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Abstract—The paper considers the problem of single-link fail-
ure localization in all-optical mesh networks. Our study follows
a generic monitoring approach using supervisory lightpaths (S-
LPs), in which a set of bi-directional monitoring trails (bm-
trails) are defined and closely monitored, such that the network
controller can achieve unambiguous failure localization (UFL)
for any single link by collecting the flooded alarms from the
affected bm-trails. With a target of minimizing the number of
bm-trails (or the length of alarm codes) required for single-
link UFL, the paper provides optimal (or essentially optimal)
solutions to the bm-trail allocation problem on a number of
well known topologies. First we demonstrate that the theoretical
lower bound of dlog2(|E|+1)e bm-trails can be achieved in any
2 · dlog2 (|E|+ 1)e connected graph, where |E| is the number
of links. Next, we prove an essentially optimal solution for
1-by-N grid topologies (also known as chocolate bar graphs),
where d0.42 + log2 (|E|+ 2)e bm-trails can be achieved. Based
on the solution for chocolate bars, we further investigate bm-trail
solutions to general 2-dimensional (2D) grid topologies, and the
developed solution requires no more than 3 + dlog2(|E| + 1)e
bm-trails for UFL. Such an optimal (or essentially optimal)
logarithmic behavior, although has been well observed in general
topologies in our previous studies [1], [2], is formalized for
the first time in this paper via a suite of polynomial-time
deterministic constructions that consume less than a few seconds
of running time in topologies of thousands of nodes.

I. INTRODUCTION

Fast and precise failure localization is a critical task in all-
optical mesh backbone networks, and it has been extensively
studied in the past decade [2]–[12]. Due to the transparency
in the data plane, a single failure may trigger a large number
of redundant alarms [13], [14], which not only increases the
management complexity but also makes the failure localization
more difficult. With a fast fault localization/diagnosis plane,
the network operators can real-time monitor the network per-
formance behaviour via very efficient redundancy placement
strategies (e.g., failure dependent protection), and dynamically
recover any unexpected failure event in a time scale of tens
of milliseconds.

One of the most commonly adopted approaches is deploying
a set of supervisor lightpaths (S-LPs) that are closely and
actively monitored by the respective monitors, which generate
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alarms when any failure/irregularity is detected. The alarms are
then collected by the network controller such that any failure
event can be unambiguously localized. Link monitoring serves
as the most straightforward approach by deploying single-hop
S-LPs to monitor each link; however, the simplicity is at the
expense of O(|E|) number of monitors and the alarm code
length, where |E| is the number of links. It is highly desired
to keep the number of active monitors as small as possible
while achieving unambiguous failure localization (UFL) for
any failure event under consideration.

In general, a network topology is modeled as a graph with
two directed links between some pairs of nodes in opposite
directions. Each S-LP can be represented by a connected link
set in the topology. In the literature, a number of different
structures for the S-LPs are reported, and each structure
brings about a specific restriction in the formation of the
corresponding S-LPs. For example, a simple monitoring cycle
(m-cycle) [4]–[7] is a connected graph where each node has
a nodal degree 2; a non-simple m-cycle [15] is a connected
subgraph where all nodes have even nodal degrees; and
undirected monitoring trails (um-trails) [1], [13], [16] are
connected graphs with no more than two odd-degree nodes.
The most general structure is bi-directional monitoring trail
(bm-trail), where each S-LP is simply a connected subgraph of
the topology subject to no further restrictions. Such a structure
for S-LPs has been explored in [16], [17] by assuming that
each node can perform loop-back switching by which optical
signals coming from an incoming fiber to a node can be
switched to the same fiber segment leaving the node. It is
clear that with less restriction on the structure of S-LPs, better
performance can be achieved in terms of the number of S-LPs
required for UFL.

Ideally, according to the binary coding mechanism [1], b S-
LPs can localize any single link failure in a topology with up
to 2b−1 links. In this case, each S-LP corresponds to a single
bit in the alarm code, which results in a monitoring system
with alarm codes of b bits in length. In other words, ideally
dlog2(|E| + 1)e S-LPs would be sufficient for localizing any
single link failure in a topology with a set of links E. This
lower bound on the number of S-LPs, nonetheless, may not
be easily achieved (if not impossible) due to the connectivity
constraint on routing each S-LP in different topologies. We
have discovered in our previous studies [1], [2] via solving an
optimal integer linear program (ILP) and a heuristic method,
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respectively, that a logarithmic solution can be achieved on
most of the topologies without any degree-two nodes. How-
ever, it is still a open question on whether the logarithmic
bound holds for large, particularly relevant topologies. Note
that the ILP in [2] can only deal with topologies with less than
20 nodes due to the extremely large computation complexity.
The heuristic in [1], managed to solve the uni-directional m-
trail allocation problem in topologies with hundreds of nodes
and links. Although it provides a convincing performance on
typical backbone network topologies, we have also witnessed
a degradation of solution quality in terms of the number of
m-trails for UFL in some sparsely connected topologies with
large diameters (such as N-by-1 grids).

To the best of our knowledge, the previously reported ana-
lytical studies that investigated the upper bound on the number
of S-LPs for UFL were reported for rings and complete graphs
[1], [17], where c · log2 (|E|+ 1) bound on the number of
probes was found for localizing any link failure in a topology
with |E| links, whith some constant c ≥ 2. The result, on one
hand, is very pleasing as it provides an excellent asymptotic
upper bound on the problem. On the other hand, it opens up
perhaps a no less challenging problem in constructing truly
practical solutions that could be implemented and manipulated
for engineering purposes. To accomplish this, one has to
replace the constant c = 2 for densely connected and c = 3 for
lattice topologies of [1], [17], and the obtained upper bounds
should be of the form log2(|E|+ 1)+K where K is a small
constant.

Motivated by the above observation, the paper investi-
gates optimal (or essentially optimal) logarithmic solutions
for single link failure localization using bi-directed m-trails
(bm-trails) in 2 · dlog2 (|E|+ 1)e connected graphs, as well
as in general 2-dimensional (2D) lattices (i.e. Manhattan
grids), in view of the information theoretical lower bound
dlog2(|E| + 1)e. Note that a 2D grid graph is similar to
circulant graphs with every node of nodal degree 4, which have
been recognized as excellent candidate topologies for high-
reliability network design in modern communication networks
[18]–[21]. For example, circulant graphs of degree four have
been considered for the design of WDM local networks and
interconnection subsystems [18], [20], [21].

The contributions of the paper lie in the two theorems
that demonstrate the proposed constructions. Firstly, we pro-
vide an optimal construction for bm-trail allocation on 2 ·
dlog2 (|E|+ 1)e-connected very dense networks as in The-
orem 1; and this is the only optimal construction that has
been published where the information theoretical lower bound
dlog2(|E| + 1)e is tight. In Theorem 2 we demonstrate that,
somewhat contrary to preliminary intuition, topologies with
small constant degrees may also allow a very compact set of
error locating bm-trails. This is established by using planar
rectangular grids. Former results on the field are widely
based on combinatorial and graph theoretical techniques and
arguments. Theorem 2 does not seem to be amenable to
such methods, while employing algebraic tools that appears
to be entirely new in this field of communication engineering.
Our constructions give essentially optimal results in settings
where efficient and natural randomized approaches fail badly,

apparently by orders of magnitude.
The paper provides rigorous proofs for the correctness on

the developed constructions and the obtained upper bounds,
and in principle no simulation is needed for verification.
Nonetheless, simulation is conducted to examine a number
of most recently reported schemes for single-link UFL on
N-by-1 grids - a special case of the 2D grid topologies, in
order to demonstrate the difficulty for the schemes in handling
the topologies with very large diameters. It shows that all the
schemes take hours to converge while with far-from-optimal
solutions, in contrast to the proposed construction which takes
only a few seconds for essential optimality.

The rest of the paper is organized as follows. Section II
presents the background and formulation for the S-LP alloca-
tion problem in communication networks. Section III provides
a comprehensive analysis of the S-LP allocation problem
for fully connected topologies. In Section IV, an essentially
optimal solution is given for 2D lattice graphs. Section V
conducts a comparison between the proposed construction on
2D grids and the a number of previously reported heuristics
for the same purpose. Section VI concludes the paper.

II. BACKGROUND

A. Bi-directional Monitoring Trails (bm-trails)

In short, a bm-trail can traverse a link in different di-
rections via loop-back switching and also a node multiple
times. By properly allocating a set of bm-trail S-LPs, the
network controller is expected to localize any link failure event
by collecting the alarm signals issued by the corresponding
monitors of the affected S-LPs in a timely manner. Let the
transmitter and receiver of a bm-trail be denoted as T and
R, respectively. As shown in Fig. 1(a), the bm-trail can be
pre-cross-connected along the route T → a→ c→ a→ R.

In general, a bm-trail S-LP solution consists of a set of b
S-LPs t1, t2, . . . , tb. Upon a single link failure, the monitor
of any S-LP traversing the failed link will generate an alarm,
which is sent to the network controller with the highest priority
via any possible signaling protocol that supports point-to-point
event-driven notifications. An alarm code [a1, . . . , ab−1, ab]
can be formed at the network controller by reading the status
of each S-LP, where ak = 1 means that the monitor on S-LP tk
alarms and ak = 0 otherwise. Fig. 1(b) shows a solution with
three bm-trail S-LPs t1, t2, t3. If link (0, 1) fails, the monitors
on t1 and t3 will alarm to produce the alarm code [1, 0, 1] at the
network controller. Similarly, if link (0, 2) fails, the monitors
on all the three bm-trails S-LP will alarm and the resulting
alarm code is [1, 1, 1]. The alarm code table (ACT) in Fig.
1(c) is available in the network controller, which maintains all
the possible alarm codes corresponding to each failure state.
Thus, the network controller can unambiguously localize a
particular single link failure by matching the alarm code in
the ACT.

B. Problem Definition - Deployment of S-LPs for UFL

Let a graph denoted as G(E, V ) be given with |E| links
and |V | nodes. In order to achieve UFL, each link e must
be assigned with a unique binary alarm code c(e) = Ae =
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(b) A bm-trail S-LP so-
lution

Link t1 t2 t3

(0,1) 1 0 1
(0,2) 1 1 1
(0,3) 1 0 0
(1,2) 0 1 1
(1,3) 1 1 0
(2,4) 0 0 1
(3,4) 0 1 0

(c) Alarm code table

Fig. 1. Fast link failure localization based on bm-trail S-LPs.

[ae1, a
e
2, . . . . . . a

e
b], where b is the length of alarm code, and ael

is a binary digit, which is 1 if the lth bm-trail S-LP, denoted by
tl, traverses through this link and 0 otherwise. As discussed
in Section I, various conditions could be imposed on tl which
lead to different failure location models, such as simple/non-
simple cycles, um-trails and bm-trails. A corresponding so-
lution is referred to as S-LP formation. In all three models,
the theoretical lower bound on b is b ≥ dlog2 (|E|+ 1)e, (see
[1]). In this paper, we are interested in when the above bound
is essentially tight in the bm-trail model. An bm-trail S-LP
formation is essentially optimal if b = dlog2 (|E|+ 1) + ce
bm-trail S-LPs are sufficient for achieving UFL, where c is a
small constant.

The main objective of the paper is to develop a suite of
deterministic polynomial time constructions that achieve es-
sentially optimal bm-trail S-LP formation on complete graphs
and 2-dimensional lattice topologies.

C. Previous Work

The bm-trail S-LP formation problem is a structured variant
of the combinatorial group testing (CGT) process [22], [23].
In [17] the problem was taken as combinatorial group testing
on graphs. The idea of group testing dates back to World War
II when millions of blood samples were analyzed to detect
syphilis in US military. In order to reduce the number of tests
it was suggested to pool the blood samples. From algorithmic
aspects there are two significant differences between the tasks
of pooling blood samples and monitoring of a group of links
in a graph: (1) the blood samples can be pooled arbitrarily,
while the monitored links must be connected and even in a
valid shape, (2) the monitors are always pre-configured, and
the probing is performed simultaneously without knowing the
result of other tests (non adaptive CGT).

The primary goal of any CGT algorithm is to identify
defective items among a given set of items through as few
tests as possible. In this case the set of items are the links of
a graph, the defective items are the failed links, and the tests
are monitoring structures (e.g., bm-trails). The first general
CGT method was given by Hwang and T. Sós [22], while
the shortest real-world problem size non-adaptive CGT codes
were developed by Epstein, Goodrich and Hirschberg [24].
Note that CGT algorithm codes are rather suitable to deal
with the scenarios with multi-link SRLGs; on the other hand
it is sufficient to have the code assigned to each link to

be distinguished from each other in the single-link SRLG
scenarios. This immediately leads to a trivial lower bound
dlog2(|E|+ 1)e on the number of probes, where each probe,
provided with a proper design, is realized by launching a single
S-LP.

Table I summarizes the best known lower and upper bounds
on the number of S-LPs reported in the literature for several
special graphs. For ring topologies, the number of optimal bm-
trails is exactly d|E|/2e, which was proved first in [17], and
later for um-trails in [1]. Note that in ring topologies each
bm-trail should only be a simple path.

The study [17] developed a construction for any graph
which contains two edge disjoint spanning trees, where an
upper bound of 2 · dlog2 |E|e − 1 bm-trails can be achieved.
The key idea of the construction is to categorize the links
in the topology into two disjoint sets E1, E2 of similar
sizes, where E1 ∪ E2 = E, E1 ∩ E2 = ∅, and each set
contains a spanning tree. We shall generate alarm codes of
length dlog2 |E1|e+ dlog2 |E2|e for the links in E. The links
in E1 will have unique codes in the first dlog2 |E1|e bits,
and similarly the links in E2 are coded uniquely in the
last dlog2 |E2|e bits. At this point every link has a unique
individual alarm code, irrespective of the values in the bits
in the alarm code that has not yet been specified. These
unspecified bits can be used to make the resulting test sets
connected and form bm-trails. Finally, we add one additional
bm-trail covering every link in E1 and none in E2, which can
identify if the failed link belongs to E1 or E2. In such a way,
each link has a unique alarm code with a length:

dlog2 |E1|e+ dlog2 |E2|e+ 1 ≈

dlog2
|E|
2
e+ dlog2

|E|
2
e+ 1 = 2 · dlog2 |E|e − 1 (1)

We refine this idea further in Section III.
Nash-Williams and Tutte [25] showed that every 2k-

connected graph has k link-disjoint spanning trees. Note that
the disjoint spanning trees can be found in O(|V ||E| log |E||V | )
time [26]. As a result, every 4-connected graph has always
2 link-disjoint spanning trees, thus the proof is valid for
complete graphs with more than 5 nodes1. For 2-dimensional
square grid lattices, on the other hand, a similar technique was
developed in [17] which results in 2+ 6 · dlog2(n+ 1)e as an
upper bound on the number of bm-trails, where the graph has
(n − 1) × (n − 1) nodes. In fact due to |E| = 2n2 + 2n <
2(n+ 1)2 in a square grid lattice, it leads to

2 + 6 · dlog2(n+ 1)e / 2 + 6dlog2

√
|E|
2
e ≈ 3dlog2 |E|e,

which is about 3 times of the theoretical lower bound:
dlog2 (|E|+ 1)e.

In [27], an observation made from extensive simulations on
thousands of general topologies is that, the um-trail solution on
a topology without degree-2 nodes can achieve the theoreti-
cal lower bound of 1 + dlog2 (|E|+ 1)e provided sufficient
running time for the construction. This was disproved by

1Based on a similar approach, an upper bound (6 + dlog2 (|E|+ 1)e) for
the um-trail formation problem was proved in [1].
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Topology trails lower bound upper bound tight
ring bm- d|E|/2e [17] d|E|/2e [17] [17]
2D grid bm- dlog2 (|E|+ 1)e ≈ 3dlog2 |E|e

[17]
Sec. IV.
with +3

well con-
nected

bm- dlog2 (|E|+ 1)e ≈ 2dlog2 |E|e
−1 [17]

Sec. III.

fully con-
nected

m- dlog2 (|E|+ 1)e dlog2 (|E|+ 1)e
+6 [1]

Sec. III.

TABLE I
THE BEST KNOWN LOWER AND UPPER BOUNDS ON THE NUMBER OF

S-LPS OF DIFFERENT STRUCTURES FOR RINGS, COMPLETE GRAPHS, AND
2D GRIDS

an example in [1]. Thus, we are motivated to develop a
suite of polynomial-time deterministic constructions toward
optimal (or essentially optimal) solutions for the bm-trail S-
LP formation problem in densely meshed topologies and 2-
dimensional grid lattices. The analytical constructions should
be able to solve the bm-trail allocation problem in topologies
with thousands of nodes by using only seconds.

III. OPTIMAL BM-TRAIL SOLUTION IN DENSELY MESHED
GRAPHS

We shall need a simple inequity, which is proved in the
appendix.

Lemma 1: The following inequality holds for every positive
integer b ≥ 3:

2 · b2
b − 1

b
c ≥ 2b+1 − 1

b+ 1
≥ d2

b − 1

b
e. (2)

Next let us prove a lemma which is an important building
block for the subsequent description on the proposed construc-
tion and its proof.

Lemma 2: The nonzero binary codewords of length b can
be distributed into b buckets, where the ith bucket contains
codewords only with 1 for the ith bit, and the size of each
bucket is at least b 2

b−1
b c and at most d 2

b−1
b e.

Proof: The proof is inductive, and we will give a recursive
construction for such a distribution of codewords. See Fig. 2
as an illustration of each recursive step.

Clearly, for b = 1, 2 the statement trivially holds. Let us
assume that the codewords of length b are already distributed
into b buckets, where the ith bucket has words only with 1 for
the ith bit, and the size of each bucket is at least b 2

b−1
b c and at

most d 2
b−1
b e. We define such a distribution as almost uniform

distribution of b bits.
Next, we consider the nonzero codewords of length b + 1,

and prove that the codewords can follow the almost uniform
distribution of b+1 bits. Clearly we can distribute the 2b − 1
codewords with 0 in the (b + 1)th bit such that the first b
bits are distributed almost uniformly (according to the given
assumption under the inductive proof); namely the first b
buckets are filled up with at least b 2

b−1
b c and at most d 2

b−1
b e

codewords. At the end these buckets must have at least
b 2

b+1−1
b+1 c and at most d 2

b+1−1
b+1 e codewords.

Next, let us consider the rest of the codewords. Obviously,
any of them can be placed into the (b+ 1)th bucket, because
they all have 1 bit at position b + 1. The codeword which

bucket 1 bucket 2 bucket b bucket b+ 1

2b−1
b

2b+1−1
b+1

Fig. 2. Example of the construction in the proof of Lemma 2.

has 1 at the (b + 1)th position and 0 in the rest positions
(i.e. 100 . . . 0) must be placed into the (b + 1)th bucket. The
remaining 2b − 1 codewords can be distributed by the first
b bits almost uniformly into the b buckets. In such a way,
each bucket has at least 2 · b 2

b−1
b c codewords, which is at

least d 2
b+1−1
b+1 e according to Lemma 1. Some of the newly

added codewords must be moved to the (b+1)th bucket, until
every bucket has at least b 2

b+1−1
b+1 c and at most d 2

b+1−1
b+1 e. Such

an action is always possible. This is argued as follows: first,
codewords are moved from each of the first b buckets to the
(b + 1)th bucket so that every bucket among the first b has
d 2

b+1−1
b+1 e elements. In case the (b+ 1)th bucket has less than

b 2
b+1−1
b+1 c codewords, one more codeword from each bucket

is further moved to the (b+ 1)th bucket until it has b 2
b+1−1
b+1 c

codewords. Such a process will not get stuck at a position
in which one bucket has less than b 2

b+1−1
b+1 c codewords while

all the others have this number, because the total number of
nonzero codewords is 2b+1 − 1. In such a way, every bucket
has at least b 2

b+1−1
b+1 c and at most d 2

b+1−1
b+1 e codewords. Thus,

we proved Lemma 2.
Theorem 1: Let G(V,E) be a 2 · dlog2 (|E|+ 1)e con-

nected graph. G(E, V ) can be optimally covered with
dlog2(|E|+ 1)e bm-trails to achieve single-link UFL.

Proof: Let b = dlog2(|E|+ 1)e. Clearly at least b bm-
trails are required for UFL in a graph with E links. In the
following we will show that b is also the upper bound. Our goal
for the proof of the theorem is to come up with a construction
that achieves the theoretical lower bound, and then we will
prove the correctness of the construction.

1) The proposed construction: Recall that the goal of the S-
LP formation process is to assign a binary alarm code to each
link so that tl is a connected subgraph. This can be ensured
if each tl has a spanning tree as a subgraph. Since every 2k-
edge-connected graph has k edge disjoint spanning trees [28],
[29], the construction can achieve the desired lower bound if
the graph is 2 · b connected, which is sufficient to yield b =
dlog2 (|E|+ 1)e edge disjoint spanning trees. Let Si denote
the ith spanning tree, where i = 1, . . . , b, and the spanning
trees are all disjoint (i.e. Si ∩ Sj ≡ ∅ if i 6= j).

According to Lemma 2, the 2b − 1 nonzero codewords of
b bits in length can be grouped into b buckets of size at least
b 2

b−1
b c, where the ith bucket has alarm codes where the ith

bit is 1. Our construction simply assigns the codes of the i-
th bucket to the i-th spanning tree Si, while the remaining
edges which are not in the 1st, . . . , bth spanning trees, namely
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E \ {S1 ∪S2 ∪ · · · ∪Sb}, will be assigned the left and unused
codes arbitrarily. This finishes the construction.

2) Correctness of the constructed bm-trail solution: Since
ti contains Si, each bm-trail must be connected and spans the
whole graph G. Besides, each link has a unique alarm code
because nonzero unique codewords were assigned to the links
of the graph. To conclude the proof we need to show that
each bucket has at least |V | − 1 codewords. By observing the
equation b · (|V |−1) ≤ |E| ≤ 2b−1, we see that each bucket
has at least |V | − 1 ≤ b 2

b−1
b c elements. Thus, we proved

Theorem 1.
The theorem is applicable to complete graphs with at least

18 nodes because they have 18·17
2 = 153 links that can be

uniquely coded in 8 bits. In this case the graph is at least 16
connected.

IV. ESSENTIALLY OPTIMAL BM-TRAIL SOLUTION IN
GENERAL GRID TOPOLOGIES

This section considers general 2D grids denoted by Sm,n,
where m and n corresponds to the number of links in the
vertical and horizontal direction, respectively. Harvey, et al.
[17] provided an 3dlog2 |E|e upper bound on the number of
bm-trails according to Eq. (1) in the case of m = n.

In this section, we generalize the study of [17] and inves-
tigate the scenario of 2D grid graphs with arbitrary m and n.
We give a novel polynomial-time deterministic construction
that requires no more than 3+ dlog2 (|E|+ 1)e bm-trails. We
first solve the bm-trail allocation problem for a special case
of Sm,n with either n = 1 or m = 1 (called as chocolate bar
graphs); and then a solution for general 2D grid topologies is
developed based on the chocolate bar solution.

A. Solution for Chocolate Bar Graphs

A general chocolate bar graph is denoted as Cn(E, V ),
which has |V | = 2n+2 vertices denoted as x1,0, . . . , x1,n (the
lower points), and x0,1, . . . , x0,n (the upper points). Fig. 3(a)
shows an example of a chocolate bar with n = 6. For link set
E, we have lower horizontal links (x1,i, x1,i+1) ∈ E, upper
horizontal links (x0,i, x0,i+1) ∈ E for i = 0, . . . , n−1, and the
middle vertical links (x0,i, x1,i) ∈ E whenever i = 0, . . . , n.

Theorem 2: For a chocolate bar graph Cn(E, V ) b =
dlog2(n+1)e+2 bm-trails achieve single-link UFL for b > 2,
which is at most d0.42 + log2 (|E|+ 2)e bm-trails.

Proof: The proof is developed by way of a polynomial-
time deterministic construction composed of two steps. We
will first introduce the construction, and then explain in detail
how the construction can achieve the desired bound on the
number of bm-trails.

1) Alarm code assignment for the chocolate bar graph:
Let us assign binary alarm codes to the links of Cn in the
following way (see also Fig. 3). We first generate n bitvectors
r1, r2, . . . rn of length B, where ri+1 is assigned to a lower
horizontal link (x1,i, x1,i+1) ∈ E, where i = 0, . . . , n − 1.
The generation of these codes is provided in Lemma 3. On
the other hand, to the higher horizontal link (x0,i, x0,i+1) ∈
E we assign the bitwise complement of ri+1, denoted by
ri+1 = ri+1 ⊕ 1 where ⊕ stands for the bitwise modulo 2

x1,0

x0,0

r1

x1,1
r1

x0,1

r1 ⊕ r2

r1

x1,2
r2

x0,2

r2 ⊕ r3

r2

x1,3
r3

x0,3

r3 ⊕ r4

r3

x1,4
r4

x0,4

r4 ⊕ r5

r4

x1,5
r5

x0,5

r5 ⊕ r6

r5

x1,6
r6

x0,6

r6

r6

(a) The graph topology

1 0 0 1 0 1

(b) The links of t1.

0 1 0 1 1 1

(c) The links of t2

0 0 1 0 1 1

(d) The links of t3

(e) The links of tB+1 (f) The links of tB+2

Fig. 3. An example of a chocolate bar graph and the corresponding optimal
solution for bm-trails. The bit of each bit position is drawn in each 1 × 1
rectangular. The r1, r2, . . . rn codes assigned to the links are listed in the
Table II

TABLE II
THE NONZERO ELEMENTS OF F8 AS BINARY POLYNOMIALS MODULO

1 + x+ x3 .

Exponential Polynomial Code
α0 1 r1 = 100
α1 x r2 = 010
α2 x2 r3 = 001
α3 x3 = 1 + x mod 1 + x+ x3 r4 = 110
α4 x+ x2 r5 = 011
α5 x · (x+ x2) = 1 + x+ x2 mod 1 + x+ x3 r6 = 111
α6 x · (1 + x+ x2) = 1 + x2 mod 1 + x+ x3 r7 = 101

addition (XOR) and 1 is the all 1 vector of length B. Also
to the middle vertical link (x1,i, x0,i) we assign the bitvector
ri ⊕ ri+1 for i = 1, . . . , n− 1. Finally to the link (x1,0, x0,0)
bitvector r1 ⊕ 1 is assigned, and to the link (x1,n, x0,n) we
attach rn.

In choosing the list of bitvectors ri, for i = 1, . . . , n − 1,
we make the following three assumptions:

(A1) The vectors ri are pairwise different for i = 1, . . . , n.
(A2) The vectors ri ⊕ ri+1 are all nonzero and pairwise

different for i = 1, . . . , n− 1.
(A3) The first bits of the vectors r1 and rn are the same.
The following statement provides an approach to construct

n ≤ 2B−1 bitvectors ri which satisfy the requirements (A1),
(A2), (A3).

Lemma 3: Let B := dlog2(n + 1)e and B > 2. Then a
series of n ≤ 2B − 1 nonzero codes r1, r2, . . . , rn can be
generated in polynomial time to satisfy properties (A1), (A2)
and (A3).

Proof: With B := dlog2(n+ 1)e, q = 2B is the smallest
power of 2 which is greater than n. Following the widely used
technique in classical error correcting codes, our code vectors
will be vectors from a linear space over the two element
field F2. We shall consider the finite (Galois) field Fq with
q elements. See Appendix A for a short overview of such
finite fields.

According to Theorem 2.5 in [30], Fq always exists and
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it forms a vector space of dimension B over its subfield F2.
This way we can identify Fq with bit vectors of length B,
where the all zero vector corresponds to the 0 element of
Fq . In particular, nonzero vectors correspond to the nonzero
elements of the field. Also, according to Theorem 2.8 in [30],
Fq contains a primitive element α, which is a nonzero element
such that all the powers α = α1, α2, . . . , αq−1 are pairwise
different. See also Table II where the elements and the related
codes are listed for q = 8 (B = 3).

Finding a primitive element in Fq can be done in polynomial
time with exhaustive search, because any nonzero element α
can be verified for being a primitive element by raising to a
power and checking if the power equals to 1 with an exponent
less than q − 1.

We now set ri to be the (bit vector of the) element αi−1.
Condition (A1) is satisfied as n ≤ 2B − 1.

Suppose now that (A2) fails. Then there must exist 0 ≤ i <
j < n− 1 such that αi ⊕ αi+1 = αj ⊕ αj+1 holds in Fq . But
then we have αi(1⊕α) = αj(1⊕α) which (using that B > 1
and hence that 1 ⊕ α is not 0) would imply that αi = αj ,
contradicting to the fact that α is a primitive element.

To establish (A3), we note that (assuming B > 2) α and
αn span a subspace of dimension at most 2 of Fq over F2,
hence we can select the basis of Fq so that both element have
0 coordinates with respect to the first basis vector.

2) The proposed construction for chocolate bar graphs: In
the chocolate bar construction, tj is actually a simple path in
Cn from x1,0 to x0,n. In the rest of the paper Cn can also be
denoted as Cx1,0,x0,n

. As a result, B bm-trails from x1,0 to
x0,n are formed in Cn, each corresponding to one bit position
of the vectors. An example is given with n = 5, where the
resultant 5 um-trails by the construction are shown in Fig.
3(b), 3(c), 3(d).

In addition to the above mentioned bm-trails, we need
to add two more bm-trails. This is exemplified in Fig. 3(e)
and 3(f). Let the two bm-trails correspond to tB+1 and
tB+2, respectively, where tB+1 is composed of the links
(x1,0, x0,0), (x1,n, x0,n) and the path consisting of all the links
(x1,i, x1,i+1) i = 0, . . . n− 1, while tB+2 is composed of the
links (x1,0, x0,0), (x1,n, x0,n) along with the path consisting
of all the links (x0,i, x0,i+1), i = 0, . . . n−1. As a result, tB+1

and tB+2 can identify whether a failed link was a horizontal
or vertical link, and whether the link was (x1,0, x0,0) or
(x1,n, x0,n).

Corollary 1: Each tj j = 1, . . . ,B+2 forms a single bm-
trail, and every bm-trail is a simple path.

The corollary clearly holds according to the construction.
3) Correctness of the constructed solution: We will show in

the following paragraphs that the set of bm-trails t1, . . . , tB+2

are able to localize any single link failure in chocolate bar Cn.
Obviously, t1, tB+1 and tB+2 can unambiguously localize
any failed link among (x1,0, x0,0) and (x1,n, x0,n) because
the faulty link can be one of (x1,0, x0,0) or (x1,n, x0,n) if
and only if both tB+1 and tB+2 are faulty. If both tB+1 and
tB+2 alarm (i.e., report failure), the status of t1 can be used to
determine which of the two links (x1,0, x0,0) or (x1,n, x0,n)
is at fault according to (A3).

For the other links, the statuses of tB+1 and tB+2 can be

used to determine whether the faulty link is in the group of
lower links, the group of upper links, or the group of middle
links. With (A1), the links in the first two groups are pairwise
different, while with (A2) it implies that the codes in the
group of middle links are pairwise different. Therefore, all
the links in each of the 3 groups are distinguishable such that
unambiguous failure localization is possible within each group,
and hence in Cn.

4) The number of bm-trails in the construction: Since the
chocolate bar graph has 3n+ 1 links, we have

B = dlog2(
|E| − 1

3
+ 1)e < d−1.58 + log2(|E|+ 2)e.

As a result the construction requires at most b = B + 2 =
d0.42 + log2 (|E|+ 2)e bm-trails.

B. 2D Rectangular Grids

In this section, the construction for the chocolate bar graphs
is generalized for 2D rectangular grids. A (m+1)-by-(n+1)
grid graph is denoted as Sm,n, whose vertices are denoted as
xi,j for 0 ≤ i ≤ m and 0 ≤ j ≤ n. The vertical links of Sm,n

are (xi,j , xi+1,j) for 0 ≤ i < m and 0 ≤ j ≤ n. Analogously,
the horizontal links of Sm,n are (xi,j , xi,j+1) for 0 ≤ i ≤ m
and 0 ≤ j < n.

Theorem 3: A 2D rectangular grid graph Sm,n(E, V ) can
be covered with 3+dlog2 (|E|+ 1)e bm-trails to achieve UFL,
for m,n ≥ 1.

Proof: We shall have two monitoring sets of bm-trails.
The first set has size b1 = dlog2(m+ 1)e+2, while the second
has size b2 = dlog2(n+ 1)e+2. Informally speaking, the first
set gives the horizontal position of a failed link, while the
other gives the vertical coordinate. This will be sufficient to
locate the failed link unambiguously. In total, we shall have
no more than B = b1 + b2 monitoring bm-trails.

1) The proposed construction: We are going to extend the
bm-trails ti (i = 1, . . . , b1) from the chocolate bar graph
Cn to the whole square grid Sm,n. We do it step by step
as follows: first we reflect the bm-trail ti with respect to
the line connecting x1,0 to x1,n, such that ti is extended
to the second chocolate bar defined by the vertices x1,j and
x2,j , for j = 0, . . . , n. The second chocolate bar is extended
analogously by reflection to the third chocolate bar, defined by
x2,j and x3,j , and so on. This reflection process is repeated
until the whole Sm,n is covered, where the 2D rectangular
grid is treated as a series of chocolate bar graphs of Cn.
As shown in Fig. 4(a), at every second line the chocolate
bar graph is upside down, and the i-th chocolate bar graph
Cn consists of vertices xi,0, . . . , xi,n and xi+1,0, . . . , xi+1,n,
where i = 0, . . . ,m−1. By applying the reflection process for
all the bm-trails ti (i = 1, . . . , b1), we will obtain b1 bm-trails.

It is clear that the result of the reflection process must
be a connected subgraph without fragmentation, thereby its
eligibility as a bm-trail is ensured.

With the whole situation transposed, exactly the same
method is applied to specify the vertical position i of the faulty
link e. For the remaining b2 bm-trails of the rectangular grid
Sm,n we start out with the vertically placed chocolate bar CT

m
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(b) S3,5 decomposed into chocolate bars in
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1 0 0 1 0

(c) An example of ti for
i = 1, . . . , b1 − 2

1

0

1

(d) An example of ti for
i = b1 + 1, . . . ,B − 2

(e) The links of tb1−1 (f) The links of tb1

(g) The links of tB−1 (h) The links of tB

Fig. 4. An example of a 2D lattice graph of size 3× 5.

at the left end of the grid (see Fig. 4(b)) and extend the b2 bm-
trails of this CT

m to the whole grid with the mirror-reflection
procedure employed before, nonetheless from left to right in
order to extend the bm-trails to all the vertical chocolate bars
in the grid. By doing this b2 bm-trails can be obtained.

With the b1 and b2 bm-trails, we complete the construction.
2) Correctness of the constructed bm-trail solution: In case

of a single failure tb1−1, tb1 , tB−1, and tB (see also Fig.
4(e), 4(f), 4(g), and 4(h)) can identify whether a horizontal
or a vertical link has failed and if the link is on the left or
right border of the rectangular grid (it is on the first or last
row/column). Since the failed link belongs to at least one of
the horizontal chocolate bar graph Cn, the corresponding b1−2
bm-trails can identify the column of the failed link. Similarly,
the failed link belongs to at least one of the vertical chocolate
bar graph CT

m, the corresponding b2−2 bm-trails can identify

the row of the failed link. As a result, it is known if the link
is horizontal or vertical, and its column and row thus can be
localized.

3) The number of bm-trails in the construction: Bm-trails
tb1−1, tb1 , tB−1, and tB are only used to decide if the link
is horizontal or vertical and if the link is on the boundary of
the grid, which indeed can be done with only two bm-trails
instead of four, namely tb1−1 ∪ tb1 and tB−1 ∪ tB. Since Sm,n

has totally |E| = 2·m·n+n+m links, the number of bm-trails
is:

B = dlog2(m+ 1)e+ dlog2(n+ 1)e+ 2 ≤
d1 + log2(m+ 1) + log2(n+ 1)e+ 2 =

dlog2 2 + log2(m+ 1) + log2(n+ 1)e+ 2 =

dlog2 2 · (m+ 1) · (n+ 1)e+ 2 =

dlog2 2mn+ 2n+ 2m+ 2e+ 2 =

2 + dlog2(2|E| − 2mn+ 2)e <
2 + dlog2(2|E|+ 2)e = 3 + dlog2(|E|+ 1)e (3)

for m,n ≥ 1. Note that the first inequality holds because of
the general inequality dAe + dBe ≤ dA+Be + 1, while the
second follows from m · n > 0.

More generally, a similar construction can be used to cover a
cubic graph of any dimension for single link UFL with O(1)+
log2 |E| bm-trails. In this case the alarm code is divided into
three parts, and each of them corresponds to a chocolate bar
graph.

V. SIMULATION

We have seen the convincing performance of a number of
previously reported heuristic approaches on general topolo-
gies, and these heuristics can efficiently solve the m-trail
allocation problem in very densely meshed and square 2D
grid networks. However, in our experiments those heuristics
had difficulties to solve the problem in spare topologies with
relatively large diameters. To demonstrate the usefulness and
uniqueness of the proposed constructions, we conduct simu-
lation on chocolate bar graphs (or N-by-1 grids) to examine
a number of previously reported heuristic approaches listed
below, and we will show that the heuristics yield very awkward
performance in the considered network settings even when
granted with several hours of computation time, while the
proposed construction can optimally solve the problem in
milliseconds.

1) Random Code Assignment - Random Code Swapping
(RCA-RCS): a heuristic by our previous study in [1].

2) Monitoring Trail Allocation (MTA): a heuristic by [31],
which is a deterministic approach that builds the um-
trails in parallel for achieving UFL.

3) Random Next Hop policy (RNH): a heuristic by [32]
which is a randomized version of the MTA heuristic2.

4) Cycle Accumulation (CA): a generic approach by em-
ploying Dijkstra’s algorithm to distinguish each pair of
links [16].

2We thank the authors for sharing the source codes.
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Fig. 5. Simulation results on C20, C40, and C60 for the number of bm-trails.

We consider the three schemes: RCA-RCS, MTA, and
RNH in chocolate bar graphs C20, C40 and C60. A high-
performance server with 3GHz Intel Xeon CPU 5160 was
used in the simulation. The result of the proposed 2D grid
construction is calculated first using the theoretical optimum
given in Section IV-A2: d0.42 + log2 (|E|+ 2)e, which yields
the minimum number of bm-trails for UFL as 7, 7, and
8 for C20, C40 and C60 with |E| = 61, 121, and 191,
respectively. We are interested in the difference between the
result by each considered heuristic and the one obtained via
the proposed construction. It is important to note that RCA-
RCS and RNH are both randomized approaches where longer
computation time guarantees better performance (or smaller

numbers of bm-trails). Therefore, we are further interested to
see how much long the two schemes can converge close to
the optimal solution, where the computation time describes
the efficiency (and inefficiency) of the two schemes in the
considered scenarios.

Fig. 5 demonstrates the comparison results. Clearly, both
RCA-RCS and RNH show better solution quality by granting
longer running time, while MTA is a deterministic algorithm
that iteratively finds the longest segment as the next um-trail.
Since all the three topologies are very sparse whose diameters
are much longer than the average nodal degree, MTA needs
6 and 15 more bm-trails in C20 and C40 than the optimum
(i.e., 7), respectively, as shown in 5(a) and 5(b). On the other
hand, both RCA-RCS and RNH are seen to converge very
slowly as the network has a larger diameter. As shown in Fig.
5(a), RCA-RCS needs to take over 400 seconds to achieve one
more bm-trail away from the optimal in C20, but over 800 and
1,000 seconds to achieve about 10 bm-trails from the optimal
in C40 and C60, respectively, as shown in 5(b) and 5(c).

Note that CA requires 93 bm-trails which are not shown
in the figures since it is out of the range. We do not show
RNH in 5(b) and 5(c), and MTA in 5(c), because they
were not solvable in the topologies C20 and C40 by running
out of 2GB memory (which is the computation specification
for the simulation). This is mainly because both methods are
designed for networks when the average nodal degree is not
much smaller than the diameter of the network. Therefore, the
two schemes had a large amount of candidate segments which
drained the memory usage.

In summary, the simulation results clearly show the merit
of the proposed 2D grid construction compared with the
previously reported heuristics.

VI. CONCLUSIONS

The paper considered the optimal S-LP allocation problem
in all-optical mesh networks of very densely connected and
grid topologies for achieving unambiguous failure localiza-
tion (UFL) under any single link failure. We have derived
essentially tight upper bounds on the number of bm-trails
for the topologies of interest via deterministic constructions
and rigorous proofs. The bounds obtained are dlog(|E|+ 1)e
and 3 + dlog2 (|E|+ 1)e for 2 · dlog2 (|E|+ 1)e connected
and grid topologies, respectively, which are close to the
theoretical lower bounds dlog(|E|+ 1)e. We demonstrated via
case studies in chocolate bar graphs that the derived bound can
hardly be reached by some recently reported random algorithm
based heuristics.
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APPENDIX

A. Proof of Lemma 1

We prove inequality

2 · b2
b − 1

b
c ≥ 2b+1 − 1

b+ 1
≥ d2

b − 1

b
e.

For the first inequality one can readily check that it holds for
b = 3, 4, 5. Note also that the inequality fails for b = 2. We
have

2 · b2
b − 1

b
c − 2b+1 − 1

b+ 1
≥

≥ 2 ·
(
2b − 1

b
− 1

)
− 2b+1 − 1

b+ 1
. (4)

After clearing denominators, the nonnegativity of the above
quantity for b ≥ 6 is equivalent to 2b+1− (2b2 +3b+2) ≥ 0.
But for b ≥ 4 we have 3b + 2 < 3b + b = 4b ≤ b2, hence it
suffices to see that 2b+1 − 3b2 ≥ 0, or f(b) := 2b+1

3b2 ≥ 1.
We have f(6) = 128

108 > 1. Moreover, for every real b ≥ 3,

f(b+ 1)

f(b)
= 2

(
1− 1

b+ 1

)2

≥ 2

(
1− 1

4

)2

=
18

16
> 1,

It implies that f(b) > 1 whenever b ≥ 6 is an integer. The
second inequality holds because 2b−1

b is a convex increasing
function, and at b = 4 the difference is 25−1

5 −
24−1

4 = 2.45 >
1. This proves Lemma 1.

B. A Brief Introduction to Galois Fields

In the arithmetic of ordinary numbers there are infinitely
many numbers, while the fields F2b have only 2b elements.
However, the operations of addition, subtraction, multiplica-
tion and division (except division by zero) may be performed
in a way that satisfies the familiar rules from the arithmetic of
ordinary numbers. Concerning F2b a widely accepted approach
is to represent the elements as polynomials of degree strictly
less than b over F2. Operations are then performed modulo
R where R is an irreducible polynomial of degree b over F2.
For example the field F8 can be interpreted as the polynomials
modulo 1 + x + x3. This way we can consider F8 as the set
of binary polynomials of degree at most 2 (indeed there are
8 such polynomials). Addition is the usual binary polynomial
addition. For example

(1 + x+ x2) + (1 + x2) = x.

Multiplication is the usual polynomial multiplication, followed
by reduction if necessary (modulo 1 + x+ x3). By reduction
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we mean replacing x3 by x+ 1 as long as it is possible. For
example

(1 + x+ x2)x2 = x2 + x3 + x4 =

x2 + (x+ 1) + x(x+ 1) = x2 + x+ 1 + x2 + x = 1.

In this representation x is a primitive element, indeed 7 is the
smallest positive integer exponent m for which xm = 1.
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