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Institute for Computer Science and Control, Hungarian Academy of Sciences
H-1111 Budapest, Kende utca 13-17, Hungary
firstname.lastname@sztaki.mta.hu

Abstract. This paper reports on a pilot system for reconstruction and visualisa-
tion of complex spatio-temporal scenes by integrating two different types of data:
outdoor 4D data measured by a rotating multi-beam LIDAR sensor, and 4D mod-
els of moving actors obtained in a 4D studio. A typical scenario is an outdoor
scene with multiple walking pedestrians. The LIDAR monitors the scene from a
fixed position and provides a dynamic point cloud. This information is processed
to build a 3D model of the environment and detect and track the pedestrians. Each
of them is represented by a point cluster and a trajectory. A moving cluster is then
substituted by a detailed 4D model created in the studio. The output is a geomet-
rically reconstructed and textured scene with avatars that follow in real time the
trajectories of the pedestrians.

Keywords: rotating multi-beam LIDAR, MRF, motion segmentation, 4D recon-
struction

1 Introduction

Efforts on real time reconstruction of 3D dynamic scenes receive great interest in intelli-
gent surveillance [13], video communication and augmented reality systems. Obtaining
realistic 4D video flows of real world scenarios may result in a significantly improved
visual experience for the observer compared to watching conventional video streams,
since a reconstructed 4D scene can be viewed and analysed from an arbitrary viewpoint,
and virtually modified by the user. However, building an interactive 4D video system is
highly challenging, as it needs in parallel automatic perception, interpretation, and real
time visualisation of the environment.

A 4D reconstruction studio is an advanced, intelligent sensory environment, which
uses multiple synchronized and calibrated high-resolution video cameras and a GPU
to build dynamic 3D models providing free-viewpoint video in real-time. An example
for this environment is introduced in [7]. While this system can efficiently record and
visualise the model of a single moving person, in itself it is not appropriate to capture a
large scenario with several moving people and various background objects.
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Recently a portable stereo system has been introduced [8] for capturing and 3D
reconstruction of dynamic outdoor scenes. Here the observed scenario should be sur-
rounded by several (8-9) carefully calibrated cameras beforehand, and the reconstruc-
tion process is extremely computation-intensive, as dealing with a short 10 sec sketch
takes several hours. In addition, full automation is difficult due to usual stereo artefacts
such as featureless regions and occlusions, which can cause significant problems in an
uncontrolled outdoor environment.

Time-of-Flight (ToF) technologies, such us LIDAR, offer notable advantages versus
conventional video flows for automated scene analysis, since in the provided 2.5D range
data sequences geometrical information is directly available, and the measurements are
significantly less sensitive on the weather and illumination conditions of the acquisi-
tion. High speed Rotating Multi-Beam (RMB) LIDAR systems, such as the Velodyne
HDL-64E sensor, are able to provide accurate 3D point cloud sequences with a 15 Hz
refreshing frequency, making the configuration highly appropriate for analysing mov-
ing objects in large outdoor environments with a diameter up to 100 meters. However, a
single RMB LIDAR scan is a notably sparse point cloud, moreover we can also observe
a significant drop in the sampling density at larger distances from the sensor and we also
can see a ring pattern with points in the same ring much closer to each other than points
in different rings [1]. These properties yield poor visual experiences for the observes,
when a raw (Fig. 8(a)) or a semantically coloured (Fig. 8(c)) point cloud sequence is
displayed in a screen.

The above observations motivated us to develop an unconventional system, called
the integrated 4D (i4D) system, which combines two very different sources of spatio-
temporal information, namely, a RMB-LIDAR and a 4D reconstruction studio. The
main purpose of the integration of the two types of data is our desire to measure and rep-
resent the visual world at different levels of detail. In our approach, the LIDAR sensor
provides a global description of a dynamic outdoor scene in the form of a time-varying
3D point cloud. The latter is used to separate moving objects from static environment
and obtain a 3D model of the environment. The 4D studio builds a detailed dynamic
model of an actor (typically, a person) moving in the studio. By integrating the two
sources of data, which is to our best knowledge a unique attempt up to now, one can
modify the model of the scene and populate it with the avatars created in the studio.

2 System description

This paper introduces the proposed i4D system, describing all major processing steps
from the acquisition of the raw data (point clouds and videos) to the creation and visual-
isation of an augmented spatio-temporal model of the scene. The system configuration
consists of the following processing blocks:

– Data acquisition: LIDAR based environment scanning for point cloud sequence
generation,

– Data preprocessing: foreground and background segmentation of the LIDAR se-
quence by a robust probabilistic approach (Sec. 3.1),

– Motion analysis: detection and tracking of moving pedestrians, generating motion
trajectories (Sec. 3.2),
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Fig. 1. Flowchart of the integrated 4D reconstruction system. BG is background, FG foreground.

– Environment reconstruction: geometric reconstruction of ground, walls and other
field objects. Texturing the obtained 3D models with images of the scene (Sec. 3.3),

– Pedestrian visualization: creating textured moving pedestrian models in the 4D
reconstruction studio (Sec. 4),

– Integration: transforming the system elements into a joint dynamic scene model
and visualisation of the 4D scenario, where each avatar moves in the scene accord-
ing to the assigned trajectory (Sec. 5).

Fig. 1 shows a flowchart of the complete i4D system. Each of the main building blocks
is described in the corresponding section of the paper, as indicated in the flowchart.

3 LIDAR data processing

In this section, we present a hybrid method for dense foreground-background point
labelling in a point cloud obtained by a Velodyne HDL-64E RMB-LIDAR device that
monitors the scene from a fixed position. The method solves the computationally critical
spatial filtering tasks applying an MRF model in the 2D range image domain. The
ambiguities of the point-to-pixel mapping are handled by joint consideration of the true
3D positions and the 2D labels. Then, we execute detection and tracking of moving
pedestrians for the foreground points. Next, we transform the background point cloud
into a polygon mesh while maintaining the information about individual objects such
as ground, walls, and trees. Finally, the models of the environment objects are manually
textured using photos taken in the scene. Below, we describe these steps in more detail.

3.1 Foreground-background separation

The rotating multi-beam LIDAR device records 360◦-view-angle range data sequences
of irregular point clouds. Examples of measured point clouds will be shown later in this
paper. To separate dynamic foreground from static background in a range data sequence,
we apply a probabilistic approach [2].
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range image foreground mask

Fig. 2. Example of foreground-background segmentation.

To ensure real-time operation, we project the irregular point cloud to a cylinder
surface yielding a depth image on a regular lattice, and perform the segmentation in
the 2D range image domain. A part of a range image showing several pedestrians is
demonstrated in Fig. 2. Spurious effects are caused by the quantisation error of the
discretised view angle, the non-linear position corrections of sensor calibration, and the
background flickering, e.g., due to vegetation motion.

One can model the dynamic range image as a Mixture of Gaussians and update the
parameters similarly to the standard approach [14]. This provides a segmentation of the
point cloud which is quite noisy because of the spurious effects. These effects are sig-
nificantly decreased by the dynamic MRF model [2] that describes the background and
foreground classes by both spatial and temporal features. The model is defined in the
range image space. The 2D image segmentation is followed by a 3D point classifica-
tion step to resolve the ambiguities of the 3D-2D mapping. Using a spatial foreground
model, we remove a large part of the irrelevant background motion which is mainly
caused by moving tree crowns. Fig. 2 shows an example of foreground segmentation.

3.2 Pedestrian detection and multi-target tracking

In this section, we present the pedestrian tracking module of the system. The input of the
module step is a point cloud sequence, where each point is marked with a segmentation
label of foreground or background. The output consists of clusters of foreground regions
so that the points corresponding to the same person receive the same label over the
sequence. We also generate a 2D foot point trajectory of each pedestrian to be used by
the 4D scene reconstruction module.

First, the point cloud regions classified as foreground are clustered to obtain sep-
arate blobs for each moving person. We fit a regular lattice to the ground plane and
project foreground regions onto this lattice. Morphological filters are applied in the im-
age plane to obtain spatially connected blobs for different persons. Then we extract
appropriately sized connected components that satisfy area constraints determined by
lower and higher thresholds.

This procedure is illustrated in Fig. 3. The centre of each extracted blob is consid-
ered as a candidate for foot position in the ground plane. Connected pedestrian shapes
may be merged into one blob, while blobs of partially occluded persons may be missed
or broken into several parts. Instead of proposing various heuristic rules to eliminate
these artefacts at the level of the individual time frames, we developed a robust multi-
tracking module which efficiently handles the problems at the sequence level.
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side view top view blobs in image plane

Fig. 3. Illustration of pedestrian separation.

Our multi-tracking algorithm receives the measured ground plane positions and for
each frame iterates three basic operations, namely, data assignment, Kalman filter cor-
rection and Kalman filter prediction. The assignment operation assigns the candidate
positions to objects, then the object positions are corrected and, finally, predictions for
the subsequent positions are made and fed back to the assignment procedure. The al-
gorithm can handle false positives as well as tracks starting and terminating within a
sequence. Temporary track discontinuities are bridged in a post-processing step, while
short false tracks are removed based on their length.

Fig. 4. Example of pedestrian tracking in a LIDAR sequence. Top row: point clusters whose
colours identify the tracked persons. Bottom row: corresponding video frames displayed for ver-
ification.
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The tracker module provides a set of pedestrian trajectories, which are 2D foot
centre point sequences in the ground plane. To determine the points corresponding to
each pedestrian in a selected frame, the connected foot blobs around a given trajectory
point should be vertically back-projected to the 3D point cloud. A result of tracking
is demonstrated in Fig. 4 that shows two segmented point cloud frames from a mea-
surement sequence in a courtyard. It also shows the video frames taken in parallel as
reference. One can observe that during the tracking the point cluster of a pedestrian
preserves its colour.

3.3 Environment reconstruction

In this section, we describe our method for static environment reconstruction. First
we accumulate the background points of the LIDAR sequence collected over several
frames, which results in a dense point cloud that represents the ground, walls, trees, and
other background objects. Assuming that the ground is reasonably flat and horizontal,
we fit an optimal plane to this point cloud using the robust RANSAC [6] algorithm that
treats all other objects as outliers. Points close to this plane are considered as ground
points in the following. For vegetation detection and removal, we have developed an
algorithm, which calculates a statistical feature for each point in the merged point cloud
based on the distance and irregularity of its neighbors, and also exploits the intensity
channel which is an additional indicator of vegetation, which reflects the laser beam
with a lower intensity. The remaining points are then projected vertically to the obtained
ground plane, where projections of wall points form straight lines that are extracted by
the Hough transform [5]. Applying the Ball-Pivoting algorithm [3] to the 3D points that
project to a straight line, we create a polygon mesh of a wall.

In the reconstruction phase, static background objects of the scene, such us trees,
containers or parking cars are replaced with 3D models obtained from Google’s 3D
Warehouse. The recognition of these objects from the point cloud is currently done
manually, and we are now working on the automation of this step. For example, one
can adopt here the machine learning based approach of [10], which extracts various
object level descriptors for point cloud blobs representing the detected objects, while
to obtain similar representations of the training models from the 3D Warehouse, they
perform ray casting on the models to generate point clouds, finally the classification is
performed in the descriptor space.

Sample results of our environment reconstruction are shown in Fig. 8. Model tex-
turing is based on a set of photographs taken in the scene.

4 Creating 4D models of walking pedestrians

Relatively small objects such as pedestrians cannot be reconstructed from the LIDAR
range data in sufficient detail since the data is too sparse and, in addition, it only gives
2.5D information. Therefore we create properly detailed, textured dynamic models in-
doors, in a 4D reconstruction studio. The hardware and software components of such a
studio can be found in [4, 7]. For completeness, we give below a brief description of the
reconstruction process.
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Fig. 5. Point cloud segmentation and environment reconstruction.

Fig. 6 shows a sketch and a panorama of the studio where green curtains and carpet
form homogeneous background to facilitate segmentation of the actor. The frame car-
ries 12 calibrated and synchronised video cameras placed uniformly around the scene,
and one additional camera on the top in the middle. The cameras are surrounded by
programmable LEDs that provide direct illumination. The studio has ambient illumina-
tion, as well. Seven PC-s provide the computing power and control the cameras and the
lighting.

Currently, each set of 13 simultaneous video frames captured by the cameras is
processed independently from the previous one. For a set of 13 images, the system
creates a textured 3D model showing a phase of actor’s motion. The main steps of the
completely automatic 3D reconstruction process are as follows:

1. Colour images are extracted from the captured raw data.
2. Each colour image is segmented to foreground and background. The foreground is

post-processed to remove shadows [4].
3. A volumetric model is created using the Visual Hull algorithm [11].
4. A triangulated mesh is obtained from the volumetric model using the Marching

Cubes algorithm [12].
5. Texture is added to the triangulated mesh based on triangle visibility [7].
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sketch panorama

Fig. 6. Sketch and panorama of a 4D reconstruction studio.

Fig. 7 shows an example of augmented reality created with the help of the 4D re-
construction studio. Several consecutive phases of an avatar walking in a virtual envi-
ronment are displayed.

Fig. 7. A 4D studio actor walking in virtual environment.

5 Integrating and visualising the spatio-temporal scene model

The last step of the workflow is the integration of the system components and visu-
alisation of the integrated model. The walking pedestrian models are placed into the
reconstructed environment so that the center point of the feet follows the trajectory
extracted from the LIDAR point cloud sequence. Currently, we use the assumptions
that the pedestrians walk forward along their trajectories. The top view orientation of a
person is calculated from the variation of the 2D track.

To combine the 3D-4D data of different types arriving in different formats and vi-
sualise them in a unified format, we have developed a customised software system. All
models are converted to the general-purpose OBJ format [15] which is supported by
most 3D modelling programs and enables user to specify both geometry and texture.

Our visualisation program is based on the VTK Visualisation Kit [9]. Its primary
goal is to efficiently support combining static and dynamic models allowing their mul-
tiplication and optimising the usage of computational resources. One can easily create
mass scenes that can by viewed from arbitrary viewpoint, rotated and edited. Any user
interaction with the models, such as shifting and scaling, is allowed and easy to perform.
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Fig. 8. Sample results of object tracking and integrated dynamic scene reconstruction.

The dynamic shapes can be multiplied not only in space, but in time, as well. Our
4D studio is relatively small. Typically, only two steps of a walking sequence can be
recorded and reconstructed. This short sequence can be multiplied and seamlessly ex-
tended in time to create an impression of a walking person. To achieve this, the system
helps the user by shifting the phases of motion in space and time while appropriately
matching the sequence of the models.

An important requirement was to visualise the 3D motions of the avatars according
to the trajectories provided by the LIDAR pedestrian tracking unit. An avatar follows
the assigned 3D path, while rotation of the model to the left or right in the proper
direction is automatically determined from the trajectory. Sample final results of the
complete 4D reconstruction and visualisation process are demonstrated in Fig. 8.

6 Conclusion and outlook

In this paper, we have introduced a complex system on the interpretation and 4D vi-
sualisation of dynamic outdoor scenarios containing multiple walking pedestrians. As
a key novelty, we have connected two different modalities of perception: a LIDAR
point cloud stream from a large outdoor environment, and an indoor 4D reconstruc-
tion studio, which is able to provide detailed models of moving people. The proposed
approach points towards real-time free-viewpoint and scalable visualisation of large
scenes, which will be a crucial point in future augmented reality and multi modal com-
munication applications. As future plans, we aim to extend the investigations to point
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cloud sequences collected from a moving platform, and also implement automatic field
object recognition and surface texturing modules.
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