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1.1 Introduction: Goals and Applications

Shadow detection is an important preprocessing task and hot topic of computer vision. We find numerous

applications which need to address shadows, moreover the motivations of the investigations are also highly

various. On one hand in video surveillance [1, 2], aerial exploitation [3], or traffic monitoring [4] shadows

are usually mentioned as harmful effects, because they make difficult to separate and track the moving

objects via background subtraction (Fig. 1.1). In remote sensing, shadows may corrupt change detection

techniques [5] resulting in false differences. As well in scene reconstruction it is a fundamental problem to

distinguish surfaces-edges from illumination differences [6], or shadow-free images should be generated for

purely visual purposes [6].

On the other hand, shadows may be helpful phenomena in many situations. Shape from shading [8]

methods derive the 3-D parameters of the objects based on the estimated shadowing effects. Shadows also

provide general descriptors for the illumination conditions in the scenes, which can be used for image and
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2 Computational Photography: Methods and Applications

Figure 1.1: Results of background subtraction with the Stauffer-Grimson algorithm [7]. Object silhouettes

are strongly corrupted, and multiple moving objects cannot be separated due to cast shadows.

Figure 1.2: Built-in area extraction using cast shadows. Left: input image, middle: output of a color based

shadow filter (red areas are detected as shadows), right: built-in areas identified as neighbouring image

regions of the shadows blobs considering the sun direction.

video indexing or event analysis [9]. For example, the darkness of shadow informs us whether an outdoor

shot was taken in sunlit, or in overcast weather; meanwhile the size and orientation of the shadow blobs

are related to the time and date of capturing the frame. If multiple shadows are observable with different

darkness, we can expect several light sources in the scene. Object extraction in still images can be also

facilitated by shadow detection . In aerial image analysis, it is often necessary to detect static scene objects,

such as buildings [10, 11] or trees [12], which are in general challenging pattern recognition problems.

However, if a noisy shadow map can be obtained by e.g. filtering pixels form the dark-blue color domain

[11], the object candidate regions can be estimated as image areas lying next to the shadow blobs in the sun

direction as demonstrated in Fig. 1.2.

As the large variety of applications shows, shadow detection is a wide concept: different classes of ap-

proaches should be separated depending on the environmental conditions and the exact goals of the systems.

In this chapter, we have selected the video surveillance problem to demonstrate a few appearing challenges

and proposed solutions related to shadow detection. In surveillance video streams, foreground areas usually

contain the regions of interest, moreover, an accurate object-silhouette mask can directly provide useful in-
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formation for several applications, for example people [13, 14, 15] or vehicle detection [4], tracking [16, 17],

biometrical identification through gait recognition [18, 19] or activity analysis [7]. However, moving cast

shadows on the background make it difficult to estimate shape [20] or behavior [14] of moving objects,

because they can be erroneously classified as part of the foreground mask. Considering that under some

illumination conditions more than half of the non-background image areas may belong to cast shadowss,

their filtering has a crucial role in scene analysis.

In the following part of this chapter, we will use a few assumptions for the scene and the input data. First,

the camera is fixed and has no significant ego-motion. We expect static background objects (for example

there is no waving river or flickering object in the background), therefore all the motions are caused either by

moving objects or by shadows. We also use a topically valid image in each moment, which can be obtained

by the conventional mixture of Gaussians method [7]. There is one emissive light source in the scene (the

sun or an artificial source), but we consider the presence of additional effects (e.g. reflection), which may

change the spectrum of illumination locally. We also assume that the estimated background values of the

pixels correspond usually to the illuminated surface points.

On the other hand, we consider several properties of real situations. The background may change in

time: due to varying lightning conditions, and changes of the static objects. ‘Crowded’ and ‘empty’ may

scenarios alternate and we must expect background or shadow colored object parts. Due to the daily changes

of the sun position and weather, the shadow properties may strongly alter as well.

1.2 Shadow Detection in Video Surveillance: an Overview

The shadow filtering problem has been handled in various ways in the literature. Geometry based approaches

estimate the spatial transform between the objects and their cast shadows in the projected image plane

[21, 22]. However, these methods are highly restricted to specific conditions and object types, therefore

color filtering techniques are more widespread in practise. We can also distinguish methods working on

single images or sequences. Still image based methods [6, 23] – which attempt to find and remove shadows

in the single frames independently – are usually applied for high quality photos where the background has

a uniform color or texture pattern. On the other hand, they are less efficient in video surveillance, where we

must expect images with poor quality and resolution [6], and the computational complexity should be kept

low for real time operation [23]. We find a few approaches which focus on the discrimination of shadow

edges, and edges due to objects boundaries [24, 25]. However, it may be difficult to extract connected

foreground regions from a ragged edge map of a noisy video frame [24]. Complex scenarios containing

several small objects or shadow-parts may be also disadvantageous for these methods.

Considering the above reasons, we focus on video (instead of still image) and region (instead of edge)
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based shadow modeling techniques in this chapter. Here the next important categorization issue deals with

the description of the shadow-background color transform, which can be non parametric and parametric

[26]. Non parametric techniques are often referred as ‘shadow invariant ’ approaches, since instead of de-

tecting the shadows they remove them by converting the pixel values into an illuminant invariant feature

space. Usually a conventional color space transformation is applied to fulfill this task: the normalized rgb

(or rg) [27, 28] and C1C2C3 spaces [29] purely contain chrominance color components which are less

dependent on luminance. Similar constancy of the hue channel in the HSV space is exploited in [30]. How-

ever, as [29] points out, illumination invariant approaches have several limitations regarding the reflecting

surfaces and the lighting conditions of the scenes. Outdoors, shadows will have a blue color cast (due to the

sky), while lit regions have a yellow cast (sunlight), hence the chrominance color values corresponding to

the same surface point may be significantly different in shadow and in sunlight [25]. We have also found

in our experiments that the shadow invariant methods fail outdoors several times, and they are rather usable

indoors (see later in Fig. 1.7). Moreover, since they ignore the luminance components of the color, these

models become sensitive to noise.

Consequently, we keep our investigations among the parametric models. First, we estimate the mean

background values of the individual pixels trough a statistical background model [7], then we extract feature

vectors from the actual and the estimated background values of the pixels and model the feature domain of

shadows in a probabilistic way. Parametric shadow models may be local or global.

In a local shadow model [31] independent shadow processes are proposed for each pixel. The local

shadow parameters are trained using a second mixture model similarly to the background in [7]. This

way, the differences in the light absorption-reflection properties of the scene points can be highly consid-

ered. However, each pixel should be shadowed several times till its estimated parameters converge under

unchanged illumination conditions, which hypothesis is often not satisfied in surveillance videos.

In Section 1.3 we introduce a novel statistical shadow model which follows another approach: shadow is

characterized with global parameters in an image, and the model describes the relation of the corresponding

background and shadow color values. We consider this transformation as a random transformation affected

by a perturbation, hence, we take several illumination artifacts into consideration. On the other hand, we

derive the shadow parameters from global image statistics, therefore, the model performance is reasonable

also on image regions where motion is rare.

Color space choice is a key issue in several corresponding methods, as it will be intensively studied in

Section 1.4. For our initial model in Section 1.3 we will propose the CIE L*u*v* space, for reasons which

will be detailed later. Here, we only mark two well known properties of the CIE L*u*v* space: we can

measure the perceptual distance between colors with the Euclidean distance [32], and the color components

are approximately uncorrelated with respect to camera noise and changes in illumination [33]. Since we
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Table 1.1: Comparison of different corresponding methods and the proposed model.

Method Shadow detection Adaptive Scenes
Mikic 2000 [35] global, constant ratio No outdoor
Paragious 2001 [27] illumination invariant No indoor
Salvador 2004 [29] illumination invariant No both
Martel-Brisson 2005 [31] local process Yes indoor
Sheikh 2005 [36] No - both
Wang 2006 [37] global, constant ratio No indoor
Benedek 2008 [1] global, probabilistic Yes both

derive the model parameters in a statistical way, there is no need for accurate color calibration and we use

the common CIE D65 standard. It is also not critical to consider exactly the physical meaning of the color

components which is usually environment-dependent [29, 34]; we use only an approximate interpretation of

the L, u, v components and show the validity of the model via experiments.

In Section 1.4, we will give a detailed qualitative and quantitative study on the color space selection

problem of shadow detection. In this sense, this section can be considered both as premise and generaliza-

tion of Section 1.3. Our previous choice for using the CIE L*u*v* space will be justified here, but on the

other hand, experiments will refer to the previously introduced model elements, extending their validity to

various color models. The reason for dedicating an independent part to this issue is that statistical feature

modeling and color space analysis are two different and in themselves composite aspects of shadow detec-

tion. Although interaction between the two approaches will be emphasized several times, we hope that the

separate discussion will help the clarity of presentation. Due to the various experiments the consequences of

Section 1.4 may be more generally usable than in the context of the proposed statistical model framework.

For validation we use real surveillance video shots and also test sequences from a well-known bench-

mark set [26]. Table 1.1 summarizes the different goals and tools regarding some of the above mentioned

state-of-the-art methods and the proposed model. For detailed comparison see also Section 1.3.6.

1.3 A Bayesian Approach for Modeling Shadows in Video Scenes

We solve the shadow detection problem in a Bayesian image segmentation framework, which separates

foreground, background and shadow regions in the video frames. Denote by S the two dimensional pixel

grid and we use a first ordered neighborhood system on S. The procedure assigns a label ω(s) to each pixel

s ∈ S form the label-set: Φ = {fg,bg,sh} corresponding to three possible classes: foreground (fg), back-

ground (bg) and shadow (sh). The label field is modeled by a Markov Random Field [38]: the segmentation

is equivalent to a global labeling ω = {[s, ω(s)] | s ∈ S}, and the probability of a given ω ∈ Ω follows
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Gibbs distribution [38].

The observation at pixel s is the three dimensional color vector – at this point – in the CIE L*u*v* space:

o(s) = [oL(s), ou(s), ov(s)]T. Set O = {o(s)| s ∈ S} refers to the global image data. The key point in the

model is to define the conditional density functions pφ(s) = P (o(s)| ω(s) = φ), for all φ ∈ Φ and s ∈ S.

E.g. pbg(s) is the probability that the background process generates the observed feature value o(s) at s.

We do not address foreground modeling in this book chapter, since it has an exhaustive literature in

itself. The simplest approach is using uniform foreground distributions pfg = u [35] which is equivalent to

outlier detection. There have been also proposed more sophisticated models based on temporal foreground

descriptions [36] or pixels state transition probabilities [37]. In our upcoming model we will use the spatial

foreground calculus introduced in [1], which is not sensitive to the frame rate parameter of the video streams

ensuring robustness in surveillance environments.

We define the background’s and shadow’s conditional density functions in Section 1.3.1-1.3.4, and the

segmentation procedure will be presented in Section 1.3.6 in details. Before continuing, note that we min-

imize the minus-logarithm of the global probability term in fact. Therefore, in the following we use the

εφ(s) = − log pφ(s) local energy terms, for easier notation.

1.3.1 General Probabilistic Models of the Background and Shadow Processes

We model the distribution of feature values in the background and in the shadow by Gaussian density

functions, similarly to [26, 37, 39]. For simplicity, we approximate the joint distribution of the color

components by a three dimensional Gaussian density function with diagonal covariance matrix: Σk(s) =

diag{σ2
k,L(s), σ2

k,u(s), σ
2
k,v(s)} for k ∈ {bg, sh}. Accordingly, the distribution parameters are the µk(s) =

[µk,L(s), µk,u(s), µk,v(s)]T mean vector, and σk(s) = [σk,L(s), σk,u(s), σk,v(s)]T standard deviation vec-

tors. With this ‘diagonal’ model we avoid matrix inversion and determinant recovering during the calculation

of the probabilities, and the εk(s) = − log pk(s) terms can be derived directly from the one dimensional

marginal probabilities:

εk(s) = C +
∑

i={L,u,v}

log σk,i(s) +
1
2

(
oi(s)− µk,i(s)

σk,i(s)

)2

(1.1)

with C = 2 log 2π. According to eq. (1.1), each feature contributes with its own additional term to the

energy calculus. Therefore, the model is modular: the one dimensional model parameters, [µk,i(s), σ2
k,i(s)],

can be estimated separately.

The use of a Gaussian distribution to model the observed color of a single background pixel is well

established in the literature, with the corresponding parameter estimation procedures such as in [7, 40].

We train the color components of the background parameters [µbg(s), σbg(s)] in a similar manner to the
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Figure 1.3: Illustration of two illumination artifacts (the frame has been chosen from the ‘Entrance am’ test

sequence). 1: dark shadow part between the legs (more object parts change the reflected light). 2: penumbra

artifact near the edge of the shadow. The constant ratio model (in the middle) causes errors, while the

proposed model (right image) is more robust.

conventional online k-means algorithm [7]. [µbg,L(s), µbg,u(s), µbg,v(s)]T vector estimates the mean back-

ground color of pixel s measured over the recent frames, while σbg(s) is an adaptive noise parameter. An

efficient outlier filtering technique [7] excludes most of the non-background pixel values from the parameter

estimation process, which works without user interaction.

As we have stated in Section 1.2, we characterize shadows by describing the background-shadow color

value transformation in the images. The shadow calculus is based on the illumination-reflection model [41]

introduced in Section 1.3.2. This model assumes constant lighting, flat and Lambertian reflecting surfaces,

however our scene does not usually fulfill these requirements. As a novelty we use a probabilistic approach

in Section 1.3.3 to describe the deviation of the scene from the ideal surface assumptions for getting a more

robust shadow detection .

1.3.2 Shadow Description by Lambertian Color Features

According to the illumination model [41] the response g(s) of a given image sensor placed at pixel s can be

written as

g(s) =
∫
e(λ, s)ρ(λ, s)ν(λ)dλ (1.2)

where e(λ, s) is the illumination function at a given wavelength λ, ρ(s) depends on the surface albedo and

geometric, ν(λ) is the sensor sensitivity. Accordingly, the difference between the shadowed and illuminated

background values of a given surface point is caused only by the different local value of e(λ, s). Outdoors,

the illumination function observed in sunlit is the composition of the direct component (sun), the Rayleigh

scattering (sky), causing that the ambient light has a blue tingle [42], and residual light components reflected

from other objects. On the other hand, the effect of the direct component is missing in the shadow.

Although the validity of eq. (1.2) is already limited by several scene assumptions [41], in general, it

is still too difficult to exploit appropriate information about the corresponding background-shadow values,
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Figure 1.4: Histograms of the ψL, ψu and ψv values for shadowed and foreground points collected over a

100-frame period of the video sequence ‘Entrance pm’ (frame rate: 1 fps). Each column corresponds to a

color component.

since the components of the illumination function are unknown. Therefore, further strong simplifications

are used in the applications. According to [6] the camera sensors must be exact Dirac delta functions:

ν(λ) = q0 · δ(λ − λ0) and the illumination must be Planckian [43]. In this case, eq.(1.2) implies the well-

known ’constant constant ratio’ rule. Namely, the ratio of the shadowed gsh(s) and illuminated value gbg(s)

of a given surface point is considered to be constant over the image: gsh(s)
gbg(s) = A.

The ‘constant ratio’ rule has been used in several applications [35, 37, 39]. Here the shadow and back-

ground Gaussian terms corresponding to the same pixel are related via a globally constant linear density

transform. In this way, the results may be reasonable when all the direct, diffused and reflected light can be

considered constant over the scene. However, the reflected light may vary over the image in case of several

static or moving objects, and the reflecting properties of the surfaces may differ significantly from the Lam-

bertian model (See Fig. 1.3). The efficiency of the constant ratio model is also restricted by several practical

reasons, like quantification errors of the sensor values, saturation of the sensors, imprecise estimation of

gbg(s) and A, or video compression artifacts. Based on our experiments (Section 1.3.6), these inaccuracies

cause poor detection rates in some outdoor scenes.

1.3.3 Proposed Shadow Model

The previous section suggests that the ratio of the shadowed and background luminance values of the pixels

may be useful, but not powerful enough as a descriptor of the shadow process. Instead of constructing a

more difficult illumination model, for example in 3D with two cameras, we overcome the problems with a

statistical model. For each pixel s, we introduce the variable ψL(s) by:

ψL(s) =
oL(s)
µbg,L(s)

(1.3)

where, as defined earlier, oL(s) is the observed luminance value at s, and µbg,L(s) is the mean value of the

local Gaussian background term estimated over the previous frames [7].
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Thus, if the ψL(s) value is close to the estimated shadow darkening factor, s is more likely to be a

shadowed point. More precisely, in a given video sequence, we can estimate the distribution of the shadowed

ψL values globally in the video parts. Based on experiments with manually generated shadow masks, a

Gaussian approximation seems to be reasonable regarding the distribution of shadowed ψL values (Fig.

1.4 shows the global ψ statistics regarding a 100-frame period of outdoor test sequence ‘Entrance pm’).

For comparison, we have also plotted the statistics for the foreground points, which follows significantly

different, more uniform distribution.

Due to the spectral differences between the direct and ambient illumination, cast shadows may also

change the u and v color components [25]. We have found an offset between the shadowed and background

u values of the pixels, which can be efficiently modelled by a global Gaussian term in a given scene (similarly

as for the v component). Hence, we define ψu(s) (and ψv(s)) by

ψu(s) = ou(s)− µbg,u(s) (1.4)

As Fig. 1.4 shows, the shadowed ψu(s) and ψv(s) values follow approximately normal distributions.

Consequently, the shadow color process is characterized by a three dimensional Gaussian random vari-

able:

∀s ∈ S : ψ(s) = [ψL(s), ψu(s), ψv(s)]T ∼ N [µψ, σψ] (1.5)

Using eq. (1.3) and (1.4), the color values in the shadow at a given pixel position are also generated by

Gaussian distribution,

[oL(s), ou(s), ov(s)]T ∼ N [µsh(s), σsh(s)] (1.6)

with the following parameters:

µsh,L(s) = µψ,L · µbg,L(s) (1.7)

σ2
sh,L(s) = σ2

ψ,L · µ2
bg,L(s) (1.8)

Regarding the u (and similarly to the v) component:

µsh,u(s) = µψ,u + µbg,u(s), σ2
sh,u(s) = σ2

ψ,u (1.9)

1.3.4 Parameter Settings

Our method works with scene-dependent and condition-dependent parameters. Scene-dependent parameters

can be considered constant in a specific field, and are influenced by, e.g. camera settings and prior knowledge

about the appearing objects or reflection properties. We provide strategies on how to set these parameters if

a surveillance environment is given. Condition-dependent parameters vary in time in a scene, therefore, we

use adaptive algorithms to follow them. We emphasize that regarding the background and shadow processes,

only the one dimensional marginal distribution parameters should be estimated (Section 1.3.1).
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Figure 1.5: Different parts of the day on ‘Entrance’ sequence, segmentation results. Above left: in the

morning (‘am’), right: at noon, below left: in the afternoon (‘pm’), right: wet weather

The background parameter estimation and update procedure is automated, based on the work in [7],

which presents reasonable results, and it is computationally more effective than the standard EM algorithm.

The changes in the global illumination significantly alter the shadow properties (Fig. 1.5). Moreover,

changes can be performed rapidly: indoors due to switch on/off different light sources, while outdoors due to

the appearance of clouds. Regarding the shadow parameter settings, we discriminate parameter initialization

and re-estimation. From a practical point of view, initialization may be supervised with marking shadowed

regions in a few video frames by hand, once after switching on the system. Based on the training data, we

can calculate maximum likelihood estimates of the shadow parameters. On the other hand, there is usually

no opportunity for continuous user interaction in an automated surveillance environment, thus the system

must adapt to the illumination changes raising a claim to an automatic re-estimation procedure. Therefore

we use supervised initialization, and focus on the parameter adaption process in the following. The presented

method is built in a 24-hour surveillance system of our university campus (Fig. 1.5).

According to section 1.3.3, the shadow process has six parameters: the 3-3 components of µψ respec-

tively σψ vectors. Fig. 1.6(a) shows the one-dimensional histograms for the occurring ψL, ψu and ψv values

of shadowed points for each video shot. We can observe that while the variation of parameters σψ, µψ,u and

µψ,v are low, µψ,L varies in time significantly. Therefore, we update the parameters in two different ways.

Re-estimation of the Chrominance Parameters

The update procedure of parameters [µψ,u, σψ,u] and [µψ,v, σψ,v] is similar to that was used in [44]. We

show it regarding the u component only, since the v component is updated in the same way.

We re-estimate the parameters at fixed time-intervals T . Denote µψ,u[t], σψ,u[t] the parameters at time

t. Wt2 is the set containing the observed ψu values collected over the pixels detected as shadow between
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(a) Shadow statistics (b) Non-background statistics

Figure 1.6: (a) Shadow ψ statistics on four sequences recorded by the ‘Entrance’ camera of our University

campus. Histograms of the occurring ψL, ψu and ψv values of shadowed points. Rows correspond to video

shots from different parts of the day. We can observe that the peak of the ψL histogram strongly depends

on the illumination conditions, while the change in the other two shadow parameters is much smaller. (b)

ψ statistics for all non-background pixels Histograms of the occurring ψL, ψu and ψv values of all the

non-background pixels in the same sequences

time t1 = t2 − T and t2:

Wt2 = {ψ[t]
u (s)|t = t1, . . . , t2 − 1, ω[t](s) = sh, s ∈ S} (1.10)

where upper index [t] refers to time, #Wt2 is the number of the elements, Mt2 and Dt2 are the empirical

mean and the standard deviation values of Wt2 . We update the parameters as:

µψ,u[t2] = (1− ξ[t2]) · µψ,u[t1] + ξ[t2] ·Mt2 (1.11)

σ2
ψ,u[t2] = (1− ξ[t2]) · σ2

ψ,u[t1] + ξ[t2] ·D2
t2 (1.12)

Parameter ξ[t] is a weighting term (0 ≤ ξ[t] ≤ 1) depending on #Wt, namely greater number of detected

shadow points increase ξ[t] and the influence of the Mt respectively D2
t term. We use T = 60 sec.

Re-estimation of the Luminance Parameters

Parameter µψ,L corresponds to the average background luminance darkening factor of the shadow. Except

from window-less rooms with constant lightning, µψ,L is strongly condition dependent. Outdoors, it can

vary between 0.6 in direct sunlight and 0.95 in overcast weather. The simple re-estimation from the previous

section does not work in this case, since the illumination properties between time t and t + T may rapidly

change a lot, which would result in absolutely false detected shadow values in set Wt presenting false Mt

and Dt parameters for the re-estimation procedure.
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For this reason, we gain the actual µψ,L from the statistics of all non-background ψL-s (where the

background filtering should be done by a good approximation only, we use the Stauffer-Grimson algorithm).

In Fig. 1.6(b) we can observe that the peaks of the ‘non-background’ ψL-histograms are approximately in

the same location as they were in Fig. 1.6(a). The videos of the first and second rows were recorded around

noon where the shadows were relatively small, but the peak is still in the right location.

The previous experiments encourage us to identify µψ,L with the location of the peak on the ‘non-

background’ ψL-histograms for the scene. The description of the update-algorithm of µψ,L is as follows.

We define a data structure which contains a ψL value with its timestamp: [ψL, t]. We store the ‘latest’

occurring [ψL, t] pairs of the non-background points in a set Q, and update the histogram hL of the ψL

values in Q continuously. The key point is the management of set Q. We define MAX and MIN parameters

which controls the size of Q. The queue management algorithm has the following steps:

Algorithm for updating the µψ,L shadow parameter

1. For each frame t we determine Ψt = { [ψ[t]
L (s), t] | s ∈ S, ω[t](s) 6= bg}

2. We append Ψt to Q.

3. We may remove elements from Q:

• if #Q < MIN, we keep all the elements.

• if #Q ≥ MIN we find the eldest timestamp te in Q and remove all the elements from Q with time

stamp te.

4. If #Q > MAX after step 3: in order of their timestamp we remove further (‘old’) elements from #Q
till we reach #Q ≤ MAX.

5. We update the histogram hL regarding Q and apply: µ[t+1]
ψ,L = argmax{hL}

Consequently, Q contains always the latest available ψL values. The algorithm keeps the size of Q

between prescribed bounds MAX and MIN ensuring the topicality and relevancy of the data contained. The

actual size of Q is around MAX in case of cluttered scenarios. In the case of few or no motion in the scene,

the size of Q decreases until MIN: this fact increases the influence of the forthcoming elements, and causes

quicker adaptation, since it is faster to modify the shape of a smaller histogram.

Parameter σψ,L is updated similarly to σψ,u but only in the time periods when µψ,L does not change

significantly. Note that the above update process may fail in shadow free scenarios. However, that case

occurs mostly under artificial illumination conditions, where the shadow detector can be switched off.
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Table 1.2: Comparing the processing speed of our proposed model to three recent reference methods (using

the published frame-rates). Note that [31] does not use any spatial smoothing (like MRF), and [36] performs

only a two-class separation.

M-Brisson05 [31] Sheikh05 [36] Wang06 [37] Proposed

Classes 3 2 3 3

MRF Opt - Graph cut ICM ICM

Frame-rate 10 fps 11 fps 1-2 fps 3 fps

1.3.5 MRF Optimization

The MAP estimator is realized by combining a conditional independent random field of signals and an

unconditional Potts model [45]. The optimal segmentation corresponds to the global labeling, ω̂, defined by

ω̂ = arg min
ω∈Ω


∑
s∈S

− logP
(
o(s) | ω(s)

)︸ ︷︷ ︸
εω(s)(s)

+
∑
r,s∈S

Θ(ω(r), ω(s))

 (1.13)

where the minimum is searched over all the possible segmentations (Ω) of a given input frame. The first

part of eq. (1.13) contains the sum of the local class-energy terms regarding the pixels of the image (see eq.

(1.1) ). The second part is responsible for the smooth segmentation: Θ(ω(r), ω(s)) = 0 if s and r are not

neighboring pixels, otherwise:

Θ(ω(r), ω(s)) =

 −δ if ω(r) = ω(s)

+δ if ω(r) 6= ω(s)
(1.14)

As for optimization, we have found the deterministic Modified Metropolis (MMD) [46] relaxation method

similarly efficient but significantly faster for this task than the original stochastic SA algorithm [47]: pro-

cessing 320 × 240 images runs with 1 fps using it. If we use ICM [48] with our model, the running speed

is 3 fps, in exchange for some degradation in the segmentation results. For comparison, frame-rates of

three latest reference methods are shown in Table 1.2. We can observe that our model has approximately

the same complexity as [37]. Although the speed of [31] and [36] is notably higher, one should consider

that [31] does not use any spatial smoothing (like MRF), thus a separate noise filter must be applied there

in the post-processing phase. On the other hand [36] performs only a two-class segmentation (background

and foreground). That simplification enables using the quick graph cut based MRF optimization techniques,

unlike in the three-class cases [49].
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Table 1.3: Overview on the evaluation parameters regarding the five sequences. Notes: ∗number of frames

in the ground truth set. ∗∗ Frame rate of evaluation (fre): number of frames with ground truth within one

second of the video. ∗∗∗Length of the evaluated video part. †fre was higher in ‘busy’ scenarios.

Video Frames∗ fre∗∗ Duration (min) ∗∗∗

Laboratory 205 2-4 fre† 1:28

Entrance am 160 2 fre 1:20

Entrance pm 75 1 fre 1:15

Entrance noon 251 1 fre 4:21

Highway 170 5-8 fre† 0:29

1.3.6 Experimental results

The goal of this section is to demonstrate the benefit of using the novel shadow model introduced in this

chapter qualitatively and quantitatively. We have validated our method on several test sequences, here, we

show results regarding the following 7 videos:

• ‘Laboratory’ test sequence from the ATON benchmark set [26]. This shot contains a simple environ-

ment where previous methods [37] have produced already accurate results.

• ‘Highway’ video (ATON benchmark set). This sequence contains dark shadows but homogenous

background without illumination artifacts. Contrast to [35] our method reaches the appropriate results

without post processing, which is strongly environment-dependent.

• ‘Corridor’ indoor surveillance video. Although, it is on the face of a simple office environment the

bright objects and background elements often saturate the image sensors and it is hard to accurately

separate the white shirts of the people from the white walls in the background.

• 4 surveillance video sequences captured by the ‘Entrance’ (outdoor) camera of our university campus

in different lightning condition. (See Fig 1.5: ‘Entrance am’, ‘Entrance noon’, ‘Entrance pm’ and ‘En-

trance overcast’). These sequences contain difficult illumination and reflection effects and suffer from

sensor saturation (dark objects and shadows). Here, the presented model improves the segmentation

results significantly versus previous methods.

Results of different shadow detectors are demonstrated in Fig. 1.7. For the sake of comparison we have

implemented in the same framework an illumination invariant (‘II’) method based on [29], and a constant

ratio model (‘CR’) [35]. We have observed that the results of the previous and the proposed methods are

similar in simple environments, but our improvements become significant in the surveillance scenes. In
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Figure 1.7: Shadow model validation: Comparison of different shadow models in 3 video sequences (From

above: ‘Laboratory’,‘Highway’,‘Entrance am’) . Col. 1: video image, Col. 2: C1C2C3 space based

illumination invariants [29] (‘II’). Col. 3: ‘constant ratio model’ by [35] (‘CR’, without object-based post-

processing) Col. 4: Proposed statistical shadow model (‘SS’)

the ‘Laboratory’ sequence, the ‘II’ approach is reasonable, while the ‘CR’ and the proposed method are

similarly accurate. Regarding the ‘Highway’ video, although the ‘II’ and ‘CR’ find the objects without

shadows approximately, but the results are much noisier than it is with our model. Finally on the ‘Entrance

am’ surveillance video, the ‘II’ method fails completely: shadows are not removed, while the foreground

component is also noisy due to the lack of using luminance features in the model. The ‘CR’ model produces

poor results also: due to the long shadows and various field objects the constant ratio model becomes

inaccurate. Our model handles these artifacts robustly.

The quantitative evaluations are done through manually generated ground truth sequences. Since the

application’s goal is foreground detection, the crossover between shadow and background does not count

for errors. Denote the number of correctly identified foreground pixels of the evaluation images by TP

(true positive). Similarly, we introduce FP for misclassified background points, and FN for misclassified

foreground points. The evaluation metrics consists of the Recall rate and the Precision of the detection:

Recall =
TP

TP + FN
Precision =

TP
TP + FP

(1.15)

Later on, we will also use the F -measure (FM ) [50] which combines Recall (Rc) and Precision (Pr ) in a

single efficiency measure (it is the harmonic mean of Rc and Pr ):

FM =
2 · Rc · Pr
Rc + Pr

. (1.16)
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Table 1.4: Quantitative evaluation results. Comparing the constant ratio (CR) and the proposed statistical

(SS) shadow models.
Recall Rc Precision Pr FM -measure

Data Set CR SS CR SS CR SS

Laboratory 0.950 0.941 0.883 0.929 0.915 0.935

Highway 0.886 0.890 0.644 0.805 0.746 0.845

Entrance am 0.946 0.968 0.596 0.774 0.731 0.861

Entrance noon 0.980 0.963 0.742 0.833 0.845 0.894

Entrance pm 0.972 0.961 0.621 0.830 0.756 0.891

Figure 1.8: Distribution of the shadowed ψ values in simultaneous sequences from a street scenario recorded

by different CCD cameras. Note: the camera with Bayer grid has higher noise, hence the corresponding u/v

components have higher variance parameters.

Note that while Rc and Pr characterize a given algorithm only together1, FM is in itself an efficient

evaluation metrics.

For numerical validation, we used in the aggregate 861 frames chosen from the ‘Laboratory’, ‘Highway’,

‘Entrance am’, ‘Entrance noon’ and ‘Entrance pm’ sequences. Details about the test sets are given in Table

1.3. Table 1.4 shows the detection results of the proposed method compared to the constant ratio (CR)

model, confirming that our shadow calculus improves the precision rate, since it decreases the number of

false negative shadow pixels significantly, while it preserves the high foreground recall rate at the same time.

Consequently, the FM -measure of the proposed model outperforms the CR method one in all sequences.

Influence of CCD Selection on the Shadow Domain

We have introduced a statistical shadow model without any knowledge about the technical details and em-

bedded control/LUT of the different cameras. However, we have performed an additional experiment re-

garding this issue. We have recorded simultaneous videos from a street scenario with two different cameras:

a 3CCD digital video camcorder and a conventional digital camera, which uses a Bayer grid. By examining

1Consider an algorithm which classifies each pixel as foreground. It is obviously a weak segmenter, but its Rc is equal to 1.

However, Pr is low in that case.
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Table 1.5: Color space selection in the state-of-the-art methods. † In cases of parametric methods, the

(average) number of shadow parameters for one color channel. ‡Proportional to the number of support

vectors after training.

Method Color space Number of param./
color channels†

Cavallaro 2004 [28] rg invariant

Salvador 2004 [29] C1C2C3 invariant

Paragios 2001 [27] rg invariant

Mikic 2000 [35] RGB 1

Rittscher 2002[39] grayscale 2

Wang 2006 [37] grayscale 2

Cucchiara 2001 [51] HSV 1.33

Martel-Brisson 2005 [31] CIE L*u*v* 2

Rautiainen 2001 [52] CIE L*a*b*/HSV N.a.

Siala 2004 [53] RGB N.a.‡

Benedek 2007 [2] All from above 2

the corresponding shadow domains (see Fig. 1.8), we can observe that the distributions of the shadowed

ψ values are very similar. However, the higher noise of the Bayer grid camera results in higher variance

parameters regarding the u and v components.

1.4 Color Space Selection in Cast Shadow Detection

In this section we focus on a particular aspect of shadow detection: we illustrate that the performance

of segmentation can be significantly improved through appropriate color space selection, if for practical

purposes, we should keep the number of free parameters of the method low. We show experimental results

regarding the following questions:

• What is the gain of using color images instead of grayscale ones?

• What is the gain of using uncorrelated spaces instead of the standard RGB?

• Are chrominance (illumination invariant), luminance, or ‘mixed’ spaces more efficient?

• In which scenes are the differences significant?

We qualify the metrics both in color based clustering of the individual pixels and in the case of Bayesian

foreground-background-shadow segmentation through generalizing the model introduced in Section 1.3.
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Table 1.6: Luminance-related and chrominance channels in different color spaces

Color space gray rgcolor space!rg C1C2C3 HSV RGB L*a*b* L*u*v*

luminance ch. g - - H R,G,B L* L*

chrominance ch. - r,g C1,C2,C3 S,V - a*,b* u*,v*

Experimental results on the test videos show that CIE L*u*v* colro space is the most efficient in both cases.

1.4.1 Color Spaces: Significance of the Right Choice

Appropriate color space selection is a crucial step for many image processing problems [25, 54, 55]. Since

the shadow model proposed in Section 1.3 is primarily based on describing the shadow’s color domain,

issues on color spaces should also be investigated in this case. Although shadow detection is a very well

examined problem and some comparative works [26, 56] have also been published in this topic, previous re-

views classify and compare the existing methods based on their model structures. The authors [26] note that

the methods work in different color spaces, like RGB [35] and HSV [51]. However, it remains open-ended,

how important is the appropriate color space selection, and which color space is the most effective regarding

shadow detection. Moreover, we find also further examples: [39] used only gray levels for shadow segmen-

tation, other approaches were dealing with the CIE L*u*v* [31] and CIE L*a*b* [52] spaces, respectively

(an overview is in Table 1.5). Note that an experimental evaluation of color spaces has been already done for

shadow edge classification in [25], but in the current book chapter, we address the detection of the shadowed

and foreground regions, which is a fairly different problem.

For the above reasons, the main issue of this section is to give an experimental comparison of different

color models regarding cast shadow detection on the video frames. Of course, the validity of such experi-

ments is limited to the examined model structures, thus it is important to make the comparison in a relevant

framework. Taking a general approach, we consider the task as a classification problem in the space of the

extracted features, describing the different cluster domains with relatively few free parameters.2

Models in the literature use usually deterministic (per pixel, e.g. [51])) or statistical (probabilistic, see

[35]) approaches. Up to now, we have only dealt with statistical models, since they proved to be advan-

tageous considering the whole segmentation process. On the contrary, here we introduce a deterministic

method first, where the pixels are classified independently before the rate of the correct pixel-classification

is investigated. That way, we can perform a relevant quantitative comparison of the different color spaces,

since the decision for each pixel depends only on the corresponding local color-feature value; post process-
2Most models in Table 1.5 also contain 2 parameters for each color channel, drawbacks of methods using less parameters have

been emphasized in Section 1.3.
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Figure 1.9: One dimensional projection of histograms of shadow (above) and foreground (below) ψ values

in the ‘Entrance pm’ test sequence.

ing and prior effects whose efficiency may be environment-dependent do not take account here. Thereafter,

we give a probabilistic interpretation to this model and we insert it to the MRF framework which was intro-

duced in Section 1.3. We also compare the results after MRF optimization qualitatively and quantitatively.

1.4.2 Generalized Feature Vector of Shadow Separation

Feature extraction is done similarly to Section 1.3, but here we give a generalization of the ψ shadow features

to handle different color spaces.

We remind the Reader of the constant ratio model introduced in Section 1.3.2, where the ratio of the

shadowed and illuminated sensor values have been considered near constant over the images. To handle the

different artifacts, one can prescribe a domain [53] or a distribution (see Section 1.3.3) instead of a single

value for the ratios, which results in a powerful detector.

Next, we should examine, how one can use this approach in different color systems. We begin the

description with some notes. We assume that the camera presents the frames in the RGB space, and for the

different color space conversions, we use the formulas of [57]. The ITU D65 standard is used again for the

calibration of the CIE L*u*v* and L*a*b* spaces.

As we did in the CIE L*u*v* based model (page 8) we will separately handle the color components

which are directly related to the brightness of the pixels (we refer to them later as ‘luminance’ components),

and the remaining ones which correspond to ‘chrominances’ of the observed colors. Classification of chan-

nels regarding different color spaces can be found in Table 1.6. In this way, we can also classify the color

spaces: since the normalized rg and C1C2C3 spaces contain only chrominance components we will call

them ‘chrominance spaces’, while grayscale and RGB are purely ‘luminance spaces’. In this terminology,
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HSV, CIE L*u*v* and L*a*b* are ‘mixed spaces’.

The shadow descriptor is derived in an analogous manner to the approach of Section 1.3.3: the ‘proba-

bilistic ratio’ method is used for the ‘luminance’ components, while the offsets between the shadowed and

illuminated ‘chrominance’ values of the pixels are modeled by a Gaussian additive term. In summary, if the

current value of a given pixel in a given color space is [o0, o1, o2] (indices 0, 1, 2 correspond to the different

color components), the estimated (illuminated) background value is there [µbg,0, µbg,1, µbg,2], we define the

shadow descriptor ψ = [ψ0, ψ1, ψ2] by the following, for i = {0, 1, 2}:

• If i is the index of a ‘luminance’ component:

ψi(s) =
oi(s)
µbg,i(s)

. (1.17)

• If i is the index of a ‘chrominance’ component:

ψi(s) = oi(s)− µbg,i(s). (1.18)

We define the descriptor in grayscale and in the rg space similarly to eq. (1.17) and (1.18) considering that

ψ will be a scalar and a two dimensional vector, respectively.

The efficiency of the proposed feature selection regarding three color spaces can be observed in Fig.

1.9, where we plot the one dimensional marginal histograms of the occurring ψ0, ψ1 and ψ2 values for

manually marked shadowed and foreground points of a 75-frames long outdoor surveillance video sequence

(‘Entrance pm’). Apart from some outliers, the shadowed ψi values lie for each color space and each color

component in a ‘short’ interval, while the difference of the upper and lower bounds of the foreground values

is usually greater.

1.4.3 Quantitative Comparison through a Deterministic Classifier

In this section, we temporarily put aside the MRF concept, and taking a deterministic approach, we consider

the shadow detection problem as a simple classification task in the ψ-feature space. Considering Fig. 1.9,

an important note should be taken here. While the ψ statistics characterizes the scene and illumination con-

ditions, the foreground ψ histograms only correspond to the occurring foreground objects in the evaluated

sequence. On the other hand, an efficient shadow model is expected to work with differently colored objects

as well. Therefore, the upcoming discrimination process will follow a one-class-classification approach:

pixel s will by classified as a shadowed point, if its ψ(s) value lies in the estimated shadow domain, and the

outlier points will be labeled as foreground. As usual, the shadow domain is defined by a manifold having a

prescribed number of free parameters, which fit the model to a given scene/situation. For grayscale images

shadowed ψ features should be included by an interval [37], while regarding color scenes different domain
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Figure 1.10: Two dimensional projection of foreground (red) and shadow (blue) ψ values in the ’Entrance

pm’ test sequence. Green ellipse is the projection of the optimized shadow boundary.

models are used in the literature, like a three dimensional rectangular bin [51] (ratio/difference values for

each channel lie between defined threshold), an ellipsoid [35], or the domain may have general shape [53].

In the latter case a Support Vector Domain description is proposed in the RGB color ratios’ space.

By each domain-selection we must consider overlap between the classes, e.g. foreground points may

appear whose feature values lie in the shadow domain. Therefore, the optimal domain should be as narrow

as possible meanwhile containing ‘almost all’ the feature values corresponding to the occurring shadowed

points. Accordingly, if we ‘only’ prescribe that a shadow descriptor should be accurate, the most general

domain shape seems to be the most appropriate. However, in practise, we also have to consider issues of

parameter estimation and adaption (see Section 1.3.4). Therefore, we prefer the domains with relatively few

free parameters, for which we can construct an automatic update strategy.

Observe that according to Fig. 1.9, the shadowed ψ0, ψ1 and ψ2 values follow approximately normal

distributions, therefore, a 3D joint normal representation of the ψ features in shadows is straightforward

(similarly to Section 1.3). Since the equipotential surfaces of the 3D Gaussian density functions are ellip-

soids, a natural choice is using an elliptical shadow domain boundary. We will use the equation of a standard

ellipsoid body having parallel axes with the coordinate axes in the ψ0 −ψ1 −ψ2 Cartesian coordinate sys-

tem:

Pixel s is shadowed ⇔
2∑
i=0

(
ψi(s)− ai

bi

)2

≤ 1, (1.19)

where [a0, a1, a2] is the coordinate of the ellipsoid center and (b0, b1, b2) are the semi-axis lengths. In other

words, [a0, a1, a2] is equivalent to the mean ψ(s) value of shadowed pixels in a given scene, while b0, b1 and

b2 depend on the spatiotemporal variance of the ψ(s) measurements under shadows. Later on we will show

that the similarity to the µψ and σψ parameters from Section 1.3 is not by chance, thus, parameter adaption
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can also be done in a similar manner.

Note that with the SVM method [53], the number of free parameters is related to the number of the

support vectors, which can be much greater than the six scalars of our model. Moreover, for each situation, a

novel SVM should be trained. Note as well that one could use an arbitrarily oriented ellipsoid, but compared

to eq. 1.19, it is also more difficult to define, since it needs the accurate estimation of 9 parameters.

For the sake of completeness, we note that the domain defined by eq. (1.19) becomes an interval if we

work with grayscale images, and a two dimensional ellipse in the rg space.

Fig. 1.10 shows the two dimensional scatter plots about the occurring foreground and shadow ψ values.

We can observe here that the components of vector ψ are strongly correlated in the RGB space (and also

in C1C2C3), and the previously defined ellipse cannot present a narrow boundary. In the HSV space, the

shadowed values are not within a convex hull, even if we considered that the hue component is actually

periodical (hue = k ∗ 2π means the same color for each k = 0, 1, . . .). Based on the above facts, the CIE

L*u*v* space seems to be a good choice. In the following, we support this statement by numerical results.

Evaluation of the Deterministic Model

The evaluations were done through manually generated ground truth sequences regarding five of the pre-

viously introduced test videos: namely the ‘Laboratory’, ‘Highway’, ‘Entrance am’, ‘Entrance noon’ and

‘Entrance pm’ sequences, with the same test parameters as before (see Table 1.3 in page 14 for details).

In this section, we show the tentative limits of the elliptical shadow domain defined by eq. (1.19). The

goal of these experiments is to compare the foreground-shadow discriminating ability of the different color

spaces purely based on the extracted per pixel ψ features. Therefore, we set here the parameters manually,

and do not take into consideration local connectivity or post processing.

In the upcoming experiments, we collect for each test sequence two sets of ψ values corresponding to

manually marked foreground and shadowed pixels, respectively. We investigate on the correct-classification-

rates of the pixels by using the ellipse model (eq. 1.19) with different color spaces. We henceforward use

the Recall (Rc), Precision (Pr ) measures, which were introduced in Section 1.3.6.

For some optimized ellipse parameters, we plot the corresponding Precision and Recall values regarding

the ‘Laboratory’ and ‘Entrance pm’ test sequences in Fig. 1.11. We can observe that the CIE L*a*b* and

L*u*v* spaces produce the best results in both cases (the corresponding Pr/Rc curves are the highest).

However, the relative performance of the other color systems is strongly different regarding the two videos.

In the indoor scene, the grayscale and RGB segmentations are less efficient than the other ones, while

regarding the ‘Entrance pm’ sequence, the performance of the chrominance spaces is prominently poor.

In the further tests, we will use the FM -measure (eq. 1.16). We summarized the FM rates in Fig.

1.12, regarding the test sequences. Also here, we can see that the CIE L*a*b* and L*u*v* spaces are
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Figure 1.11: Evaluation of the deterministic model. Recall-precision curves corresponding to different

parameter-settings on the ‘Laboratory’ and ‘Entrance pm’ sequences.

Figure 1.12: Evaluation of the deterministic model. FM coefficient (eq. 1.16) regarding different se-

quences

the most efficient. As for the other color systems, in sequences containing dark shadows (‘Entrance pm’,

‘Highway’), the ‘chrominance spaces’ produce poor results, while the gray, RGB and L*a*b*/L*u*v* re-

sults are similarly effective. If the shadow is brighter (‘Entrance am’, ‘Laboratory’), the performance of the

‘chrominance spaces’ becomes reasonable, but the ‘luminance spaces’ are relatively poor. In the latter case,

the color constancy of the chrominance channels seems to be more relevant than the luminance-darkening

domain. We have also observed that the hue coordinate in HSV is very sensitive to the illumination artifacts

(see also Fig. 1.9), thus the HSV space is more efficient in case of light-shadows. We give a summary about

the relationship between the darkness of shadow and the performance of color spaces in Table 1.7, where

‘darkness’ is characterized by the mean of the grayscale-ψ0 values of shadowed points.

1.4.4 Segmentation with Different Color Spaces

The results in the previous section confirm that using the elliptical shadow domain defined by eq. 1.19,

the CIE L*u*v* color space is the most efficient regarding the separation of shadowed and foreground

pixels. However, those experiments needed manually evaluated training data to set the parameters. In the
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Table 1.7: Indicating the two most successful and the two less efficient color spaces regarding each test

sequence, based on the experiments of Section 1.4.3 (For numerical evaluation see Fig. 1.11 and 1.12). To

compare the scenarios, we also denote †the mean darkening factor of shadows in grayscale.

Video Scene Dark† Worst Best

Laboratory indoor 0.73 gray, RGB Luv, Lab

Entrance am outdoor 0.50 gray, RGB Luv, Lab

Entrance pm outdoor 0.39 C1C2C3, rg Luv, Lab

Entrance noon outdoor 0.35 C1C2C3, rg Luv, Lab

Highway outdoor 0.23 C1C2C3, rg Luv, Lab

following, we suit the above model to the adaptive Bayesian model-framework of Section 1.3, and show that

the advantage of using the appropriate color space can be also measured directly in the applications.

First, we give to the shadow-classification step defined in Section 1.4.3, a probabilistic interpretation.

We rewrite eq. (1.19): we match the current ψ(s) value of pixel s to a probability density function f
(
ψ(s)

)
,

and decide its class by:

pixel s is shadowed ⇔ f
(
ψ(s)

)
≥ t. (1.20)

Based on the one dimensional marginal histograms in Fig. 1.9, we model f
(
ψ(s)

)
by a multi variate

Gaussian density function, similarly to the CIE L*u*v* case introduced in Section 1.3. To keep the six-

parameter shadow model, a diagonal covariance matrix will be used (i.e. the three element-mean value

vector, and the three diagonal components of the covariance matrix should be defined). In this way, we

model the variety of the ψ values observed in shadows, which variety is caused by camera noise, fine

alterations in illumination, and differences in albedo and geometry of the different surface points. However,

the changes in the different color components are considered to be independent exploiting that many color

spaces (like CIE L*u*v*, CIE L*a*b*, HSV) have approximately uncorrelated basis [33]. As for the RGB

space, this ‘diagonal’ approach is less accurate. However, we show later on that for most of the sequences

the performance of this oversimplified RGB-model is also reasonable.

Note that as shown in [2], the domains defined by eq. (1.19) and eq. (1.20) are equivalent, if f is a

Gaussian density function (η):

f
(
ψ(s)

)
= η(ψ(s), µψ,Σψ) = (1.21)

=
1

(2π)
3
2

√
det Σψ

exp
[
−1

2
(ψ(s)− µψ)TΣ

−1

ψ (ψ(s)− µψ)
]

(1.22)

with the following parameters:

µψ = [a0, a1, a2]T , Σψ = diag{b20, b21, b22}, t = (2π)−
3
2 (b0b1b2)−1e−

1
2 . (1.23)
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Figure 1.13: MRF segmentation results with different color models. Test sequences (up to down): row 1:

‘Laboratory’, row 2: ‘Highway’, row 3: ‘Entrance am’, rows 4: ‘Entrance pm’, row 5: ‘Entrance noon’.

In the following, we use the previously defined probability density functions in the MRF model in a

straightforward way: psh(s) = f
(
ψ(s)

)
. The flexibility of this MRF model comes from the fact that we

defined ψ(s) shadow descriptors for different color spaces differently in Section 1.4.2.

Test Results

Fig. 1.13 shows the MRF-segmentation results of two frames from each test sequence using five color

spaces: grayscale, C1C2C3, HSV, RGB and CIE L*u*v*. (Note that in the experiments, the results of

the CIE L*a*b* space have been very similar to the L*u*v* outputs, while the rg has worked similarly to

C1C2C3, thus we skip them in this comparison). We can observe that the CIE L*u*v* space outperforms

the other ones significantly, while we get the largest errors with C1C2C3, especially in the cases of sharp

shadows. We find a typical problem regarding the HSV and RGB spaces: foreground ‘glories’ may appear

around some dark shadowed parts due to the penumbra of cast shadow [29] and video compression. These

erroneous areas correspond to shadows, but they are lighter than the central areas, thus they get out of the

shadow domain in the feature space. On the other hand, the proposed probabilistic model removes these

artifacts with the other color spaces.
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Figure 1.14: Evaluation of the MRF model. F ∗ coefficient regarding different sequences

Hereinafter, we perform quantitative evaluations using the MRF model. In Section 1.4.3, we measured

purely the ability to discriminate foreground and shadowed pixels. Since the present model uses three classes

and the goal is accurate foreground detection, we should also consider the confusion rate between foreground

and background. However, similarly to Section 1.3.6 the crossover between shadow and background does

not count for errors (both of them are non-foreground areas).

We observe in Fig. 1.14 the clear superiority of the CIE L*u*v* space. However, the relative perfor-

mance of the color spaces does not show exactly the same tendencies as we have measured in Section 1.4.3.

The differences between Fig. 1.12 and 1.14 are caused by effects of the composite foreground model, MRF

neighborhood conditions and errors in parameter estimation, since the artifacts may appear differently in the

different sequences. Therefore, we consider the numerical results from Section 1.4.3 to be more relevant

to characterize the capabilities of the color spaces for shadow separation. However, the experiments of this

section confirm that appropriate color space selection is also crucial in the applications, and the CIE L*u*v*

space is preferred for this task.

1.5 Conclusion of the Chapter

This chapter has examined the color modeling problem of cast shadows, focusing on the video surveillance

application. We have introduced a novel accurate and adaptive model for shadow segmentation without

strong restrictions on a priori probabilities, image quality, objects’ shapes and speed. Thereafter we have

generalized the proposed model framework for different color spaces, and made a detailed comparison

among them. We have observed that the appropriate color space selection is an important issue of the clas-

sification, and the CIE L*u*v* space is the most efficient both in the color based clustering of the individual

pixels and in the case of Bayesian foreground-background-shadow segmentation. We validated our method

on various video shots, including well-known benchmark videos and real-life surveillance sequences, in-

door and outdoor shots, which contain both dark and light shadows. Experimental results have shown the

advantages of our statistical approach versus earlier methods.
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