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Moving Target Analysis in ISAR Image Sequences
with a Multiframe Marked Point Process Model

Csaba Benedek Member, IEEE and Marco Martorella Senior Member, IEEE

Abstract—In this paper we propose a Multiframe Marked
Point Process model of line segments and point groups for
automatic target structure extraction and tracking in Inverse
Synthetic Aperture Radar (ISAR) image sequences. For the pur-
pose of dealing with scatterer scintillations and high speckle noise
in the ISAR frames, we obtain the resulting target sequence by
an iterative optimization process, which simultaneously considers
the observed image data and various prior geometric interaction
constraints between the target appearances in the consecutive
frames. A detailed quantitative evaluation is performed on 8 real
ISAR image sequences of different carrier ship and airplane
targets, using a test database containing 545 manually annotated
frames.

Index Terms—Marked Point Process, ISAR, target detection

I. INTRODUCTION

ETECTION and analysis of moving ship or airplane
Dtargets in airborne Inverse Synthetic Aperture Radar
(ISAR) image sequences are key problems of Automatic
Target Recognition (ATR) systems which utilize ISAR data.
Remotely sensed ISAR images can provide valuable informa-
tion for target classification and recognition in several difficult
situations, where optical [1] or SAR imaging techniques fail
[2], [3]. A number of ATR techniques based on sequences
of ISAR images have been proposed in the literature. Some
of them directly utilize the 2D ISAR frames [4], whereas
others attempt a 3D image reconstruction before dealing with
the classification problem [5], [6]. However, robust feature
extraction and feature tracking in the ISAR images are usually
difficult tasks due to the high noise factors and low level of
available details about the structure of the imaged targets. In
addition, due to the physical properties of the ISAR image
formation process, even the neighboring frames of an ISAR
sequence may have significantly different quality parameters
in terms of noise or image focus. These artifacts can lead
to significant detection errors in some low quality frames,
which may mislead the classification and activity recognition
modules of the ATR systems [4]. Some previous studies have
proposed frame selection strategies to exclude low quality
frames from the analysis. However, as pointed out in [4]
extracting reliable features for frame selection may often fail.
On the other hand, assuming that the target has a fixed size
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and structure; and small displacement is expected between
consecutive time appearances, inter-frame information can be
exploited to refine the detection procedure. For this reason,
our proposed system does not drop any frames of the input
sequence, but it implements an approach where the detection
result on the actual frame jointly depends on the current image
data and the neighboring frame’s target parameters.

Besides the length and axis line extraction of the target
scatterer, another issue is to detect characteristic features
of the objects which provide relevant information for the
identification process. For this purpose, we identify perma-
nent bright points in the imaged targets, which are produced
by stronger scatterer responses from the illuminated objects.
However, due to the presence of speckle, image defocus and
scatterer scintillation, a significant number of missing and false
scatterer-like artifacts appear in the individual frames, thus
we focus on their elimination with spatio-temporal filtering
constraints.

Target detection techniques in the literature may follow
two different mainstreams. The direct methods [7] start with
the extraction of primitives, such as blobs, edges or corners
from the images, then they construct the objects from the
primitives in a bottom-up approach. Although these methods
can be computationally efficient, they may fail if the primi-
tives cannot be reliably detected. On the other hand, inverse
methods [8] assign a likelihood value to each possible object
configuration and an optimization process attempts to find
the configuration with the highest confidence. In this way,
flexible object appearance models can be adopted, and it is also
straightforward to incorporate prior information about shape
and motion. Recently, Marked Point Processes (MPP) [9]-
[12] have became widely adopted inverse methods in object
recognition tasks, since they can efficiently model the noisy
image based appearance and the geometry of a target using
a joint configuration energy function. However, conventional
MPP models deal with the extraction of static objects in
single images [9] or in pairs of remotely sensed photos [10],
[11]. Conversely, in the addressed scenario, a moving target
must be followed across several frames. For this reason, we
propose in this work a novel Multiframe MPP (F"*"MPP)
framework which simultaneously considers the consistency of
the observed data and the fitted objects in the individual ISAR
images, and also exploits interaction constraints between the
object parameters in the consecutive frames of the sequence.

Optimization of MPP models is another critical issue. In
the multiframe scenario, the dimension of the target sequence’s
parameter space may be particularly large, as it is proportional
to the number of frames. This fact yields several local maxima
of the likelihood function, which can mislead the optimization.
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For this reason, in the proposed model we attempt to merge
the advantages of both the direct and inverse approaches. First,
we perform an initial detection using a direct model, which
processes the sequence frame-by-frame. This step is quick,
however, we must expect that the detector results in low quality
frames are notably poor. The output of the direct detector
provides the initial state of the F”*MPP optimization process,
which yields the final output by iterations which consider inter-
frame constraints regarding permanent structure and smooth
target motion.

The workflow of the proposed method can be followed in
Fig. II-B). In Sec. II we give a short overview on the related
works in ISAR image formation and feature extraction. Sec.
IIT presents the formal task definition and the notations, and
Sec. IV deals with data preprocessing. We introduce in Sec. V
the proposed F""MPP model, and in Sec. VI the corresponding
energy optimization algorithm. Issues of parameter settings are
discussed in Sec. VIL. In the experimental part (Sec. VIII),
qualitative and quantitative results are provided on extraction
and analysis of different ISAR sequences. Finally, concluding
remarks are given in Sec. IX. Preliminary versions of the
proposed model have been presented in [13], [14].

The contributions of the paper are twofold. On one hand,
we introduce the general multiframe MPP framework, which
provides a novel Bayesian tool for time sequence analysis in
remotely sensed scenarios. Although in each application, the
usable relevant image features and shape models depend on
the imaging circumstances and the considered targets (e.g.
large vessels versus small boats), in the proposed F"MPP
framework the data dependent and target specific terms can
be modified in a flexible way, meanwhile the other model
parts (prior interaction terms, optimization algorithm) can
stay unchanged. On the other hand, we propose a concrete
implementation of the F"MPP method on the analysis of
large carrier ships and airplanes from ISAR data, and perform
a detailed quantitative validation on a real data set, which
contains eight ISAR image sequences with 545 manually
evaluated frames.

II. RELATED WORK

In this section a brief review of ISAR image formation and
target’s feature extraction will be presented to introduce the
reader to concepts that will be developed in this paper and
further motivate this work.

A. ISAR image formation

ISAR image formation algorithm can be interpreted as the
solution of an inverse problem, as stated in pioneering work
[2], [3]. Nevertheless, the simple ISAR formulation encounter
a series of problems when dealing with real data, where
assumptions made are not fully satisfied. To address real
problems, modern ISAR imaging researchers have introduced
a number of robust algorithms for image formation. Specifi-
cally, non-stationary ISAR signals are produced when targets
undergo oscillating motions, such as in the case of ships,
or when they maneuver during the radar dwell time, as it
happens in many scenarios including maritime, ground and

aerial targets. Time-Frequency Analysis based algorithms have
been introduced to solve such problems as they are designed
to handle non stationary signals [15]-[17]. Moreover, as the
image quality in terms of resolution and focus is strongly
related to the target’s own motions, a time-window approach
has been introduced to optimally and automatically select the
data set time-series [18]. ISAR images are typically formed in
the Range-Doppler (RD) domain, as the cross-range coordinate
cannot be scaled in spatial coordinates if the target’s rotation
vector is not known or estimated. To solve the cross-range
scaling problem, several attempts have been made to estimate
the target’s rotational component and consequentially rescale
the ISAR image in spatial coordinate. Some examples can be
found in [19], [20].

B. ISAR image projection plane

The ISAR image projection plane is the plane where
the ISAR image is formed. It has been demonstrated that,
under given assumptions, the transformation that maps any
three-dimensional target onto the image domain is a simple
projection. This fact greatly simplifies the interpretation of
ISAR images, as projections are easy to understand and
produce a result that is visually clear [2], [3]. Nevertheless, the
unfortunate part is that the image plane orientation depends on
the target motion, which is usually unpredictable. Therefore,
the projection seen in the ISAR image may be hard to interpret
when the projection axis is not known a priori. This clearly
makes the problem of classifying or even recognizing targets
from ISAR images a complicated task. Effort has been made
to try to limit this problem either by estimating the time-
window when a simple projection occurs, such as pure top
or side views [19], or by trying to force such projections by
suitably positioning the sensor [21]. Nevertheless, the problem
of relating projections to 3D targets is still a problem that
needs attention as it represents a crucial step in Automatic
Target Classification (ATC) and Recognition (ATR).

C. Target’s Feature Extraction from ISAR images

Most of the ATC/ATR systems that are based on radar
images, make use of a two step approach to solve the problem:
firstly features are extracted from the radar image and then
they are fed to a classifier that decides based on comparing
such features with those that have been previously stored in a
database. The type and quantity of features that should be
used in an ATC/ATR system is an open problem. Several
papers have been written in the literature that show a number
of approaches to select and extract features and the way
they are used to classify targets [6], [7], [22]-[28]. Among
the diverse approaches and set of features used, there are a
few common aspects that seem to play an important role in
practically all proposed classifiers. One such common aspect
relates to obtaining an accurate estimation of the target’s size
(length, width, height) as it usually leads to an improved target
classification. One of the main issues related to estimating the
target’s size is the visibility of scatterers at the edge of the
target. As scatterers may appear and disappear in ISAR images
based on shadowing effects or weak scattering mechanisms,
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Fig. 1. Complete workflow of the proposed method, with demonstrating
output images for each step.

the estimation of the target’s size may be incorrectly performed
[26]. Nevertheless, it has been shown that by observing a target
for a longer period of time, scatterers typically appear and
disappear from image frame to frame. Therefore, by using
ISAR image sequences, such shortcomings may be overcome.
Sequences of ISAR images have been used previously to im-
prove both ISAR image formation (even allow reconstructing
3D ISAR images [5]) and target’s classification and recogni-
tion [6]. Other important aspects related to classification is the
resemblance between features extracted from the ISAR image
under test and those present in the database. As scatterer’s
visibility strongly depends on the target’s orientation with
respect to the radar, a set of features should be related to such
aspect angle to be effective when attempting to recognize the
target. The aspect angle dependence of features is a problem
that, with some limitation, can be reduced by employing aspect
angle independent features [24]. It should be pointed out that
such a claim on the aspect angle independence may be in
some cases overstated. In a recent work [28], the concept of
using permanent scatterers was introduced to capitalize the
advantage of using scatterers that are visible for wide aspect
angles. This allows reducing the data contained in the database
as target’s features should be available for a reduced number
of aspect angles. Both the problem of target’s size estimation
and permanent scatterer selection have a common ground in
the problem of scatterer’s response variability in dependence
of the target’s aspect angle. In this work, a viable solution
will be proposed that attempts at improving scatterer’s position
estimation both in terms of accuracy and robustness.

III. PROBLEM DEFINITION AND NOTATIONS

The input of the proposed algorithm is an n-frame long
sequence of 2D ISAR data, imaged in the Range-Doppler
domain, which contains a single ship (or airplane) target. Let
us denote by S the joint pixel lattice of the images, and by
s € S a single pixel. The amplitude of pixel s in frame

Amplitude
Amplitude
Amplitude
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Doppler Doppler Doppler

~—Doppler —e
~—Doppler —m-
~«—Doppler ~—m

i
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Range

(b) Normalized log-amplitude images

Fig. 2. Input demonstration: (a) amplitude plots of three nearby frames of
an ISAR sequence in the range-doppler domain (all frames are displayed in
the same amplitude scale) (b) normalized log-amplitude images of the same
frames

t € {1,2,...,n} is marked with &(s). Since the observed
&i(s) values may vary in a wide amplitude range (see Fig.
2(a)), for a more compact data representation we derive first
images from the input maps by taking the logarithm of the
observed amplitudes, thereafter we apply linear scaling for
normalization:

gi(s) =

log & (s) — min,cglog & (r)
max,egs log § () — min,.egs log & (r)

Note that we replace the zero amplitude values with a small
positive constant to avoid the calculation of log 0. The images
corresponding to the sample frames of Fig. 2(a) in the normal-
ized log-amplitude domain are displayed in grayscale in Fig.
2(b). Apart from visualization, the logarithmic image repre-
sentation suits well the widely adopted log-normal statistical
models of ISAR target segmentation [29].

Our primary aim in this paper is to measure relevant features
of the objects, such as length or orientation, which provide us
information for target identification and behavior analysis. For
this reason, we model the skeletons of the imaged targets by
line segments in the proposed approach (Fig. 3(c)). Although
as mentioned in Sec. II-C, the investigated ISAR images
provide only very limited information about the superstruc-
tures of the targets, we can often identify stable bright points
in the images, called permanent scatterers [28], which can
be tracked over the frames of the sequence (see Fig. 4(a)).
These characteristic features are produced by stronger scatterer
responses (such as containers or cabins) from the illuminated
objects, typically as a result of double or triple bounce effects,
that are stable over larger aspect angle changes. Therefore
permanent scatterers can be used for target identification.

In the following, we denote by wu; a target candidate in
frame t¢. Each target’s axis line segment is described by
the c(u) = [z(u),y(u)] center pixel [(u) length and 6(u)
orientation parameters (see Fig. 3(c)). In addition, an initially
unknown K (u)(< Kpax) number of scatterers can be as-
signed to the targets, where each scatterer g; is described in
the target line segment’s coordinate system by the relative line
directional position, 7,(g;), and the signed distance, d,(g;)
from the center line of the parent object u (see Fig. 4(c)).
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Fig. 4. Dominant scatterer detection problem (a) highlighted true scatterers,
i.e. Ground Truth (GT), (b) LocMax filter result, (c) parameterization

The goal is to obtain a w = {uq,ug, ..., u,} target sequence,
which we call configuration in the following.

IV. DATA PREPROCESSING IN A DIRECT APPROACH

Data preprocessing is needed to prepare the data for sub-
sequent analysis. It should be pointed out that some of the
following methods rely on the fact that the image acquisition
and therefore the system parameters are suitably tailored to
handle certain type of targets. As an example, the range
and Doppler extension of the imaged area should be larger
than the range and Doppler occupation of the target. As the
latter depends on the radar-target dynamics, this condition is
not necessarily verified. Nevertheless, certain types of target
and radar platforms typically produce predictable or at least
bounded dynamics that can give direct information about the
radar parameter settings that ensure that such a condition is
satisfied. This fact allows us to define foreground-background
segmentation in a straightforward way.

A. Foreground-background segmentation

In the first step, we segment the ISAR images into fore-
ground and background classes by a binary Markov Random
Field (MRF) model [1], [30] to decrease the spurious effects
of speckle noise. The goal is to obtain a binary label map
B = {bs|s € S}, where by € {fg, bg} labels correspond to the
foreground and background classes, respectively. Assuming

.. Iu) . - '
L Mq— . cw=[x(u),y(w)]

Target representation in an ISAR image: (a) input image with a single ship object (b) binarized image (c) duplicated image and target fitting

that the £-amplitude values in both classes follow log-normal
distributions [29], we model the pyg(s) = P(g:(s)|bs = bg)
and pg(s) = P(g:(s)|bs = fg) log-amplitude posterior
probabilities by Gaussian densities. To experimentally vali-
date this model, we have manually drawn foreground masks
onto sample images, and investigated the g;(s) log-amplitude
feature statistics in the foreground and background regions,
respectively. Fig. 5 shows the g;(s) histograms of the two
classes, as a result of evaluating 18 frames selected from a
245-frame-long ISAR sequence with uniform time intervals,
and we can observe that the Gaussian approximation is valid.

To estimate the Gaussian distribution parameters of the
foreground and background classes, one can choose either a
supervised or an unsupervised approach. Supervised models
need manual foreground-background evaluation of a few sam-
ple frames, however these key frames have to be carefully
chosen, since the range of amplitudes may slightly fluctuate
over the sequences. Unsupervised segmentation is a more
convenient way from the point of view of the system operator,
however, as shown in Fig. 5 the log-intensity domains of
the two classes are usually significantly overlapping, thus
involving prior knowledge in the process may be necessary.
We have assumed having a prior estimation about the ratio
of foreground areas compared to the image size, ¢, which
was a reasonable assumption regarding large vessels, since our
targets have shown line segment structure, and the imaging
step has intended to provide us spatially normalized images
where the target is centered and the image is cropped so that
it estimates a narrow bounding box of the target.

Thereafter, we have derived a preliminary foreground mask
by thresholding the input frame followed by a pair of mor-
phological closing and opening iterations, where the threshold
corresponds to the 1 — rg, value of the integral histogram.
We often found the preliminary mask too coarse for object
shape investigations, however, it proved to be appropriate for
estimation of the png(s) and pg(s) posterior probabilities,
as the estimated Gaussian parameters differed only slightly
from the supervised estimation results. Let us denote by
18 € {0, 1} the indicator function of the foreground class in
a given segmentation, where 1% = 1 iff b, = fg. We denote
by s ~ r, if pixel s is in the 4-neighborhood of pixel r in
the S lattice. The optimal foreground mask is derived through
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Fig. 5. Histogram of intensity values over a 18-frame long subsequence.
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Fig. 6. Demonstration of the foreground-background segmentation. Top left:
background and foreground probability maps (high probabilities indicated
with greater intensities), bottom left: foreground mask through pixel-by-pixel
maximum likelihood classification (only for reference), top right: sketch of
graph-cut based MRF optimization [32], bottom right: foreground mask (B)
by the proposed MRF model

minimizing the the following MRF energy [31] function:

Bopt = argminz pfg(s)
Be2S g Phg(8)

+)_B(LE- 1+ (1-18) (1-1F))

T~Ss

log S1fs g (1)

Since (1) belongs to the F? class of energy functions [31],
efficient graph cut based optimization [32] can provide the
optimal B mask, as demonstrated in Fig. 6. With also noting
the time index, in the following we mark by By(s) € {0,1}
the foreground mask value of pixel s in frame t.

B. Initial center alignment and line segment estimation

To get an initial estimation of the target axis segment, we
detect first the axis line using the Hough transform of the
foreground mask. At this point, we also have to deal with
a problem which originates from the ISAR image synthesis
module. The image formation process considers the images
to be spatially periodic both in the horizontal and vertical
directions, then, the imaging step estimates the target center,
and attempts to crop the appropriate Rectangle of Interest
(ROI) from this periodic image (a correctly cropped frame is
in Fig. 4(a)). However, if the center of the ROI is erroneously

identified, the target line segment may ‘break’ into two (or
four) pieces, which case appears in Fig. 3(a). Therefore, in
the proposed image processing approach, we search for the
longest foreground segment of the axis line in a duplicated
mosaic image, which step also re-estimates the center of the
input frame (see Fig. 3(c)).

C. Scatterer candidate set extraction

Permanent scatterers cause dominantly high amplitudes in
the ISAR images; however, due to the presence of multi-
ple scattering mechanisms within the same resolution cell
and to defocussing effects, the amplitudes may significantly
vary over the consecutive frames, moreover we must expect
notable differences between different scatterers of the same
frame, which effect is clearly demonstrated in Fig. 2(a). As a
consequence, we cannot determine efficient global thresholds
to extract all scatterers by simple magnitude comparison.
Therefore focusing first on a high recall rate, we extract a
large group of scatterer candidates, which may contain several
false positives. Thereafter, we propose an iterative solution to
discriminate the real scatterers from the false candidates, with
utilizing the temporal persistence of the scatterer positions and
the line-structure of the imaged targets.

In our implementation, the Local Maxima (LocMax) filter is
applied to extract the Preliminary Scatterer Candidates (PSC),
which operates on a R x R rectangular neighborhood around
each pixel. We also use a foreground constraint: we only
search for scatterers in the ISAR image regions labeled as
‘fg’ by the initial input binarization step. As the results in
Fig. 4(b) show, the real scatterers are efficiently detected in
this way, but the false alarm rate is high.

D. Scatterer filtering

The scatterer selection algorithm iterates various local
moves, called kernels, in the object configuration space. In
the following part of this section, we introduce two kernels
and demonstrate their effects. Thereafter, the details of the
complete spatio-temporal model and the iterative optimization
process will be presented in Sec. V and VI.

The input of the Scatterer Filtering (SF) kernel is the actual
estimation of the axis line segment and the PSC set. The kernel
exploits two facts observed in cases of large carrier ships:

« For a given target candidate, we expect that the scatterer
candidates are “close” to the axis line.

e The projection of two different scatterers to the axis
line should not be “too close” to each other, as the
later artifacts are mainly caused by multiple echoes from
the same scatterer. The minimal distance of two real
scatterer projections in the 7,,(¢) domain is determined
by a threshold parameter, 7', which varied between 0.05
and 0.07 (see also Fig. 7).

Based on the above assumptions, we select a filtered scatterer
set by a sequential algorithm, which is detailed in Fig. 7.
However, this filter is by nature very sensitive to the accuracy
of the preceding axis estimation step. As shown in Fig. 10(a),
applying the SF kernel directly for the output of the Hough-
based axis detector results in notably weak classification
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Algorithm 1: Scatterer Filtering (SF) Kernel

Input
o current estimation of the axis line segment of the target wu:
P Ps.
o set of scatterer candidates extracted by the locMax filter:
{q17 et qK}

Steps of the algorithm

o calculate the 7,(q) and d,(q) parameters of each g scatterer
candidate w.r.t. the P, P> segment

« deposit the scatterers in a queue, and sort the scatterers by
their |d.(q)| value (absolute distance) in decreasing order

o For each g scatterer candidate taken in this order in the queue,
determine, if there is another ¢* in the queue where |7..(q) —
Tu(¢™)| < T>.If we find such a ¢*, remove ¢ from the queue.

o Return all scatterers, which have not been removed by the
above process

Fig. 7. Pseudo code of the implemented Scatterer Filtering (SF) kernel

(expected scatterer configuration is similar here to the case
in Fig 4(a)).

For the above reason, we have proposed a second move
which can be applied for scenarios where a strong line-
arrangement constraint is valid for the real scatterer config-
uration (like cases of large ships). We exploit here the fact
that if we find a subset of the LocMax-scatterer candidates
which fit a given line e;, we can have a strong evidence the
e; is the axis line of the target. For re-estimating the optimal
line to the preliminary scatterer candidates, we have used the
RANSAC algorithm (we call this move the RANSAC kernel in
the following). After obtaining a re-estimated axis, we apply
again the Scatterer Filtering kernel: the result in the previous
sequence part is demonstrated in Fig. 10(b). We can observe
significant improvement in frames #19, #21 and #22; however,
we can still find a false (#19) and a missing scatterer (#22),
while the result in frame #20 is completely erroneous. It is
also important to note, that the RANSAC kernel has a couple
of limitations: it cannot be adopted, if there are only a few
permanent scatterers on the target’s image and the RANSAC-
estimation may fail in cases of multiple duplicated scatterers
in the PSC set which can form parallel lines. The later artifact
can appear as a consequence of echoes in the imaging step.
However, assuming that the target structure is fixed, and
the position and orientation displacement is small between
consecutive frames, temporal constraints can be exploited to
refine the detector. Considering the previous observations, in
the following sections we embed the previous deterministic
kernels to a stochastic iterative framework, which enhances
the detection considering the time sequence.

V. MULTIFRAME MARKED POINT PROCESS MODEL

In this section, we introduce the Multiframe Marked Point
Process model, which enables to characterize whole target
sequences instead of individual objects, through exploiting
information from entity interactions. Following the classical
Markovian approach, each target sample may only affect
objects in its neighboring frames directly. This property limits

the number of interactions in the population and results in
a compact description of the global sequence, which can be
analyzed efficiently. In our model, we use a Z-radius frame
neighborhood.

Let us denote by D the union of all image features derived
from the input data. For characterizing a given w target
sequence considering D, we introduce a non-homogenous
data-dependent Gibbs distribution on the configuration space:
Pp(w) = %exp (—=®p(w)) where ( is a normalizing constant
and ®p(w) is the configuration energy:

Pp(w) = ZAD(Ut) +7- ZI(Ut,Wt)
t=1 t=1

As it appears in the above formula, ®p(w) consists of a
data dependent term, Ap (u¢) € [—1,1] called the unary
potential, and a prior term I(u;,w;) € [0,1], called the
interaction potential, where w; = {us—z,...,Ut,. .., Ut1z}
is a sub-sequence of u;’s 2Z-nearest neighbors. Parameter vy
is a positive weighting factor between the two potential terms.
With the following definitions of the energy terms (Sec V-A
and V-B) we attempt to ensure that the optimal sequence can-
didate exhibits the maximal likelihood, thus minimal ®p(w)
energy. Thereafter, the optimal sequence can be obtained by
minimizing ®p(w). Let H be the parameter space of an
object u;. We aim to find the Maximum Likelihood (ML)
configuration estimate &, which is obtained as

w = argmax Pp (w) = argmin & (w)
weH™ weH™

A. Definition of the Unary Potentials

The Ap (u;) unary potential characterizes a proposed object
candidate in the t¢th frame depending on the local ISAR image
data, but independently of other frames of the sequence. The
unary potential is composed of two parts:

Ap () = 5 (AB () + A3 ()

where AB (u,) is the body-term and is the A% (u;) scatterer-
term.

For composing the data term, let us first denote by L,, C .S
the set of pixels lying under the dilated line of w in the
duplicated image. Let us denote by R, C L, the pix-
els covered by the line segment u (see Fig. 3(c)): R, =
{s € L, | d(s,[z(u),y(u)]) <l(u)/2} and by T,C L,\R,
the pixels of the L, which lie outside the u segment but close
enough to its endpoints.

The body fitting feature, fp(u) favors object candidates,
where under the line segments (R,) we find in majority
foreground classified pixels in the B-mask of the actual frame,
while the outside area T, covers background regions:

fD(U):m'<Z B(S)+21—B(S)>7

sER, seT,

where Ar{.} denotes area in pixels. Thereafter, the body-term
of the unary potential of w is obtained as:

AD (u) = Q (fp(u),do)
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where the following monotonously decreasing Q(f, do) func-

tion is used:
(1 _ %) it f<do

Q(f, do) = exp (~L5) ~1 i f=do

dy is a parameter of the model, used as acceptance threshold
for valid objects.

On the other hand, the scatterer-term penalizes scatterers
that are not located at local Maxima of the ISAR image:

K(u)
1
ASC (U) = Q TN \11(27’“')’ d\l’ )
D K 2
where
0 if g; is in a local maximum
U(i,u) = in the input ISAR frame

1 otherwise

Parameters dy and dy are set by training samples.

B. Definition of the Interaction Potentials

Interaction potentials are responsible for involving temporal
information and prior geometric knowledge in the model.
Since the observed object’s structure can be considered rigid,
we usually experience strong correlation between the target
parameters in the consecutive frames. Since due to the imaging
technique, the c(u) center is not relevant regarding the real
target position, we only penalize high differences between
the 6(u) angle and [(u) length parameters, and significant
differences in the relative scatterer positions and scatterer
numbers between close-in-time images of the sequence.

The prior interaction term is constructed as the weighted
sum of four sub-terms: the median length difference I (us, wy),
the median angle difference Iy(us,w:), the median scatterer
number difference Iuq(us, w;) and the median scatterer align-
ment difference Iq(ue,wy) .

I(ug, wi) =01 - I (ug,wy) + g - To(us, wi)+

+ 5#5 . I#s(uhwt) + (Ssd : Isd(uhwt) (2)
where 0; , 09, 045 , 0sa are positive and 6;+0p +0xs+0dsa = 1.
The first three sub-terms are calculated as the median values

of the parameter differences between the actual and the nearby
frames:

Il(ut, Wt) = min (medl( )/dinaw )

= min (mede( )/dmax7 )
= min (medK( )/dmax7 )

where for target parameters f € {l,6, K}

IS(Ut; Wt)

I#u(utawt)

medy(t) = median |f(ur) — f(ui)] 3)
while d’ ., d° . and d¥,_ are normalizing constants. Note

that median filtering proved to be more robust than averaging
the difference values due to the presence of outlier frames with
erroneously estimated objects.

The scatterer alignment difference feature Igq(uy,w;) eval-
vates the similarity of the relative scatterer positions on the

objects of close frames. First we define the target’s scatterer
alignment vector in the following way:

F(U) = (TH(Q1)7Tu(q2)7 s 7Tu(QK(u)))

where — as defined in Sec. Il — 7,(g) is the normalized line
directional component of the ¢ scatterer’s projection to the axis
of u.

Let v and v be objects of two different frames, which may
have different numbers of scatterers. The difference between
T(u) and 7(v) is defined as:

1/ 1 W

© (7(’(1),?(1})) = 5 (K(u) jg}él(lv |Tu(QL) - T’u(Qj)|+
1 K (v)

K (v) ; Zae, (@) —TU(Qj)I>~

Then, with using (3), the scatterer alignment difference term
is obtained as:

Iiq(us,wi) =min (medsd( )/dfﬁdx, 1) where

medlag_ O (7 (uy)

7?(’[1@')) .

For enabling efficient computation, we approximate the
O (T(ut), T(u;)) feature with the calculation of the 1D dis-
tance transform map in a discretized domain of the [0, 1]
interval.

medgq(t) = ,

VI. OPTIMIZATION

In the literature, optimizing Marked Point Processes is
usually performed with iterative stochastic algorithms, such as
the Reversible Jump Markov Chain Monte Carlo (RIMCMC)
sampler [33] or the Multiple Birth and Death (MBD) dynamics
[9], [11], [12]. However, in contrast to the above MPP models,
in the proposed system, we track a single object across
several frames in the input sequence, where the geometrical
constraints are strong between the expected object parameters
in near ISAR images. For example, the length and orientation
of the imaged target cannot change significantly within a
short observation period. As a consequence, the weight of the
prior geometric terms increase, and the iterative optimization
process becomes sensitive to be stuck in local energy minima,
where the configuration excellently fits the prior constraints
(permanent structure and smooth motion), but it exhibits a
poor match with respect to the data term. To handle the above
difficulties, our proposed solution is initialized with the output
of the preliminary detector of Sec. IV, which provides an
initial configuration which is in most of the frames reasonably
consistent with the input data. Thereafter, we proceed to an
iterative refinement algorithm, which scans in each step the
whole sequence, and attempts to replace the actual objects with
more efficient ones considering the data and prior constraints
in parallel. The two key points of this procedure are (i) the
generation step of new object candidates and (ii) the evaluation
step of the proposed objects w.r.t. the current configuration and
the input data.

For object generation, we use two types of moves: the
Perturbation Kernel and the RANSAC based birth kernel,
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which are chosen randomly at each step of each iteration. The
pseudo codes of the corresponding functions are shown in Fig.
8. The Perturbation kernel clones the actual object either from
the current, or the previous or the next frame; and it adds zero
mean Gaussian random values to the center position, length
and orientation parameters. Finally, the scatterer positions are
cloned from the object of the current frame and optionally
additional scatterers are added or some scatterers are removed.
The RANSAC based birth kernel has already been introduced
in Sec. IV-D.

The whole process of the optimization algorithm is detailed
in Fig. 9. We iterate object proposal and evaluation steps,
which are followed by the possible replacements of the orig-
inal objects versus newly generated ones. Let us assume that
we are currently in the kth iteration of the process. To decide
if we accept or decline the replacement of the object on the
tth frame for the newly proposed object, u, we calculate first
the energy difference A®, (u,t) between w!¥, the original
configuration before the kth iteration, and the configuration w*
we would get from w!¥! by replacing u,Ek] by w. It is important
to note that to derive the energy difference we should only
examine the objects in the Z-neighborhood of frame ¢ and
calculate the concerning unary and interaction potential terms.
A®,(u,t) < 0 means that the move results in decreasing
global energy level. However, to prevent us from finishing the
algorithm too early in a low quality local energy minimum,
we embed the iterative process into a simulated annealing
framework. In this way, as a function of the A®,(u,t) energy
difference, we calculate a probability value of accepting the re-
placement move, and the decision is done by a random choice
based on this probability. Regarding the cooling scheme, we
have followed the implementation of [9].

VII. PARAMETER SETTINGS

We can divide the parameters of the proposed F"*MPP
technique into three groups corresponding to the data-based
target models, the prior sequence-level constraints and the
optimization.

The parameters of the F*"MPP data (dy and d,) and prior
terms (rg, Ty, diovs d%0 dE. and 3% ) are set based
on manually evaluated training data. We follow a supervised
approach, since we have observed that using similar ISAR
imaging conditions, we do not need to re-calibrate the model
parameters for each sequence. For setting all of these co-
efficients, one can take a Maximum Likelihood Estimator
(MLE), details can be found in [34]. Further relevant prior
term parameters are the sub-term weighting factors within
the I(u:,w;) interaction term, we used here uniform weights
0 =09 = 0ps = dsq = 0.25.

Finally, to set the optimization parameters, we followed the
guidelines provided in [9] and used §y = 10000, Sy = 20
and geometric cooling factors 1/0.96. Concerning the random
object generation, the o, oy, 0g9 and o; deviation factors
depend on noise and the ranges of the corresponding parameter
values. Higher o-s result in more robust detection perfor-
mance, however, they also decrease the speed of convergence.

Function Pool: Object generator functions

Variables

n: number of frames of the sequence
t: frame index

Notation

N(p,0): Gaussian distribution with p mean value and o
standard deviation.

Functions

Object u = function Propose_Obj_by_PERTURBATION (t)
o Pick up A randomly following the upcoming normal distri-

butions:
switch(t)
case 1: P(A=0)=2/3, P(A=+1)=1/3
case n: P(A=0)=2/3, P(A=-1)=1/3
otherwise: P(A = —1)=1/4, P(A =0) =1/2,
P(A=+1)=1/4

end-switch

o Generate a new object u and set its parameters randomly
following the upcoming distributions:

z(u) ~ N(x (ura),0z), y(u) ~ N(y(uiti), o),
0 (u) ~ N(0 (uira),00), L(u) ~ N(l(ueva),o0)
where o0, 0y, 0¢ and o; are model parameters.

o Fill the scatterer vector of u by cloning the scatterer vector
from u:, and randomly add new scatterers from the pre.
scatterer candidate set of frame t + /A, or delete some of
the actual scatterers

return object u

Object u = function Propose_Obj_by_RANSAC (t)
o Generate a new object u
o Determine the axis line of v by applying RANSAC to the
scatterer candidates of the tth frame.
« Estimate the endpoints of the axis line segment by morphol-
ogy.
o Determine the scatterers for u by Algorithm 1 of Fig. 7.

return object u

Fig. 8. Pseudo code of the Object Generation Kernels

TABLE I
MAIN PROPERTIES OF THE EIGHT ISAR IMAGE TEST SEQUENCES

Sequence Number Frame Tot. num. Avg axis Scat.
name of frames | size (pix) | of scatterers length per fr.
SHIP1 45 256x 128 360 153.9 8
SHIP2 90 256 %96 720 195.3 8
SHIP3 40 256 %96 320 133.9 8
SHIP4 90 256 %96 720 179.8 8
SHIP5 90 256 %96 720 172.2 8
SHIP6 90 256 %96 720 133.7 9
SHIP7 75 256%x96 600 169.8 8

AIRPLN 25 128 <128 NA 75.2 NA
Overall 520425 — 4250 151.7 7.79
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Frame #19 5 | Frame #20

d_- o

(b) RANSAC-based refinement (Preproc.,

Frame #22

second step)

Frame #21

) | Frame #22

(c) Final F"*MPP output after the iterative optimization

Fig. 10. Center alignment and target line extraction results on Frames #19-22 of the SHIP1 ISAR image sequence. Top: initial detection Middle: RANSAC

re-estimation Bottom: detection with the proposed F"MPP model.

Algorithm 2: Optimization of the configuration

Variables

n: number of frames of the sequence
k: iteration counter

Steps of the algorithm
1) Initialize the conﬁ?uratlon with the output of the deterministic
detector: w!® = {u ulf } and set iteration counter
k = 0, inverse temperature 5 ,30, refinement parameter § = o
and boolean STOP:=false.
2) Iterate the following steps while STOP=false.
for each t =1,.
o Pick up \I/Bmh E {PERT RANSAC} randomly
« Generate a new object u so that:
if "I/Birth = PERT:
u := Propose_Obj_by_PERTURBATION(%)
if \I/Birth = RANSAC:
U= Propose_Obj_by_RANSAC(t)
o Consider the w* conﬁguratlon which could be obtained if
in wl we exchanged u by Uu.
o Calculate the energy dlfference between and w!*! and w*:

Ad,(u,t) = p (W) — &p (W)
« Calculate the d., (u) exchange rate as follows:

dae (u)
1+ daw (u)

—B- A%, (u)

dw (u) = with ay, (u) =e

and set

k+1 (U
Uw[: = { wl¥!
t

3) k:= k+1, increase ( and decrease § with a geometric scheme.
4) If the process converged: STOP:=t rue.

with probability d., (u)
otherwise

Fig. 9. Pseudo code of the preliminary scatterer filtering algorithm

VIII. EXPERIMENTAL RESULTS
A. Carrier ship sequence analysis

We have tested our method on seven airborne ISAR image
sequences about different ship targets. The relevant properties
of the test sets are summarized in Table 1. In aggregate,
the ship data set contains 520 evaluated ISAR frames (40
to 90 frames have been evaluated in each sequence) and
4250 true scatterer appearances (8 or 9 scatterers in each
frame). For quantitative validation, we have manually created
Ground Truth (GT) data for both the axis segments and the
scatterer positions (for longer sequences we have evaluated
the first 90 frames). For accurate GT generation, we have
developed an accessory program with graphical user interface,
which enables us to arbitrarily change the axis parameters,
and add, shift or delete the individual scatterers in each
frame, meanwhile the result appears immediately over the
input image.

To consider different evaluation aspects, we have defined
three types of error measures. The Normalized Axis Parameter
Error (Eax) is calculated as the sum of the -y center position
and axis length errors normalized with the length of the GT
target, and the angle error normalized by 90°:

Eix + Ex + Bix | Eix
3 ufh) 90°

where the following subterms are calculated:

Ax = ZH?J (ur)— )H

Eax =

Bix = = S lle(u)—e(f)|| E

n

Bhx = 3 i) 1

t=1

1 n
tgt)Hv EZX = gZAe(utﬂugt))

t=1
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Fig. 11. Airplane silhouette and the cross shaped fitted model

Regarding Ef, we assume that 0(u;), 0(u$") € [0,180°], and
we use
Af(uyg, uB") = min (|9(ut) — O(u8")],180° — |0(uz) — H(U%t)D

Table II summarizes the axis level detection rates (smaller
error values are favored) for the three steps of the workflow
which are displayed in Fig. 10: (a) Initial detection, (b)
RANSAC-based refinement and (c) the final F""MPP output
after iterative optimization. We can observe that the errors
decrease over the consecutive steps, and at the end of the
process the summarized Eax rate is between 3% and 7% in
all sequences.

The Scatterer Detection Rates characterize the correctness
of permanent scatterer identification. First, the corresponding
detected and GT scatterers are automatically matched to each
other by the Hungarian algorithm [35], which utilizes the 7(q)
parameter of the scatterers for the assignment. A match is only
considered valid if the distance of the assigned feature points
is lower than a threshold. Thereafter, we count the number of
true positive, false negative and false positive scatterers, which
are listed in columns 3-5 of Table III.

The third feature is the Average Scatterer Position Error
(Esp), which is measured in pixels:

K (ut)

Z #{Z m 7&0} Z 1{m’¢o} ||qz(ut) Q'm’( )||
where m! is the index of the GT scatterer matched to the
ith detected scatterer of frame ¢, marking with mf = 0 the
unmatched scatterers. 1, refers to an indicator function and
#{.} is the set cardinality. The measured Esp values can be
compared in the 6th column of Table III.

By examining the evaluation rates of Tables II and III, we
can observe that the proposed method can accurately deal with
all the seven test cases (SHIP1-SHIP 7). The improvement be-
tween the outputs of the Initial and Optimized F™™ MPP phases
of the process is particularly significant in the SHIP1 (shown
in Fig. 10), SHIP2 and SHIP5 sequences, which contain
difficult test cases. The developments are also remarkable in
the SHIP3, SHIP4 and SHIP6 cases (see sample frames in
Fig. 13), while the SHIP7 sequence contains noisier images
with several blurred frames, where the final error rates remain
larger (see also the last row of Fig. 13).

B. Application to airplane detection

The proposed model can be generalized to analyze various
targets in ISAR image sequences. In this section, we show a

(a) Input sequence

Fr. #11 ‘ Fr. #12 Fr. #13 Fr. #14
% k' S‘r ‘*‘
(b) Initial detection
Fr. #11 Fr. #12 Fr. #13 Fr. #14
i h ~-. .‘_
(c) Optimized detection
Fig. 12.  Airplane extraction: Comparing the results of the initial and

the optimized F"*MPP detection in four sample frames from the ATRPLN
sequence

case study for airplane skeleton detection with the Multiframe
MPP (F*MPP) model. While some ships, such as carriers,
in the ISAR image sequences can be approximated by line
segments, airplanes appear as cross-like structures, where at
least one of the wings can be clearly observed. Apart from the
length and orientation of the body axis segment, the length of
the wings and their connecting positions to the airplane body
are also relevant shape parameters. For this reason, we use a
cross shaped airplane model, as shown in Fig. 11. Parameters
are the body center position ¢ = [z,y], body orientation 6,
body length I, wing ‘root’ position /. and wing length [,,

Similarly to the ship detection procedure, the airplane
extraction process consists of a coarse preliminary detection
step, and the F""MPP based iterative refinement step. The
preliminary detection starts with the extraction of the body
line, using the same Hough transform based technique as
introduced for the ship detection process. Secondly, the initial
l, wing root position parameter is obtained with exhaustive
search by histograming the silhouette pixels, which can be
perpendicularly projected to the same points of the body line.
In the F™MPP based refinement stage the Ap(u:) data term
is calculated in an analogous manner to the ship model, the
difference is that the filling factors for the left and right wings
are separately calculated, and their minimum (i.e. the better
one) counts into the data term of the model. This later feature
is necessary, since usually only one of the wings is fully
visible in the ISAR data. Results of the airplane detection
for 4 sample frames are demonstrated in Fig. 12 showing
the output at the preliminary stage and after the F"MPP
optimization. Similar improvement can be observed to the
ship detection scenarios. Note that it is also often possible
to observe permanent scatterers in images of airplane targets.
However, since airplane scatterers can appear both in the wings
and in the body, their geometric alignment patterns may be
more complex than in cases of the linear vessels.
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Fig. 13. Sample frames from the SHIP2-SHIP7 data sets, and the corresponding detection results of the F"*MPP approach obtained by the optimization
of the proposed ISAR sequence based model.

TABLE II
AXIS DETECTION - EVALUATION RESULTS FOR THE TEST SEQUENCES.
E%. B% . EY « AND Ey MEAN ERRORS ARE MEASURED IN PIXELS, TABLE III
THE NORMALIZED Ex ERROR RATE IS EXPRESSED IN PERCENT (%). EVALUATION OF SCATTERER DETECTION. NUMBER OF FALSE POSITIVE
AND FALSE NEGATIVE SCATTERERS DETERMINE THE PRECISION AND
0] 7 7] RECALL FACTORS OF THE PROCESS, WHILE THE Esp RATE SHOWS THE
| Sequence | Step | EXx [ Eix [ Eix | Fix | Eax (%) | SCATTERER POSITIONING ACCURACY (LOW VALUES ARE PREFERRED)
Initial 6.31 9.89 10.6 5.64 23.6
SHIP1 RANSAC 5.11 5.69 9.11 2.18 15.3
Number of True/False Scatterers Esp
FUMPP 044 | 027 373 0.8 38 Sequence Step True Pos [ False Pos | False Neg | in pixel
Initial 5.85 1.72 13.11 1.51 12.3 —
SHIP2 [ RANSAC | 2.99 | 1.02 | 6356 | 0.71 62 curpl el | 2% o o 4
F™MPP 0.47 0.17 4.29 0.58 3.2 :
- . - - - F™MPP 349 10 11 0.5
Initial 2.80 2.15 5.70 2.15 10.3 —
SHIP3 [ RANSAC | 1.65 | 133 | 492 | 152 75 U L CLCC a u -8
F™MPP | 0.33 0.30 2.65 0.90 34 -
. . . . - F™MPP 718 2 2 0.4
Initial 2.37 0.83 5.96 0.58 5.7 —
SHIP4 | RANSAC | 270 | 082 | 560 | 0.9 6.0 surps oamwal {0 = 2 )
F™MPP 0.64 | 0.06 4.37 0.38 32 -
. . - - - F™MPP 311 22 9 1.0
Initial 2.07 0.96 5.86 1.10 6.4 —
SHIPS | RANSAC | 143 | 047 | 330 | 086 | 41 cirpa omval | 9% o - .
F™MPP 0.19 | 0.09 4.01 0.80 33 -
. . - - - FMPP 705 22 15 0.7
Initial 2.33 1.54 3.71 1.96 7.8 —
SHIP6 | RANSAC | 146 | 0.70 | 409 | L.II 59 curps el | 91 i > 02
F™MPP 0.01 0.07 3.20 0.50 3.0 -
. . - - . FMPP 707 29 13 0.3
Initial 4.53 0.87 9.27 1.12 9.9 —
SHIP7 RANSAC 3.32 0.72 9.21 0.75 8.6 SHIPG RX%;‘IC ;gg ig j; gg
F™MPP | 2.13 0.13 8.13 0.56 6.7 -
— . . . - . FMPP 764 18 46 0.7
e L B R [
- - - : . SHIP7 RANSAC 567 58 33 2.9
FMPP 559 37 41 2.5
C. Computational complexity
Table IV lists the computational time requirements of
the three consecutive steps of the proposed model (Initial, b TABLE IV
. . .. . ROCESSING TIME CONCERNING THE THREE CONSECUTIVE STEPS
RANSAC and the 1t(?ratlve Optimization) on the SHIPI- (COLUMNS 2-4) AND OVERALL TIME REQUIREMENTS (COL. 5-6)
SHIP7 sequences using a standard desktop computer. The REGARDING THE SEVEN SHIP SEQUENCES
processing speed varies over the different test sets between . _
2 frames per second (fps) and 5fps, since the computational Sequence | Time req. of step (sec) | Overall | Time req.
i K name Init Ransac Opt time per frame
complexity depends on various factors, such as length of SHIPL | 55 37 3.6 | 229 050
the sequence, image size, target length, quality of the initial SHIP2 | 134 [ 107 [ 140 | 38.1 0.42
detection step and number of scatterers. In most cases, the SHIP3 | 46 33 6.4 14.3 0.36
computational overload of the iterative optimization step is not SHIP4 77 4.2 24 213 0.24
omp _ p M Sep st SHIP5 | 134 | 54 | 54 | 0241 027
significantly higher compared to the cost of the initialization SHIPG %) 54 17 183 0.20
and the RANSAC processes. Before running the F"MPP SHIP7 | 134 8.8 4.7 26.9 0.36

optimization step, the method needs to collect a sequence of
sample frames from the target. If online operation is required
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(i.e. the detection cannot be delayed till a longer sequence part
arrives), we can use a causal w; = {u;_z,...,us_1} frame-
neighborhood instead of the symmetric one of Sec. V.

IX. CONCLUSION AND FUTURE WORK

This paper has addressed the detection and characterization
of large ship and airplane targets in ISAR image sequences
using an energy minimization approach. We have proposed a
robust joint model for axis extraction, feature point detection
and tracking. We have shown that in case of noisy sequences,
the introduced Multiframe Marked Point Process schema can
significantly improve the results of frame-by-frame detection.

As future work, we aim to extend the proposed technique
with different data models and target types, including small
boats and various airplanes, considering both aerial and terres-
trial radar systems. Another important issue will be to ensure
the adaptivity of the algorithms through self-learning param-
eter estimation strategies, enabling fully automatic analysis
of various targets. Finally we aim to test and evaluate the
model in various target classification, recognition and behavior
analysis tasks.
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