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Solder Paste Scooping Detection by Multi-Level
Visual Inspection of Printed Circuit Boards

Csaba Benedek, Olivér Krammer, Mihaly Jan6czki and Laszl6 Jakab

Abstract—In this paper we introduce an automated Bayesian scoop solder paste

visual inspection framework for Printed Circuit Board (PCB)

assemblies, which is able to simultaneously deal witlvarious A A
shaped Circuit Elements (CE) on multiple scales. We propose a

novel Hierarchical Multi Marked Point Process (H"MPP) model

for this purpose, and demonstrate its efficiency on the task

of solder paste scooping detection and scoop area estimation, solder pad
which are important factors regarding the strength of the joints.

A global optimization process attempts to find the optimal Fig. 1. Top view and side view illustrations of a solder jointhwa scoop
configuration of circuit entities, considering the observed image

data, prior knowledge, and interactions between the neighboring

CEs. The computational requirements are kept tractable by a 5 clear hierarchical structure, thus the methodology of the

data driven stochastic entity generation scheme. The proposed ;
method is evaluated on real PCB data sets containing 125 imagesprOpoSecj approach may be adopted to various AOI tasks.

with more than 10.000 splice entities.

Index Terms—Marked point process, PCB, scooping A. Production Technology Background

Nowadays reflow soldering is generally used for mechanical
fastening and electrical joining of surface mounted compo-
nents to electronic circuit assemblies. In mass production,

EFECT detection by Automatic Optical Inspection (AOlgt first Solder Paste (SP), which is a suspension containing
is a crucial step during the manufacturing process @bwder of solder alloy and flux, is printed onto the surface of

Printed Circuit Boards (PCB) [1], [2]. As already predictedhe assembly board through a metal stencil. Then components
in the late 80’s [3]-[5], increasing circuit complexity, diver-are placed onto the board into the printed paste. The third
sity of defects, economic considerations and computatiorsép is the formation of the joints by heating and melting -
requirements raise difficulties for complete PCB validatiomeflowing - the solder paste in conveyor type forced convection
Although AOI systems have been commonly used to recognizglow ovens [19], [20].
PCB errors [6]-[11], recent developments in resolution, quality The pitch size of integrated circuits is getting smaller
and speed of the industrial cameras have opened severad smaller and the density of components is growing as
new prospects and challenges in image based verificatiitnis demanded by the continuous development of Surface
Earlier approaches needed to deal with compensating Itount Technology (SMT). Consequently stencil printers and
image resolution by mosaicking or super resolution techniquastomated assembly machines are facing real challenges.
[6]. Nowadays fine details are observable in high resolutiorherefore to improve the quality and reliability of circuit
images, which demand a hierarchical modeling approach of theard assemblies, the analysis of the manufacturing processes
PCB structure, focusing jointly on circuit regions, individuatiescribed above has a great importance. According to PCB
Circuit Elements (CEs), CE interactions and relevant subobjegisemblers, the quality of the printed solder pastes heavily
structures. This improvement enables the investigation ipfluences the quality of solder joints. It has been reported in
several previously unrecognizable features and artifacts, whisdwveral studies that 52%-71% of SMT defects are related to
can effect various phases of the manufacturing process. the printing process [21]-[25]. Altough other opinions keep

Defect recognition is a strongly inter-disciplinary taskthis phase less crucial [26], it is clear that detecting earlier the
as it encapsulates problems raised by industrial technolggynting failures may result in notable cost savings.
(estimating the effects of the artifacts), optics (exploiting up- One major printing defect in case of small pitch-size BGA
to-date imaging devices, and dealing with their limitationgBall Grid Array) components is the so called scooping (see
and advanced vision based quality assessment [12]-[14] d&igd. 1), when the deposited solder paste has a concave profile
pattern recognition approaches [15]-[18]. and its volume is less than intended based on the stencil

In this paper we propose a hierarchical visual inspecti@perture volume [27]. The scoops can also be observed in
framework, which implements a multi-level entity extractiomptical images taken from the PCBs (Fig. 2).
approach. We introduce this model suited to a selected AOIAs reported by the research [28] the solder joint geometry
task, called scooping detection. On one hand - as introduceglays an important role among the factors that can affect
the following subsection in details - scooping is a significasolder joint fatigue performance. Ball shape, standoff height,
practical problem influencing the strength of solder joints iand material have effect as well on thermo-mechanical per-
stencil prints. On the other hand, the relationship between tteemance of BGAs and CSPs (Chip Scale Package). Previous
solder joints and the embedded scoops can be describedwayks have demonstrated that a greater standoff height offer

printed wiring board

|. INTRODUCTION
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(a) Noisy input (b) Binary paste mask obtained by
Otsu’s thresholding algorithm

Fig. 2. 6 um resolution image of a Printed Circuit Board, with a magnified
solder paste, which contains a scoop of interest.

improved reliability performance [29] furthermore assemblies

with high global thermal mismatches are necessary to have (c) Pastes with scoops  (d) Binary scoop mask obtained by

increased stand-off height to decrease the shear stress in joints local adaptive thresholding

dur_ln_g te_mperature_ changes [30]‘ Since the StandOﬁ'heI%. 3. Limitations of morphology based invesigations. Binarized images

of joints is proportional to the amount of deposited soldeke obtained by thresholding, optimizing the threshold for solder paste-

paste, and in this way to the degree of scooping defect, ﬁpﬁgkgr?und separation (top) andf scoop centerbextractlon (bottom). Top: in
. . . e of noisy input, separation of pastes may by inaccurate. Bottom: scoop

deteptlon of th_esg_defects has a major role to mprove}@?ters can be hardly separated by thresholding

quality and reliability of electronic circuit assemblies. If in

the inspected PCB, the number and summarized volume of

such artifacts surpass given thresholds, the board should be

withdrawn. Previously, the quality of solder joints had beeglet, loop, bridge, perforation, edge, and branch. This was
mostly verified by manual visual inspection [31], but as thgchieved by applying a series of morphological transforma-
number of components exceeds the possibilities of mangahs such as erosions, geodesic dilations, reconstruction by
testing, reliable automation becomes a crucial need [32]. dilation, anchored skeletonisation, etc. The main weak point
Capturing images for paste inspections is usually performgflthe previously mentioned techniques is that they critically
with line-scan techniques due to speed requirements. Howeygly on the binarized image, which is usually obtained by
designing a proper source of illumination for the AOI step is fyresholding. However estimating appropriate global or local
difficult issue. In addition, due to lens aberrations and |imitq¢|resh0|ds may be d|ff|cu|t, as well due to local contrast
Depth Of Field (DOF), the local contrast of the image igefects and slight illumination variations the separation of
usually inhomogeneous depending on the Modulation Transts|der Pastes (SPs) from the background can be imperfect (see
Function (MTF) [33]. As a consequence, we may obserygq. 3(a)-(b)). As shown in [35], even with applying efficient
regions that exhibit defocus blur, which effect causes notatpg:ally adaptive binarization algorithms [36], fine structures,

challenges for image based verification. For this reason, Wgch as scoops, can be hardly separated from binarized images
integrate an optical blurring model based on the Local Contrggfg. 3(c)-(d)).

(LC) prior [34] into the proposed AOI method. An alternative solution could be applyimgrayscalemor-

phological operations [37], or traditional segmentation-based
B. Previous AOI methods approaches [38], [39]. However, PCB images often contain
Several methods use mathematical morphology [2], [9]-[1&¥ersaturated regions, which concern both scoop centers and
as a tool for investigating geometric structureshimary or other SP parts as well, whose separation is hence not possible
grayscaleimages. [9] introduces the “hit and miss transform™ased on purely intensity or micro-textural properties of the
which is a combination of dilation and erosion. After all, th@bserved optical data. While segmentation techniques may
usage of the two operations are presented in printed circuit @dficiently separate ‘background’ areas on the boards from
fect detection. The method exploits prior structural evidenckEsge component packages such as Integrated Circuits (ICs)or
such as through the erosion operator one can emphasizeoanectors; and from strongly textured regions containing
portion from the circuit which does not have the adequate pagt®ups of small resistors, transistors or capacitors; they can
thickness; or through the dilation operator we can mark outbe less efficient, if we attempt to describe the boards at the
portion from the circuit where it is not respected the distancgE-object level, having strong prior information about the
between the feeders. [10] presented a method for segmentiggmetry of the entities. We have also tested classical image
binary patterns into seven mutually exclusive categories: copgpcessing techniques such as the Hough transform based
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TABLE |

ellipse detection, and th&Vatershedsegmentation [39], but  yeryopoLocicaL overviEw ONMPPMETHODS (v/=YES, x=NO).

we found them inefficient for the scooping detection problem. : :
. . . Reference Hierarchy Multi Bottom-Up Samp.

The quality control task is often interpreted as a change method Data | MPP [ Prior T Daia
detection problem. [1] presents a system to inspect meta] PAMI-08 [46]
stencil that is used to print solder paste on pads of PCBs| MIV-09 [47]
In [11], defects in tested PCBs are identified by feature Eﬁm::ﬁ) Eg%
comparison between the detected images and template image$RL-11 [35]
based on a linkage information table. Similar comparison-| HVMPP
based approach is reported in [40], where the major compo-
nents of the PCB inspection system consist of image alignment
and defect detection using Hausdorff distance based matching
to a reference image, while defect classification is obtain@@int of view of the end-user, the*MPP model significantly
by a support vector machine. However, the previous chang@neralizes [35], where purely ellipse shaped elements have
based approaches face also a few difficulties. Firstly, imafeen investigated.
alignment may mean bottleneck of the whole verification (i) To efficiently sample the SP population space, we
process, if the matched features are weak and cannot dselop a Bottom-Up (BU) stochastic object proposal strategy,
reliably detected [40]-[42]. Secondly some artifacts result By combining low level statistical image descriptors [18], [51]
typ|ca| structural patterns rather than typ|ca| Changes - wgh prior information based structure estimation. This step
brigth or dark mutations of solder paste regions do not indicafgeps the computational complexity tractable, although due to
scoops in general (see Fig. 3(c)). In this case template R¥PPerties (i) and (i) the dimension and size of the solution
pattern matching is preferred [43]. space are significantly increased.

Marked Point Processes (MPP) [44] provide efficient tools The proposed MMPP model also has methodological con-
to extend conventional Markov Random Field (MRF, [45]fribution over various earlier MPP approaches, as shown by
based pixel level classification techniques, by taking intBable I. Note that in our earlier published methods [35], [49],
account the geometry in the proposed models. An MPP modé@ have only partially addressed the task (i), while challenges
works with objects as variables rather than with pixels, 46 (i) and (iii) have been completely ignored there. On the
that the number of variables is also unknown. Moreove@ther hand, the further reference techniques [18], [46], [47],
similarly to MRFs, MPPs can also embed prior constraint80] deal with significantly different application domains, thus
and data models within a global configuration probabilitthey do not address specific challenges of AOI problems.
function, and various techniques for optimizing the models
[46], [47] and estimating the parameters [48] are available. [I. PROBLEM FORMULATION
However, implementing a multi-level PCB inspection task is The input of the proposed method is an optical image taken
challenging in the MPP framework. For comparison, in ftom a PCB with printed Solder Pastes (SP). The goal is to
basic MPP solution [47], flamingo populations are investigatelétect and separate the SPs, and simultaneously extract the
in aerial images, where all birds are modeled by ellipsgsoop artifacts, which may appear in some pastes (Fig. 2). We
with similar sizes. In that case, model optimization can kspproximate the shape of the SPs by various plane figures from
efficiently performed by applying randomized object birtha shape library, in this paper ellipsesy, rectangles({l) and
death moves after coarse estimation of the object centdgssceles trianglesX) are used. On the other hand, we model
Conversely, to cope with our addressed problem, we haved@coop Object (SO) by two concentric ellipses as it consists
deal with a couple of difficulties: of a bright central region (inside the internal ellipse) and a

« Hierarchy. PCB elements appear at multiple hierarchicaklatively darker elliptical ring (region between the internal

levels, e.g. Solder Pastes (SPs) and included scoops. and external ellipses) enclosed by the brighter SP patch (see

« HeterogeneitySPs have various geometric shapes.  Fig. 4). In several cases the separation is not trivial due to

o Multi-scaling SP sizes are in different orders of magniweak contrast (see Fig. 16).

tudes. Let us denote by the pixel lattice of the input image and by
For these reasons, we introduce here an mtiararchical s € S a single pixelG refers to the observed grayscale image.
Multi Marked Point ProcesHYMPP) model with the fol- Let u be a SP object candidate of the board, whose shape
lowing three key properties: is defined by itsshape typeattribute tp(u) € {O,0, A}

(i) We describe the hierarchy between objects and objdeor each object, we define the coordinates of a reference
parts as a parent-child relationship embedded into the MPBBint o = [o,, 0, ], the orientatiord € [—90°,490°], and the
framework. The proposed schema extends the approach ugedmetry is described by, anda,, length parameters, which
in our earlier models [35], [49], so that we consider here bo#re the major and minor axes for ellipses, the perpendicular
data based and prior features in multi-level entity connectiside lengths for rectangles, and a side-altitude pair for triangles
modeling. (see details in Fig. 4). In addition, each SP may contain child

(i) To simultaneously deal with variously shaped circuibbjectq, € {{nil} U @}, while ¢, = nil denotes no scooping
elements, we jointly sample different types of geometria u. A SO objectq lives in the@ parameter space, which is
objects, by adopting the multi-marked point process schematermined by the,, ¢, center coordinates,, andb,,, semi-

[50] to the hierarchical entity extraction problem. From thaxes of the internal ellipsed;; andd,, ring with parameters

< | x| x| x|x
< | x| x|x|x|x
< X XY X

<J<d x| x| %[ x| D
o
e

< | X[ x| x|x|x
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Fig. 4. Notations of the elliptical model of a Solder Joint @hd bi-elliptical scooping effect

so that the axes of the external ellipse &g + dj; and A. Data Energy
bm + dpm, respectivelyy denotes the orientation of the SO.

Let us denote the set of all the possibl&P objects byH.
The Q2 configuration space is defined as [47]:

We assign to each object a data-dependent energy term
vd4(u), which evaluates: depending on the local image data,
but independently of other objects of the configuration. Then,
the data term of the population is calculated as:

Baw) = Y palu) 3)
Denote byw a given object configuratiof, . .., u,} in Q. ucw

A SPu with ¢4(u) < 0 is calledattractive object since
[1l. HIERARCHICAL MULTI MARKED POINT PROCESS according to (3) adding attractive objects to the population
MODEL may decrease the global configuration energy.

We describe the configuration of the Solder Pastes and!N€wa(u) functionis decomposed into a parent tep(u)

the included Scoop Objects with a novelerarchical Multi  @"d @ child termpg (u, g,.). In the obtained circuit images the
Marked Point Process ModelFirst, we introduce a non- parent Solder Pastes appear as bright ellipses surrounded by
homogeneous data-dependent Gibbs distribution on (hedarker background. To evaluate the contrast between the SPs
configuration spaceP(w) = 1/Z - exp [~ ®(w)], where®(w) and the board, we calculate the Bhattacharya [47] distance
is called the configuration energy arid is a normalizing dp(u) l:_)etween the pixel inten_sity distributions of the internal
constant. Theb(w) energy function is a composition of a data>F €gions and their boundaries:

term, ®4(w), which measures how the configuration fits the o 7 youtl o

observed image data; and a prior ter#,(w), which takes dp(u) =1 Z VAR () - X ()

into account geometric interactions between the objects: ‘

0= U Qn, Q= {{ur,...,up} €H"}
n=0

where \i(z) (resp. A9 (z)) is the empirical gray level

O(w) = p(w) + v a(w) (1) distribution of the pixels belonging ta (resp. a concentric
wherev is a positive weighting factor. elliptical ring aroundu), andz; ¢ = 1,..., K are discrete
The optimal SP populatio@ is obtained as the Maximum 9ray levels of the histogram bins, shown in Fig. 5.
Likelihood (ML) configuration estimate based on tifw) In the next step, we construct the parent energy term,
density: so that we attempt to satisfy!(u) < 0 for real SPs

and ¢j(u) > 0 for false candidates. For this purpose, we
wwL = argmax P(w) = argmin ®(w). ) project the Bhattachar_ya featu_re domain [tel,_ 1] with a
weN wEN monotonously decreasing function (see also Fig. 5):

To fit the above framework to the SP detection task, we need P () = Qdg(u), do) =
construct an appropriate(w) energy function, so that the ML Y BAELT0

configuration efficiently estimates the true SP population. For (1 — d‘fi—f)“)) if dp(u) <do
this reason, we dedicate the rest of this section to the definition ) (_ dB(u)—do) 1 if dp(u) > d
of the dataand prior energy terms. P 10 BV =10

(4)
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Fig. 5. Utility of the Ai"(z) and AS%*(z) histograms for the parent data Contrast map (LC)
term calculation

Intensity histograms

) Input image (G)
““MJ Fig. 8. Contrast map demonstration

e
4y

i . )Lqm(x) :

Central region

region histograms\(' (z) resp.A; (z)) can be approximated by
Gaussian densities. On the other hand, the scoop center region
is a usually compact bright blob, and if we apply a floodfill

X e propagation from the central poirtg), the flooded region
Floodfill companent calculation: does not hang over the internal ellipse significantly (Fig 6
- ' ' bottom). To avoid errors caused by narrow bright connections
.ﬁ .c(q) rﬁ , between the scoop center and further bright SP parts, we apply
1 ity '\,,-' the floodfill step for the input image undergone a grayscale
Central region of scoop Floodfill propagated  Floodfill mask and the erosion filter.
g, with center ¢(q) from c(q) central region of g Let us denote by the peak location of\{(x), and by

. i ) ) - u™ resp. S the empirical mean values of the*(x) resp.
Fig. 6. Child data term calculation. Top: intensity histogsa bottom: g N . q
floodfill feature demonstration Ay (z) distributions. We characterize a scoop candidate by the

following four features:

(1) pg: dominant brightness value of the central region
_ . ) (i) intensity ratio ug/uy': contrast between the central re-
where thed, parameter is set based on training regions [18]. gion and median ring

A§ shown in Fig. 5, object is attractive according to the () jntensity ratio ;¢ /u: contrast between the external ring
pq(u) term iff dp(u) > do. and median ring
The construction of thehild’'s data termy§(u, ¢,) needs (iv) r(q) = ;z . (1 _ 5—:) feature obtained by floodfill

more complex investigations. We us€(u,nil) = 0, other- propagation frome(q). T¢ and T™ mark the area of
wise we distinguish three regions of each scoop: the central he central region resp. median ringc and F* denote
bright ellipse, the darker median ring and the bright external  he flooded area of the corresponding regions.

ring, as shown in Fig. 6. Experimental evidences prove, thatFor a statistical analysis of the above desciptors, we have

for a real scoopy, the gray level histogram of the Centralcollected Ground Truth SOs and false candidates from training

region, A\ (x) follows a skewed distribution, which can be

. d by a Beta densitv f _ h it d hlraages, and compared the feature histograms of the positive
appr.OX'mate. y a Beta _en_5|ty unction (S_ own with das d negative samples (see Fig. 7). The noticeable differences
line in Fig 6 in the top). Similarly, the medium and extern

etween the matched distributions confirm that the extracted
features provide valuable information for SO separation. How-
ever, since the histograms are overlapping in the individual

Feature histograms for

Hq ’,% manually evaluated scoop feature dimensions, a joint consideration of the descriptors is
= a=’Z = it dehie vt canfiidgtes from the SP necessary for correct classification. . . _
I A reglons: The skgtch of the propo_sed feature mtegr_at|on process is
A\, frue scoops: the following. First we assign to each descriptor an energy
05 0 s positive training term using theQ-function similarly to (4), so that we set the
Mg M_ samples do acceptance threshold parameterlas, as the attractive
iz are = - false scoops: region Qf_ Q mvplyes almost the complete feature domain of
) == negative training the positive training objects. To decrease the number of false
\ s / samples alarms, we prescribe that for a real scoop, the (i)-(iv) features
0.0 B 1.0 should be simultaneously appropriate. Therefore, the child’s

data-energy value is calculated using the averaging and the
maximum operators (latter one is equivalent to the logical
AND in the negative fitness domain) from the subterms of the

Fig. 7. Histogram of child data features obtained from mdgualaluated
true and false scoop candidates.
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(d) Axis direction term (e) Scoops w.r.t SP overhanging term

Fig. 9. Calculation of the prior terms. Constraints (a)-(d) implement various SP level interactions, (e) influences the relation of SPs and included SOs

four constraints. Since as detailed before, the contrast of thel) Non-overlapping: Since we aim to extract individual
PCB images may be notably inhomogeneous (see also Fig. 8, entities, we must penalize overlapping between different
the acceptance threshold for the intensity rafipg.* 1.2/ SP objects. Thus, we define first% intersection relation in
should also vary over th& pixel lattice. To characterize theqy so that for a giver(u,v) SP pairu = v holds, iff their

local sharpness of the image, we calculate a contrast depend¥metrical figures intersect. Then, the energy term oftre

term, £(u), which is estimated by the mean Local Contra%verlappingconstraintcp(’v(u,v) is defined for each; ™ v
(LC) prior value of the parent SP’s:) image region [34]: g

object pair, and it is calculated as the normalized overlapping

£(u) = ZLC(s) area (see Fig. 9(a)):
s€u o #{s|s € u,s € v}
. . L . . “p (u,v) =
using the following contrast definition (see also Fig. 8): #{s|s € u} + #{s|s € v}
max, ¢y, (- VG(r) wheres € u means that pixek is covered by object;, and

LC(s) =

# refers to the cardinality of a set.
2) Element type homogeneityn PCBs we can often ob-
whereW;(r) is al x | rectangular window around pixeland serve that several SPs with the same type form spatially

max,.cyy, () G(r) — min,.ew, ) G(r)

VG is the gradient image. connected groups. Relying on this prior assumption, we should
Finally, the complete data energy term for a given scodavor SP configurations, where the neighboring entities have
candidate is derived as: mostly identical types which can be expressed by the Potts
1 1 constraint [52].
¢a(u, gu) = max (gQ(“guadc) + §Q(n(qu),d“), We define here & neighborhoodrelation, whereu *> v

QuS, /i &(u) - d™), iff the distance of their geometric figures is lower than a
R distance threshold. For the management of this neighborhood,

Q (g, / 1rg, € (w) 'dcm)) ®) a regular grid is projected to the image, which divides it

o into rectangular regions, callgohving cells Then, each SP
Cnlfree parameters of the scoop model dfed,, d*™ and  .angidate is registered to the intersecting paving cells, so
d*™, which should be set based on training data (Sec. V). that pointers are maintained in both direction between the
With summarizing the parent and child terms, the dagresponding cells and the circuit objects. In this way, the
energy of the SP candidateis obtained as neighborhood of each SP can be efficiently determined.
_ P ¢ Based on the previously defined neighborhood, tyyee
pa(w) = @) + @av, qu) homogeneityenergy term is obtained as:
tp(v
(v) ©)

B. Prior Energy ot (u,v) _{ 0 if tp(u) g(v)

a if tp(u) £t
In contrast to the data-energy model, tidg (w) term _
evaluates a given configuration on the basis of prior geometricwith an« > 0 constant.
constraints. We used four types of prior terms in the model, im-3) Alignment:SPs in the printed boards are usually aligned,
plementingnon-overlappingtype homogeneifyandalignment i.e. most of the neighboring entity pairs are either parallel
constraints between different SPs, andsbeop encapsulation Or perpendicular. Considering this prior feature, we can also

constraint between a SP and its child SO. prescribe on the previously defined neighborhood two
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()

(b) E: Canny edge map (d) C ={C;}: circles for maxima ofD (f) SP generation probability map

Fig. 10. Steps of the bottom-up entity proposal process
By definition, we usep;’(u, nil) = 0.
‘ A In the development phase of the model, we have tested a
i couple of fusion formulas to derive the joint prior energy term
. b from the above subterms. We found here that the summa-
’ O rization is more efficient than the maximum operator (later
' ' one was used for the data term construction): by adding the
(a) (b) () () (e) priqr terms, we d(_) not strict!y prescribe the simultaneous
fulfillment of all prior constraints, although we prefer low
Fig. 11. Demonstration of the preliminary detection resttts touching energies regarding the individual components. Therefore, the

SPs. (@) input image part (b) coarse binary SP mask{(edge map (d  complete prior energy term of the population is calculated as:
distance map (e) initial SP candidates (circles)

o ov th ad
alignmentcondition terms. The first one penalizes the angle Opw) = Z vy (u,0) + Z ¢y (u,0) + Z ey (u,0)

difference (ad) between the neighboring entities (Fig. 9(c)): u®y ury uSv
at se
2 (u,0) = 4 A( ([6(u) — 6(v)| mod 90°)) +§J% (“ang% (1, qu) (7)

whereu %0 v and A(z) is a tent function:

45° —x
Az) =1~ %7 x € [0,90°] The previously introduced prior and data dependent poten-
Using the above term, SPs will be favored, which have ##fl terms define theb(w) configuration energy completely,
average similar orientation tenost of their neighborsOn however, finding the optimaby, object population needs to
the other hand, we also prescribe another strict alignmdifform an efficient search in the high dimension population
constraint: we expect that in the neighborhood of each SPace, where local maxima of the energy function can mislead
u there existsat least oneSP v, so that the central point of the optimization. Due to time and quality constraints of
(denoted byo(v)) is close to one of the main axis lines of the manufacturing process, the computational efficiency and

IV. OPTIMIZATION

(1.). The corresponding energy term is obtained as: detection performance of the optimization plays a particularly
at . crucial role in the addressed application. We can find an
wp (u,w) = min Ca(u,v) extensive bibliography for MPP energy minimization. Most

viu~v

previous approaches use the iterative Reversible Jump Markov
where (q(u,v) = (¢(u,v) + ¢(v,u))/2 and ((u,v) is the Chain Monte Carlo (RIMCMC) scheme [46], [50], where
normalized distance df, ando(v) as shown in Fig. 9(d).  each iteration consists in perturbing one or a couple of
4) Scoop EncapsulationtVhile previous prior terms pre- gpjects (e.g. SPs) using various kernels such as birth, death,
scribe soft constraints between SP objects, we define fignsiation, rotation or dilation. Here experiments show that
Encapsulatiorcondition between a given SP and its includeghe rejection rate, especially for the birth move, may induce
scoop. Here penalize if a scogp overhangs its parent pasté heayy computation time. Besides, one should decrease the
u, which is measured by the;’(u,q.) overhanging area temperature slowly, because at low temperature, it is difficult

normalized by the area of the scoop (see Fig. 9(e)): to add objects to the population.
o _ #{sls € qu,s ¢ u} A recent alternative approach, called the Multiple Birth and
P (U, qu) = #{55 € qu} Death Dynamic technique (MBD) [47] evolves the population
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of objects by alternating purely stochastic object generati
(birth) and removal death steps, in a Simulated Annealing
(SA) framework. In contrast to the above mentioned RIMCM

implementations, each birth step of MBD consists of adding®

several random objects to the current configuration, and th
is no rejection during the birth step, therefore high energe
objects can still be added independently of the temperat
parameter. Due to these properties, in several tasks notd
gain has been reported in optimization speed versus RJ
CMC [18], [47], [53]. However, in these previous model
the dimension and extension of the object parameter sp
is relatively small. Conversely, the proposed! MPP model

must deal with variously shaped and scaled circuit elemer
while the embedded SOs increase onwards the dimensior]
the object descriptor vector. As a comprise, we supplement
MBD algorithm with three simple moves: shape perturbatio
type change and child maintenance, so that the optimizat
in the multidimensional parameter space is decomposed
computationally efficient steps. On the other hand, instead
applying fully random sampling, we construct a data drive
stochastic entity generation scheme, which proposes reley
SPs with higher probability based on various image featurg

This approach uses a similar idea to the Data Driven MCMC

scheme [51] or to the birth maps in [18], [47], however w|
extend here the bottom-up parameter estimation process

1. 60, no. 6, pp. 2318 - 2331, 2013

hrflgorithm: SP Candidate Generation

Step 1.Generate the Canny edge mapof the PCB image (Fig.
c10(b))
tep 2.Generate the distance transform mapMfand denote it
gy D (Fig. 10(c))
tictep 3.Find local maima pixels in D: {s{_x|i =12,... 7n1?(},
,r@nd for each draw aC circle with centersy, and radiusD(si, ).
\pfeep only circles which correspond in majority to foreground
\gions of the coarsé foregroundmask:C = {C;|j = 1, ..., n.}.
5 We denote henceforward I8y e, if C; and(; circles intersect]
adEig. 10(d)).

Step 4.We define an indirect intersection relatib% for a subset
1%’ © ¢ where for eactC;,C; € C': ¢; 'S ¢ iff ¢; ™ ¢ or

gti‘k eC”: Cj ifl\l-‘t Cr, AND Cy ig/ Ci

h§tep 5.We prepare am-partition of C = C1 UC2U...UCy SO
Mthat for eachl eachC; € C; isin * relation with all elements in
OB‘;, but not with any other circles from'\C; (see in Fig. 10(d)

e grouped circles).

O tep 6.To all partitions obtained above we assign a SP candid
r]For each(C; we calculate the radius-variation of the includ
a@i‘cles. If the variation if high enough we mark the object
Sy triangle candidate, otherwise as R&E (rectangle or ellipse

re-

ate.
ed
as

be
data

candidate. Choice between rectangles and ellipses will only

F made in the consecutive optimization step (Fig. 13), based on

f?irependent and prior features of proposed candidates.

all descriptors (location, orientation and shape) of the circuit

elements.

The goal of theBottom-Up Stochastic Entity Proposal
process is to assign to the different image pixels (1) pseu
probability values that the pixel is an object reference poi
(e.g. center of an ellipse) (2) narrow distributions for obje

parameters expected in the given pixels. In this way the entf{

proposal maintains the reversibility of the iterative evolutio
process of the SP population [51], instead of implementing

Fig. 12. Pseudo code of the SP Candidate Generation algoritbed in the
Bottom-Up Stochastic Entity Propospitocess of the HMBD optimization

do
nt

{18]. Besides marking the candidate regions of the rectangular

[y elliptical SP centers, th¢R;i = 1...n,} set provides
local estimations for the side/axis length and orientation
rametersu’ (s) = ap(R™M), uR(s) = am,(R™*) and

greedy algorithm. On the other hand, this bottom up-procd%(*?) = H(R?ﬁn?' ) . ) o
can efficiently guide the object exploration step towards ef- Triangle candidatesdetermine the circles with the minimal

ficient candidates. We use in the preprocessing step a binaﬂ?i

maximal radius of the group, and the circle which has

foregroundmask B obtained by Otsu’s thresholding methodh€ highest distance from the minimal circle (Fig. 10(e), left

from the input image, which realizes a coarse separati

part). Calculate joint tangents of the maximal and minimal

of the circuit entities (ie. foreground) from the board (ieqrcles. Estimate the triangle sides accordingly. Let us assume

background). However, due to notable noise (as in Fig. 3(b
this B mask can be unreliable for purposes of SP separati
and shape estimation. In addition, some neighboring SPs

steps of theSP Candidate Generatioprocess are shown in
Fig. 12 (see also Fig 10). Thereafter, we have to separat
deal with the R&E (rectangle or ellipse) and thé&riangle
candidatesn the following ways:

i

also be merged into one blob in the mask (Fig 11(b)). THeu\-): Hm

551’at we have detected, triangle candidates7,...7,, }, and
Sipilarly to the R&E case, we derive here a triangle birth
PJ(.) with estimated side length and orientation values
). () and ] ().

Finally the detailed pseudo code of the HMBD algorithm
ERN be followed in Fig. 13.

V. PARAMETER SETTINGS

R&E candidatesfor each object, we estimate the bounding We can divide the parameters of the proposedMPP

rectangleR of the union of the corresponding circles (Fig
10(e), right). Let us assume that we have deteeteR&E
object candidate§R1,...R,, } and leto(R;) be the center of

technique into three groups corresponding togher mode|
data modeland theMBD optimization
The parameters of therior anddataterms are set based on

R;. Then, for each pixet, we determine the closest rectanglenanually evaluated training data. We can follow the supervised
RM™ = argmin, ||s — o(R;)|| and calculate the birth value: approach, since for most AOI systems, the illumination, image
min contrast, element type and size, and expected error charac-
r s — o(R™)|| Ah . . o en
Pr(s) = kr s teristic can be considered constant during the inspections,
R which makes possible to calibrate the parameters in the system
with a kz(.) kernel function, andhr bandwidth parameter initialization phase. Relevant prior term parameters arevthe

(8)
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Algorithm: Hierarchical MBD optimization
Step 1: Initialization

(a) Start with an empty populatiom (= ().
(b) Set initial Simulated Annealing parameters inverse temperatureS, and discretization step = do.

(c) Calculate theP*' 7 (.), /™ (), uR/7(.) and u)’ " (.) birth maps and le®, be a default birth rate.

(d) Let be the summarized birth valug (s) = PX(s) + P} (s) + P, for each pixels.

Step 2: Parent Birth

Visit all pixels of the S lattice one after the other, and at each pixeE S call the following SP Generationprocedure with
probability & - Py (s):

begin-procedure SP Generatiorat pixel s:
Execute one from the following three steps:

orientation parameters as (1) = phy(s) + s, am (1) = p(s) + nm andd(u) = uy (s) + ne, wherenar, ., andng
are independent zero mean Gaussian random variables.

on theu;@,m,g maps, similarly to the previous case.
c) otherwise, generate arbitrary typed SP objectith reference points, and set its geometric parameters fully random

following prior size distributions.
Initialize » without scoop:q,, = nil andu to the current configuratiow

end-procedure SP Generation

Step 3: Parent Death
Consider the current configurationand create a list of the € w objects sorted from the highest to the lowedt(w) values. For
each object: taken in this order, compute the cost of deletindrom w w.r.t. the global configuration energy:

AdY = O(w/{u}) — ®(w)
If the A® cost is negative, the energy decreases by the removal NExt, we derive theq(u) death rateas follows:
0-a(ADH) _ u
=f(APY) = —— ADY) = e FA%L 9
pd(u) f( w) 1+§G(Aq)g)’ a( w) € ()
Finally, we removeu from w with a probabilitypq ().

Step 4: Shape Perturbation & Type Change
For each objecu € w, we propose an alternative object, so that the shape type af, tp(u’), may be different fromtp(u),

energy function, which concera and its neighbors. Th8P exchange rates calculated using thg(.) function defined by (9):
P () = (A (w,u,0))

Then with a probabilityps,,, we replaceu with u’.
Step 5: Child Maintenance
For eachu object inw, we generate a new scoop candidgfe in the following way:
o with 1/3 probability, we takeg;, = nil
« otherwise, we pick up a random point covered by the ellipse,aind appoint it as the center gf (the point selection
algorithm is detailed in Appendix A). Orientation and axes parameterg @fre set randomly.

Thereafter, we calculate the energy cost of exchangintp q,, (note that each of the two scoop candidates camibas well):
Ap(u, qus 4r,) = @p(u, 4r,) + 95(u, q,) — (05, qu) + 5 (4, qu))

The scoop exchange ratis calculated as:
Pso(u) = f(Acp(u, Gus q'u))

Then with a probabilityps, (v), we replaceg, with gs,.
Step 6: Convergence Test

If the process has not converged yet, increase the inverse tempefaame decrease the discretization stevith a geometric

scheme, an€GOTO Step 2, otherwiseSTOP. The convergence is obtained when all the SP objects added during the birth

and only these ones, have been killed during the death step, meanwh@aittidMaintenanceloes not report any more change

a) with a probabilitfo(s)/ﬁ;,(s) generate a rectangle or ellipse @Ryith centero(u) := s. Set the side lengths/axes and

b) with a probabilitbeT(s)/lsb(s) generate a triangle with reference poinb(u) := s. Set the geometric parameters based

y

and the{o, anr, am,0} parameters of.’ are derived from the parameters ofby adding zero mean Gaussian random valyes.
Then, we calculate the energy cost of exchanging ', Ap(w,u,u), by considering the data terms and the prior terms of the

step,

Fig. 13. Pseudo code of the developed Hierarchical MultigkthBand Death optimization algorithm
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cm/s. The panel has been illuminated by nine light sources,
arranged in a 29 array. Obtained images have 10224568
resolution covering a 6mmd.5mm PCB area (approximately

6 pm/pixel).

: B. Recognition results
(a) Input (b) Result  (c) Result with triangles and rectangles

Some qualitative results of the hierarchical paste-scoop ex-
tfaction are shown in Fig. 16. We have fulfilled the quantitative
evaluation separately for the SP and SO objects, both at entity
and pixel levels.

Fig. 14. HYMPP result: extracting variously shaped circuit elements, detect
scoops are shown by filled concentric ellipses in (b)

! """ """ TTTTTTETLA On one hand, we measure how many SPs and SOs are
08 - ] correctly or erroneously recognized in the different test sets,
S o6 ! ] by counting the number of the True and False Positive,
&oa ! ] respectively True and False Negative entities in the detection
0.2 :EEP | results. Thereafter, entity level Recall (Rc) and Precision (Pr)
oL ‘ ‘ ‘ rates are calculated, and the detection is characterized by
0 1 2 3 4 the F-score [18], which is the harmonic mean of Rc and
log, , of the number of iteration Pr (see SPOF and SOOF rows of Table Il). On the other

o 15, Evoluton of the detecti . heation st hand, we also investigate how accurate the extracted entity
dtIJgring the oggmuilzoar:ioz onea geﬁgé?end F:(ee;to{m:ggirgéertheeSae?I:ezv?/p?maBHﬂmes are. we compgre the resulypg SP and SO “silhouette
set. Solder Paste Object-level F-rate (SPOF) is given as a function of fiitasks” to manually edited and verified Ground Truth masks,
logarithm of the applied birth steps. and calculate F-score of the pixel level detection (SPAF and
SOAF in Table Il). Finally, as one of the main purposes of
o . ) ) prior interaction modeling in MMPP is to achieve improved
weighting factor in (1), and the and~** weights of different sp ajignment, we measured the average orientation errors of

prior term components. To define the data term, we should fig rectangular and triangular Solder Pastes in the test images
do, d¢, d¥, d°™ andd*™, the window size used for calculating.spoEg in Table ).

the LC prior, and the width of object boundaries for calculating . , i
dp(u) and X;(.). For setting all of these coefficients, one can As a baseline technique, we have used a morphology-based

take a Maximum Likelihood Estimator (MLE), details can bgoluuon Morph) introduced in [35] in details. In thélorph

found in [48]. Finally, regarding theelaxationparameters, we method, two thresholding operations are applied on the input

S 2 a image: the first one uses a lower threshold value, and results in
followed the gwdelme; prov!ded in [47] and usgg= 10000, the binary SP candidate mask. The second threshold enables
Bo = 20 and geometric cooling factors/0.96.

us to extract the brightest image parts only which are supposed
to contain the scoop center areas. Since bright SP parts also
occur independently of scooping, a verification process is

A. Experiment configuration needed, which aims to remove false SO candidates. This post-

We have tested the proposed model on a three real pefcessing _step also ensures that each SP contair_13 one scoop
datasets, whose main properties are summarized in Table®}iMost, which is a consequence of the manufacturing process.
SetHeavy contains 44 images witteavy scooping ratio of ~ Numerical evaluation results are shown in Table II. Con-
14% (664 scoops in 4655 SPs), while SetSparse includ@ning the extraction of the Solder Pastes, the object level
similar PCB photos, with a much lower SO rate of 3% (11pates (SPOF) are nearly perfect with both techniques, however
scoops out of 4100 pastes in 66 images). In the third collectic¥, pixel (area) level (SPAF), the proposed'MPP method
SetDark (1283 pastes in 12 images), the scooping artifgtrpasses thelorph model with around 4.5%. Regarding the
does not appear at all, however, due to lower image qual®’s mean Orientation Error rate (SPOE) the difference is even
the accurate SP extraction step is more challenging. TR@re remarkable, as the"WIPP outperformdviorph with an
circuits contain variously shaped Solder Pastes, in particulaglgder of magnitude1(36° vs. 10.78°), due to our proposed
elliptical, rectangular and triangular elements. Also the scalpgor entity relation model part.
of the different SPs show a large variety: side length/diameterAs for scooping investigation, the difference between the
values vary from250 um to 2000 um. The elliptical solder two methods is significant, as the propose PP model
pastes (of diameter 250-28Gnj)l have been mostly affectedoutperforms theMorph technique by21.6% at object level
by the scooping artifacts, which have a diameter around 50-@&e SOOF rate) and $1.0% at pixel level (SOAF). Circuit
pm. The used camera optics has a focal lengtimm and an technologists have confirmed, that based on our reported ac-
aperture value 1.4, viewing angle has been sdf5tg and the curacy with HMMPP a fair statistical analysis of the scooping
exposition time tol00 ps. During the inspections, the panelsffects can be performed for quality characterization of the
have lied on a moving conveyor belt with a speed of 0.5<€blder joints in PCBs.

VI. EXPERIMENTS
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Fig. 16. Detection results of the proposef MPP method and comparison to the Ground Trufhtesp.M denote False resp. Missing scoops.
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(a) Morph result

Fig. 17. Detection result in a circuit part with various element shapes and sizes. Morph results in a missing scoop and in several misaligned rectangles
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TABLE Il

PROPERTIES OF THE TEST SET AND RECOGNITION RESULTS WITH THMORPH AND THE PROPOSEIMMPPMODELS

| | SetHeavy | SetSparse | SetDark I Overall
Number of PCB images 44 66 15 125
Total number of SPs 4655 4100 1283 10038
Total number of SOs 664 122 0 786
Morph | HMMPP | Morph | HVYMPP | Morph [ HMMPP Morph | HMMPP
SP Obj. lev. F-rate (SPOF)| 99.92% 99.96% | 99.91% | 99.97% | 99.88% | 99.88% || 99.91% 99.96%
SP Area F-rate (SPAF) 88.84% 93.84% | 90.12% | 93.87% | 88.43% | 94.20% || 89.44% 93.90%
SP Av. Orient Error (SPOE) 11.39° 1.83° | 10.71° 1.01° 9.26° 1.59° 10.78° 1.36°
SO Obj. lev. F-rate (SOOF)| 73.11% 92.29% | 62.45% | 92.94% NA NA || 70.80% 92.40%
SO Area F-rate (SOAF) 51.46% | 81.50% | 53.88% | 87.29% NA NA || 52.01% | 83.04%

C. Convergence speed of the HMBD optimization

12

which proposes relevant objects with higher probabilities

To generate relevant SP candidates in the HMBD iteratior@Sed on low-level image features. Experiments confirmed the
we have proposed a Bottom-up stochastic Entity Propo§iPeriority of the prop(_)seq'\F-MPF_’ model and its usability
(BEP) procedure in Sec. IV (see Fig. 12). As a consequenffér, forthcoming mdustr.lal |r_15pect|0n systems. On the other
the death step needs to deal with less inefficient circuit elemdl@nd. the methodological improvements of the paper over
candidates and high quality configurations can be reacti@ventional MPP frameworks should later be adopted to
more quickly. For evaluation, we compared the convergentafious apphc_atlon areas, such as remote sensing or biological
speed of the HMBD optimization algorithm using the proposdf'@ge analysis. Also in those domains, various objects appear
BEP and the conventional Uniform Birth (UB) processes. I h|erarch|cgl parentichlld relatlonshlp: for_example, building
the UB case, theP,(s) map follows a uniform distribution roofs and .ch|m.neys in .agnal photos, or biological cells and
and the axis/side length and orientation parameters are &§d Cores in microscopic images.
set as uniform random values. In Fig. 15, the SP Obj. lev.

F-rate (SPOF) is shown as a function of the logarithm of the APPENDIXA
number of applied birth steps on a selected test image from CHOOSING A PIXEL RANDOMLY INSIDE A SPELLIPSE

the SetHeavy image set: The BEP approach reaches the fing, ihe child Maintenance stepf the HMBD algorithm, we
error rate with around thousand times less birth calls thaReq 1o choose internal points of SP objects randomly. This
the UB. Regarding other images and error rates, the obseryed;ess js implemented in the following way. Let us consider a
tendencies were similar or even worst from point of view cﬁiven SP ellipse: = {04, 0y, anr, am, 0, ¢, } and generate two
the F’B approac-h. i ) . random values, s € [0, 1] according to uniform distribution.
With the cooling parameter settings introduced in Sec. Y)ging the general parametric equation of the ellipse, calculate

the computational time stayed tractable on the used test dﬁg ¢) andy(r, <) internal ellipse point coordinates:
sets: processing tHes6 kPixel (1024« 768) input images with ’

50-120 SP entities took around 5-15 sec. on a standard desktop

computer (also depending on the scooping ratio). Since our test(r,s) = o, + a7 cos (27¢) cos @ — a,, 7 sin (27¢) sin 6
data providers confirmed that with their current technology,
the stencil printing process takes arourig for a four-piece

batch of PCBs, with the curre_nt |mple_r_nen_tat|on of_tH\%MPP_ the procedure returns the pixel with coordinatés, <) and
model we can meet the real time verification requirement if V\@e(T Q)
set four simultaneously working processing units. Note that for ’
increasing the processing speed further, the MPP optimization
algorithms can be parallelized and adopted for multiprocessor
architectures [54]. [1] K.-J. Choi, Y.-H. Lee, J.-W. Moon, C.-K. Park, and F. Harashima,
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