FZi for each i as follows:

The matrix Li (i = 1, . . . ,Λ) is defined from the matrix Li−1 by the formulae:

Li =

{
the (A′i)-OK matrix, if Li−1(Ai) = 3,
the (A′i)-KO matrix, if Li−1(Ai) = 0.

Here all positions (u, v) which are NOT determined by the definitions of the OK- and
KO-matrices satisfy Li(u, v) = L0(u, v). �

It is quite clear that (Λ − 1) consecutive applications of (the appropriate) Lemmas 6.6 -
6.10 will take care the definition of the required swap sub-sequences between L1 and LΛ.
However, the swap-sequence transforming L0 into L1 furthermore the one transforming
LΛ into LΛ+1 require special considerations:

• If L0(A1) = 3 then there are two possibilities - depending on the position of the
Cousin(A1). (The squares denoted with dashed lines contain the possible positions
of friendly cousins.)
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The connecting swap-sequence from the matrix LΛ to LΛ+1 (which is FG′) can be defined
analogously to the previous one. This completes the definition of the canonical path
Γ(X, Y, s).

Next we will analyze the behavior of the current matrices M̂(G,G′, Z) along these
sub-sequences. At first we consider those Z’s which correspond to matrices Li.

Let M be an integer matrix and let M ′ be a 2 × 2 submatrix of it. If we add 1’s to
the values of the positions of one diagonal in M ′ and −1’s to the values of the positions
of the other diagonal, then the acquired matrix has the same row and column sums as M
had. Such an operation is called a switch. When our matrix M is the adjacency matrix
of a degree sequence realization, then any swap clearly corresponds to a switch of that
matrix. We say that the two matrices are in switch-distance 1 from each other. It is
clear that bounded switch-distance between two matrices also means bounded Hamming
distance between them (as it was required in (F)(d)).

The following lemma is an auxiliary result, which help us to handle the numbers of
different paths (in our canonical path system) which cover the same edge. It has no role
in the definition of our path system, but it helps to show that this path system obeys the
rules outlined in (A) – (F) is Section 5.

Lemma 6.13. For i = 1, . . . ,Λ there exist realizations G1, . . . , GΛ in V (G) for which

MGi is in switch-distance 1 from the matrix M̂(G+G′ − Zi) for i = 1, . . . ,Λ.

Proof: We show here the statement for such an Li where Li(Ai) = 0 therefore Li itself
is an (A′i)-KO matrix, and where - by definition - Ai = A′i (the other case is similar).
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Due to the definitions Ai originally is not an edge either in G or in G′. It belongs to the
friendly path, therefore we also know that FG(Cousin(Ai)) = FG′(Cousin(Ai)) = 0 hold.
In Li this value is 1, so Ai is an edge in Zi. Therefore Li which is = FZi looks like the
matrix to the left in the following figure (the circled element is the cousin of Ai). The

corresponding M̂(G+G′ − Zi) is shown on the right hand side:
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It is clear that adding 1 to the values of the positions Ai and Cousin(Ai) of M̂(G+G′−Zi)
and subtracting 1 from the other two corners of the spanned submatrix constitutes the
required switch. �
( In the figures above Ai is (5, 2). Here one can also recall that outside our `×` submatrix
every entry is 0 or 1 and after the switch the same applies inside the submatrix. Therefore,
due to the row- and column-sum conditions, the acquired matrix is a realization indeed.)

Lemma 6.14. The realization G can be transformed into the realization G′ through re-
alizations Zi (i = 1, . . . ,Λ) in such a way that the lengths of the swap sub-sequences
leading from each Zi to Zi+1 (where 0 = 1, . . . ,Λ) can be bounded from above by the ab-

solute constant max{Θ3,Θ
′
3, Ω3}. In this process, each arisen matrix M̂(G + G′ − Zi) is

within a constant switch-distance from some vertex in V (G) (that is some realization of
the bipartite degree sequence).

Proof: By Observation 6.11 for each i the positions A′i and A′i+1 or Mirror(A′i) and
A′i+1 are at most distance 3. Therefore for each i (where i = 2, . . . ,Λ) the corresponding
process chosen among Lemma 6.7, Lemma 6.8 and Lemma 6.10 will describe the desired
swap sub-sequences. The length of any such swap-subsequence is bounded from above by
max{Θ3,Θ

′
3,Ω3}.

Furthermore when in the process the current realization Zi corresponds to an FZi = Li,

then Lemma 6.13 applies, and matrix M̂(G + G′ − Zi) has switch-distance 1 from the
adjacency matrix of some realization ∈ V (G).

Let now Z be a realization in the process, say, on the path between the matrices Li
and Li+1: then M̂(G+G′−Zi) can be transformed through swaps into M̂(G+G′−Zi+1)
(assume, this end is the closer one to Z). As we know all swaps are specialized switches,
and they keep the row and column sums. Combining this with the previous paragraph, we
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have for every Z that M̂(G+G′−Z) is at most
⌈

1
2

max{Θ3,Θ
′
3,Ω3}

⌉
+ 1 switch distance

from some realization ∈ V (G). �

Key problem

One can say that we are very close to proving the rapidly mixing property of our
Markov process on all bipartite degree sequences: we should prove, that in the case
when there exists a friendly path from G to G′ then for each intermediate Z the matrix
M̂(X + Y − Z) is in a constant distance from some realization ∈ V (G). If we can
manage this then we must handle the cases when there are no friendly paths. It is
somewhat surprising that this second requirement can be satisfied successfully (as it
will be shown in Subsection 6.2).

However, we cannot manage to prove the first requirement. The problem is the
following: we can try to repeat the proof of Lemma 6.14, but, unfortunately, it is
not true anymore that for each graph Z, corresponding to a particular matrix Li, the
matrix M̂(X + Y − Z) is also in distance 1 from some realization in V (G).

In the realizations G and G′ all chords have the same types, but this is not the case
for realizations X and Y. The edges in E(X−Y )∪E(Y −X) belong to only one of them.

Therefore if a swap turns an entry to 2 in M̂(G + G′ − Z) then this entry originally
was 1: the edge belonged to G and G′ and Z as well. Therefore its cousin bears the
entry 1 (also belonged to G and G′ and Z as well). So this entry was appropriate to
perform a switch to turn the matrix under investigation into the adjacency matrix of a
realization. However, if the cousin entry is 0 in M̂(X +Y −Z) (this edge belongs only
to one of realizations X and Y , say, it belongs to X only), then the required switch
cannot be performed. (The value −1 can cause a similar problem and can be handled
similarly as this case.)

A good solution for this particular problem would probably end up in a complete
proof of the rapidly mixing property.

The following observation is enough to handle the switch-distance problem for M̂(X+Y −
Z) in half-regular bipartite degree sequences. Recall, a bipartite degree sequence (a,b) is
half-regular if in a all degrees are the same, while the entries in b can be anything.

Lemma 6.15. Assume that our bipartite degree sequence (a,b) is half-regular and the
matrix FG under investigation contains a friendly path. Then the statement of Lemma 6.14
applies for the matrices M̂(X + Y − Zi) as well.

Proof: We follow the proof of Lemma 6.14. To do so the only requirement is to show
(somewhat loosely) that the matrices M̂(X + Y − Li) are in a constant switch-distance
from the adjacency matrix of some realizations. As we know any of these matrices con-
tains exactly one entry of value different from 1 and 0. So consider a particular Li and
assume that this “extra” value in this case is a 2. If the switch, described in the proof of
Lemma 6.13, is also a possible switch in M̂(X + Y −Z) then we are done. If this not the

case then the entry (with value 1 in matrix M̂(G+G′−Li)) has value 0 in M̂(X+Y −Li).
(In this case, as we discussed it previously, the corresponding edge is missing from Y.)
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Let this corresponding edge be (u, v), then this entry in M̂(X + Y − Li) is 0. Since the
column sums are fixed in these matrices, they are the same (and equal to entries in a).

Now vertex v has degree at least 2 (it is a vertex on cycle C and it also end point of
at least one chord of C in X). Therefore the column v contains some 1s. One of them is
(w, v) (this w cannot be the row of the 2, since the entry there is 0 due that it belongs
to the originally intended switch). Now by the pigeonhole principle (since all row sums

are the same) there is a column z such that M̂(w, z) = 0 and M̂(u, z) = 1. Therefore the

u,w; v, z switch (actually this is a swap) will change M̂(u, v) into 1, and now the original

switch finishes the job. The matrix M̂(X + Y − Li) is in switch-distance at most 2 from
the adjacency matrix of some realization. �

6.2 The case that no friendly path exists

In the previous subsection we discussed the situation when – processing one by one the
cycles in the canonical decomposition of the symmetric difference – the cycle under in-
vestigation possesses a friendly path. All definitions, statements, reasonings were valid
for any arbitrary bipartite degree sequence – except the situation described in the Key
Problem and in Lemma 6.15 where we have to use the half-regularity condition.

Here we discuss the case where there exists no friendly path in the cycle under investi-
gation. Nothing that we define here, state here or prove here requires the half-regularity
condition. So here our general assumptions are: we have realizations G and G′ of the
same (arbitrary) bipartite degree sequence, where the symmetric difference of the two
edge sets forms exactly one cycle, which, in turn does not possesses a friendly path.

Our plan is this: at first we show that the non-existence of the friendly paths yields
a strong structural property of the matrix FG. Using this property we can divide our
problem into two smaller ones, where one of the smaller matrices possesses a suitable
friendly path. So we can solve our original problem in a recursive manner.

This recursive approach must be carried out with caution: a careless “greedy” algo-
rithm can increase the switch-distances very fast. We will deal with this problem using a
simple “fine tuning” (which is described at the end of this subsection).

We start with some further notions and notations.

Definition 6.16. In an ` × ` matrix the sequence of positions (i + 1, i − 1), (i + 2, i −
2), . . . , (i+b`/2c−1, i−b`/2c+1) form the ith down-line of the matrix. (The arithmetic
operations are thought to be considered modulo `, that is, for example, 1 − 3 = ` − 2.
Therefore if the down-line reach the edge of the matrix at position, say, (`, k) then the
next position is (1, k − 1). Similarly, if the position on the edge is (k, 1) then the next
position is (k+ 1, `). If 2i > ` then the first case applies, in case of 2i < ` the second case
applies. Finally if, by chance, 2i = ` then the positions in questions are (`, 1) and (1, `).
Analogously the sequence of positions (i−1, i+1), (i−2, i+2), . . . , (i−d`/2e+1, i+d`/2e−1)
form the ith up-line of the matrix. (Let us mention that in case of even ` the length
of the up-lines and the down-lines are equal. However, in case of odd ` the up-lines are
longer by one position.)
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Since the lines are sequences therefore by definition they have orientations along which
the algorithm will traverse them. Also, by definitions, in case of even `, the ith down-line
equals the j th up-line (for some j) as sets. However, as sequences, they are of course
different.

Definition 6.17. A set T of positions of an `× ` matrix is called rook-connected if a
chess rook, staying inside T , can visit all elements of T . Here the chess rook is allowed to
wrap around cyclically on the rows and columns (that is the rook is moving on a torus).
We use the expression king-connected analogously.

The following lemma is a well-known version of the classical Steinhaus lemma (see
[13]).

Lemma 6.18. Assume that the off-diagonal positions of an ` × ` matrix are arbitrarily
colored white and black. Then either the rook has a white path which starts at distance 1
from the small-diagonal and ends at distance 1 from the main-diagonal, and avoids both
diagonals, or there is a king-connected set T of black positions which intersects all rook’s
paths from the main-diagonal to the small-diagonal. �

We use the previous result without proof. The set T of black positions, which was
identified in the previous lemma, will be called a Steinhaus set. So a Steinhaus set is a
king-connected set of positions which intersects all rook’s paths from the main-diagonal
to the small-diagonal.

Definition 6.19. The cousin-set C(u, v) is the set of the off diagonal cousins of the
position (u, v). If T is a set of positions, then the cousin set C(T ) is defined as

⋃
{C(e) :

e ∈ T}.

We will use Lemma 6.18 as follows: We color the off-diagonal positions of the matrix FG
with white and black: the friendly positions are white while the unfriendly ones are black.
If the matrix does not posses any friendly path, then there exists no white rook’s path
from the small diagonal to the main diagonal (since that would be in fact a friendly path).
Consequently, by Lemma 6.18, there exists an all-black Steinhaus set T (so it consists of
unfriendly positions only). While the Steinhaus set T is (only) king-connected, but as we
will show in Lemma 6.20 the derived cousin-set C(T ) is rook-connected, moreover the type
of all positions in the cousin-set C(T ) are the same. Furthermore, by Lemma 6.21, C(T )
intersects all down-lines and up-lines. Finally we will put together these observations in
Lemma 6.22 and Corollary 6.23 to find a smaller submatrix which possesses a friendly
path.

Lemma 6.20. Assume that T is a king-connected set in the matrix FG. Then the cousin-
set C(T ) is rook-connected. Moreover, if the positions in T are all unfriendly, then the
type of all positions in C(T ) are the same, and all positions in T have the opposite type.

Proof: Let P be a position in T . For each other position P ′ in T , which can be reached
from P in one king step, the cousin sets C(P ) and C(P ′) have at least one common position.
Therefore the neighboring cousin sets are rook-connected, so C(T ) is rook-connected.
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Assume now that the positions in T are all unfriendly. W.l.o.g. we may assume that a
position P in T has type 0, then all positions in its cousin-set must have type 1. However,
for each other position P ′ in T , which can be reached from P in one king step, the cousin
sets C(P ) and C(P ) have at least one common position, therefore all types in those two
cousin sets must be the same (1), therefore both positions P and P ′ have the same type
(0) as well. �

Lemma 6.21. Let T be a Steinhaus set in FG, then its cousin-set C(T ) intersects all
down-lines and up-lines.

Proof: Actually we prove more: namely that any king-path U from the main-diagonal to
the small-diagonal intersects the cousin-set C(T ).

Indeed, by Lemma 6.20, the set C(U) is rook-connected, so C(U) intersects the Stein-
haus set T . However, if P ∈ C(U) ∩ T , then P ∈ C(P ′) for some P ′ ∈ U . But then
P ′ ∈ C(P ), so C(T ) intersects U .

Finally it is clear, that every down- and up-line forms a required king-path. �

Lemma 6.22. We assume that in the matrix FG there is no friendly path. Then for each
i (i = 1, . . . , `) there exists a t ∈ {0, 1} and a pair of indices j, j′ ∈ {1, . . . d`/2e− 1} such
that one of the following holds:

• entries (i + 1, i − 1), . . . , (i + j, i − j) and (i − j′, i + j′) have the same type t,
furthermore the entries (i− 1, i+ 1), . . . , (i− j′ + 1, i+ j′ − 1) have the type 1− t,
and all entries belong to a down- or up-line;

• entries (i − 1, i + 1), . . . , (i − j, i + j) and (i + j′, i − j′) have the same type t,
furthermore the entries (i+ 1, i− 1), . . . , (i+ j′ − 1, i− j′ + 1) have the type 1− t,
and all entries belong to a down- or up-line.

Proof: Color the friendly positions white, and the unfriendly positions black. Since a
white rook path from the small diagonal to the main diagonal would be a friendly path,
by Lemma 6.18 there is a Steinhaus set T containing only black, i.e. unfriendly positions.
Now, by Lemma 6.20, the type of all positions of the cousin-set C(T ) are the same.
Moreover, by Lemma 6.21, the cousin-set C(T ) of T intersects all down-lines and up-lines.

Assume for a contradiction that there is no such j for a particular i. W.L.O.G. we
may assume, that FG(i + 1, i − 1) = 0. Then, by the assumption, FG(i − 1, i + 1) =
FG(i− 2, i+ 2) = 3 must hold. Then, again by our assumption, FG(i+ 2, i− 2) = 0 must
hold, etc. All entries along the down-line are 0, while all entries along the up-line must be
1. However, as we observed in the previous paragraph, both lines intersect the cousin-set
C(T ) of the Steinhaus set T . But, by Lemma 6.20, all its entries have the same type. A
contradiction. �

Corollary 6.23. If conditions of Lemma 6.22 hold, and j′ > 2 for a particular i, the
submatrix spanned by (i + j, i − j) and (i − j, i + j) contains at least one friendly path.
(Let us recall that the bottom-right position (i+ j, i− j) belongs to the small-diagonal by
definition.)
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Proof: We argue by contradiction: assume that the submatrix does not contain a friendly
path. Then - due to Lemma 6.18 - it contains a Steinhaus set T . Due to Lemma 6.20, in
its cousin-set C(T ) - which intersects all down- and up-lines - all positions have the same
type. But this contradicts to the fact, that in the ith down-line all positions have type t,
while in the ith up-line all positions have type 1− t. A contradiction, again. �

That finishes the preliminaries that are needed to describe our recursive algorithm, which
is essentially a divide and conquer approach. Due to the previous fact here we should
handle separately two possibilities: when j′ = 1 (and j = 1 as well) and when j′ > 2. For
sake of simplicity we will assume that in our cycle the first condition described in Lemma
6.22 holds. We start with the

First possibility: assume that, for a particular i, we have j′ = 1. Then we also have
j = 1. We should take care of two cases:

Case 1: If both FG(i + 1, i − 1) and FG(i − 1, i + 1) = 3 (that is both chords belong to
both G and G′) then we are in an easily handleable situation: at first we swap the quartet
ui, ui+1; vi, vi+1. (The dashed square in our illustration. Here we use the matrix FG.)
Denote the resulting realization by Z1. In Z1, the entries (i− 1, i), (i, i) and (i, i+ 1) have
the required types. However, entry FZ1(i−1, i+1) = 2 therefore during the procedure we
should take care to change the entry (i− 1, i+ 1) of Z1 back to its original value. Indeed,

during the procedure we should guarantee that the matrix M̂(X + Y − Z) contains at
most Ω2 many 2-s and −1-s, i.e. the corresponding F -matrix contains at most Ω2 many
1-s and 2-s (see (F)(d) from Section 5.3). Since we want to apply our method recursively,
therefore during the procedure we should take care to change it back to its original value
otherwise the 2-s could accumulate in the F -matrices. We will handle this problem during
the “fine tuning”.
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The remaining subproblem, indicated
by thick black lines, fortunately is al-
ready in the required form. Indeed: its
main-diagonal contains only 1s, while its
small-diagonal is full with 0s. (We have
to keep it in our mind that the shown
matrix of the remaining smaller sub-
problem is FZ where the element of the
main- and small-diagonals came from
Z.)

Denote the alternating cycle of this smaller problem by C ′. The (recursive) subproblem
C ′ may contain a friendly path which will process it completely in one step, and will
switch the value of FG(i − 1, i + 1) automatically back to 1. If, however, it does not
contain a friendly path, then the recursive procedure can use any down- and up-lines,
including (i− 1, i+ 1) (see Lemma 6.21), therefore we can take care that this switch-back
will happen in the next recursion.

It is important to recognize that matrices M̂(G + G′ − Z) and M̂(X + Y − Z) may
contain 2 at the position (i−1, i+1). Fortunately this “problematic” entry will be present
only along one recursive step. Furthermore this entry will increase the switch-distance of
the current M̂ by at most one: the positions (i− 1, i), (i, i) and (i, i + 1) (outside of our
subproblem), provide a suitable switch to handle the entry 2 at position (i− 1, i+ 1).

Case 2: Now we have FG(i+ 1, i− 1) = 0 and FG(i− 1, i+ 1) = 0. Here we perform two
swaps, the places of the swaps are denoted (shown below) with dashed squares:
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If M̂(X + Y − Z)(i + 1, i − 1) = −1 holds, then it increases the switch-distance of the

current M̂ by at most one (since it can be directly back-swapped). The result of the sec-
ond swap (after which the previous problem is just solved automatically), together with
our further strategy is shown below:
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Here we distinguish between
two cases, according to the
value

FZ(i− 2, i+ 2) = x.

This value can be x = 3 or
x = 0.

In the case of x = 3 we perform one more swap, which results in a subproblem with
a friendly path (the swap shown on the left side of Figure 4, while the right hand side
indicates the two new subproblems):

Figure 4: The case of x = 3
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Here we have redrawn the RHS of Figure 4 to
show that one subproblem is already solved:
the cross shaped midsection is in the required
state: the main-diagonal (within the midsec-
tion) contains all 0’s, while each entry in the
small-diagonal is 1 and the off-diagonal posi-
tions are in their original states. Here is nothing
more to do.

The second subproblem (indicated with the thick black lines, the four pieces fit together
to a square matrix) is in the right form for further processing. The position (2, 6) changed
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into 0 since we described the subproblem in the language of (the now smaller) FZ : the
positions in the small-diagonal depend on the edges of Z only.

We will process this second subproblem along the up-line, containing position (i −
2, i+ 2), so the only currently improper entry will have the right value at the end of the
next recursion step (that is it will be swapped back to its original value). (Here we can
argue the same way as in Case 1.)

As it happened before M̂(X+Y −Z) may contain 2 at the position (i−2, i+2). Again
this increases the switch-distance by at most one, since the positions (i−2, i−1), (i+1, i−1)
and (i+ 1, i+ 2) are not in our subproblem.

Finally it can happen, that x = 0. Then we can define the following subproblem:
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This figure shows the new subproblem
(indicating with thick black lines) is in
the right form (for further processing)
again. We will process the subprob-
lem along the up-line, containing posi-
tion (i − 2, i + 2) (so the only currently
improper entry will have the right value
at the end of the next recursion step).

Here, again, we may confront the fact, that
M̂(X + Y − Z)(i + 1, i− 1) = −1. Then we
should consider the alternating cycle shown
in the figure. All elements of the cycle, ex-
cept (i+1, i−1), are in the main- and small-
diagonal, therefore along this cycle we can
swap that entry into range within a small
number (say δ) of steps. This will increase

the switch-distance of M̂ by at most δ.
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We run the first recursion on the subproblem along the ith up-line, therefore the sub-
subproblem with friendly path will contain the position (i− 2, i+ 2). Therefore when we
finish the first recursion, our matrix FG will be in the following form: (the figure on the
left):
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We have seen how one can handle the switch-distance of our matrix, if position (i+1, i−1)

is problematic with M̂(i + 1, i − 1) = −1 but position (i − 2, i + 2) is correct. On

the other hand if M̂(X + Y − Z)(i − 2, i + 2) = −1 then the swap on the positions
(i − 2, i − 1), (i + 1, i + 2); (i + 1, i − 1), (i − 2, i + 2) changes both (i + 1, i − 1) and
(i − 2, i + 2) into 0. For (i + 1, i − 1) that was the original type - so it cannot be wrong

in M̂.

After that we perform the swap on the posi-
tions (i−2, i−1), (i+1, i+2); (i+1, i−1), (i−
2, i+ 2) (these are the corners of the dashed
square in the figure on the upper right). The
result is shown to the right: 1
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This completes our handling on the First Possibility, that is when for our i we have the
value j′ = 1. Now we turn to the other (and probably more common) configuration:

Second Possibility: We have j′ > 2. Unfortunately, the situation can be more compli-
cated in this case due to the possible switch-distances of M̂. We overcome this problem by
showing at first the general structure of the process, and later we give the necessary fine-
tuning to ensure the bounded switch-distance. (Recall again, that the bounded switch

distance is necessary to have a good upper bound on the number of different matrices M̂
appearing along the algorithm.)

In our current alternating cycle (lying in the symmetric difference of G and G′) there is
no friendly path, therefore there is a Steinhaus set T in FG. Now fix a particular i and
assume that the j′ corresponding to this i is > 2. We should distinguish between two
cases: where the down-line starts with the value t = 3 or with t = 0.

Case 1: t = 3 The first figure below shows the structure of matrix FG. The dashed
square is the first subproblem to deal with, while the thick black lines indicate the second
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subproblem. However, before we start the processing the subproblems, we have to perform
a swap. The corners of the thin black square shows the positions of the swap.
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After this swap (see the figure above, right), the first subproblem (indicated by the dashed
square) is in the right form. Indeed, the left figure below shows the two separate sub-
problems.
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Finishing the first subproblem, we have the FZ matrix (above, right). As it can be seen,
after the first phase, all entries in the midsection are in their required types: the small-
diagonal consists of 1s (including position (i + 2, i − 2) which in that way is back to its
original type), while the main-diagonal consists of only 0s.

The second subproblem (indicated by the thick black lines) in the right form now to
process (including position (i− 3, i+ 3) which is sitting on the small-diagonal).
After completing the solution of the black subproblem, all entries in the matrix will be in
exactly the required type. We start processing the black subproblem on the ith up-line,
therefore the actual types of positions (i − 3, i + 3) and (i + 2, i − 2) can be described
as follows: Position (i + 2, i − 2) has opposite type after the very first swap, then while
processing the dashed subproblem it may change between 0 and 1. Finishing the dashed
subproblem, it will be in the same type as it starts.

the electronic journal of combinatorics 20(1) (2013), #P16 48



Position (i − 3, i + 3) will be in type 0 all the way in the dashed phase, while within
the black phase it will change between 0 and 1. At the end, as we already mentioned, is 1.

Case 2: t = 0 The first figure below shows the structure of matrix FG. The dashed
square is the first subproblem to deal with, while the thick black lines indicate the second
subproblem. They can process without any preprocessing.
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At the end everything will be in the right type, except the four positions, showed by the
thin black square (below, left side). We can finish the process with that swap.
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While the overall structure of our plan is clear, we may meet problems along this proce-
dure. The reason is that we must be able to control the switch-distance of our M̂(X+Y −
Z) (we will use here simply M̂) from the adjacency matrix of some realization. There are
two neuralgic points: both the positions (i+ j, i− j) and (i− j′, i+ j′) may contain −1,
or both may contain 2. When we start a new subproblem, then their types always pro-
vide a suitable switch for the control (as it was seen before). However, when we proceed
along our subproblem, then it can happen that one of the problematic positions changes
its value, while the other does not. But in this case the switch which was previously
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available is not useable anymore. Next we describe how we can fine tune our procedure
to avoid this trap.

As we know the first subproblem contains a friendly path (by Corollary 6.23), and for
easier reference let call its problematic position P1. We also know that second subproblem
contains a problematic position, P2, and probably we have to divide this subproblem into
two smaller ones. If so, then the first of them becomes the new second subproblem, which
contains P2 and possesses a friendly path, while the third subproblem contains another
problematic position, P3.

Fine tuning:

1. We begin our swap sequence along the first subproblem but we stop just before we
face the swap which changes the value of P1.

2. Next we continue with the swap sequence of the second problem and we stop before
we should perform a swap on P2.

3. Now we finish the swap sequence of the first subproblem.

4. After that we focus on the second subproblem. Dealing effectively with this, we
need to prepare the third subproblem similarly as we did with the second one, when
we were working on the first one. Therefore we begin the swap sequence of the third
subproblem but we stop it before the first swap would be carried out on P3.

5. And if now we just rename our two active subproblems as first and second subprob-
lem, we are back to a situation, which is equivalent to the beginning of the third
stage.

Along this algorithm, at each point we have two “active” subproblems. When a sub-
problem has a friendly path, then along this path we define the necessary swap sequence
(as described in Subsection 6.1) and we have an upper bound on its length. When the
subproblem is without a friendly path, then we divide it into two, and one (or both) of
them have a friendly path, etc. The sum of the sizes of the subproblems is at most the
size of the original cycle. Finally we put together the final swap sequence from these swap
sequences and some short sequences we get from the (sometimes) necessary preprocessing.
Since we have bounded switch distances all along (one or two at preprocessing stages, and
those given in Subsection 6.1), therefore all together we have a good control of the overall

number of used M̂ ’s. �
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