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Abstract—In this paper we introduce a probabilistic ap-
proach of building extraction in remotely sensed images. To
cope with data heterogeneity we construct a flexible hierarchical
framework which can create various building appearance mod-
els from different elementary feature based modules. A global

optimization process attempts to find the optimal configuration
of buildings, considering simultaneously the observed data,
prior knowledge, and interactions between the neighboring
building parts. The proposed method is evaluated on various
aerial image sets containing more than 500 buildings, and the
results are matched against two state-of-the-art techniques.

Keywords-Building detection, Marked Point Process, Multi-
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I. INTRODUCTION

Detecting buildings in aerial and satellite images [5],

[6], [8] is a key issue in several remote sensing applica-

tions, among others in cartography, GIS data management

and updating, disaster recovery or illegal built-up region

detection. In lack of stereo based height information [6],

building identification becomes a hard monocular object

recognition task. Due to the quickly evolving spatial and

spectral resolution of the images, the large variety of camera

sensors, image quality, seasonal and weather circumstances,

and the richness of the different building appearances it

is extremely challenging to develop a widely applicable

solution for the problem.

Most of the previous single view techniques are restricted

to specific image properties and scene contents. They expect

the fulfillment of various hypothesizes, such as buildings are

homogenous areas either in color or in texture [7], roofs

have unique colors which can distinguish them from the

background [8], or shadows of buildings are present and

can be extracted by color filtering [7], [8]. High contrast is

often necessary to obtain a clear edge map for contour based

detection [5], [8]. Other approaches assume that the building

types in a given image set can be efficiently characterized by

1The work of the first author was partially funded by an INRIA
postdoctoral fellowship. The authors would like to thank the test data
providers: Google Earth and András Görög from Budapest.

a couple of template buildings [4], [9], or one can apply sim-

plified 3-D building structures composed of planar surfaces

with parallel sides [5]. However combining the different

solutions or adapting them to altered circumstances is not

straightforward, although the recent remote sensing image

databases demand to jointly handle highly heterogenous

data. To ensure generality and robustness, besides extracting

different limited descriptors, feature integration and selec-

tion should be addressed at the same time. Therefore we

construct a method which can combine the features in a

flexible way based on availability, enabling adaptation to

various image sets.

In this paper we introduce a robust Marked Point process

(MP) [3] model for the building detection problem. In

Sec. II, we describe the probabilistic framework of our

approach, while Sec. III deals with feature modeling and

integration. Evaluation and discussion are given in Sec. IV:

the performance of the proposed model is compared to two

reference methods through real aerial images containing 567,

also manually validated, objects.

II. MARKED POINT PROCESS MODEL

The input of the proposed framework is a single aerial

or satellite image, which is modelled as a 2-D pixel lattice

S, and s ∈ S denotes a single pixel. D refers to the

global image data. We assume that the footprint of each

building can be approximated either as a rectangle or as

the union of many slightly overlapping rectangular building

segments, which we aim to extract by the following model.

A building segment candidate u is described by five param-

eters: cx and cy center coordinates, eL, el side lengths and

θ ∈ [−90◦,+90◦] orientation [see Fig. 1(a)].

Let be H the space of u objects. The Ω configuration

space is defined as [3]:

Ω =

∞
⋃

n=0

Ωn, Ωn =
{

{u1, . . . , un} ∈ Hn
}

Denote by ω an arbitrary object configuration {u1, . . . , un}
in Ω. We define a ∼ neighborhood relation in H: u ∼ v if

their rectangles intersect.
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(a) (b)

Figure 1. Demonstration of the (a) object rectangle parameters and (b)
calculation of the interaction potentials

We introduce a non-homogenous data-dependent Gibbs

distribution on the configuration space: PD(ω) = 1/Z ·
exp [−ΦD(ω)], where ΦD(ω) is called the configuration

energy and Z is a normalizing constant. The energy is

divided into data dependent (AD) and prior (I) parts:

ΦD(ω) =
∑

u∈ω

AD(u) + γ ·
∑

u,v∈ω
u∼v

I(u, v) (1)

where AD(u) ∈ [−1, 1], I (u, v) ∈ [0, 1] and γ is a weight-

ing factor between the two terms. The process searches for

the maximum likelihood configuration estimate obtained as

ωML = argminω∈Ω

[

ΦD(ω)
]

.

The AD(u) unary potential characterizes a proposed

building segment u = {cx, cy, eL, el, θ} depending on the

local image data, but independently of other objects of the

population. Rectangles with negative unary potentials are

called attractive objects. Considering (1) we can observe

that the optimal population should consist of attractive

objects exclusively: if AD(u) > 0, removing u from the

configuration results in a lower ΦD(ω) global energy.

On the other hand, we have to avoid configurations which

contain many objects in the same or strongly overlapping

positions. Therefore, the I(u, v) interaction potentials real-

ize a prior geometrical constraint: they penalize intersection

between different object rectangles [Fig. 1(b)]

I(u, v) =
#{s|s ∈ u, s ∈ v}

#{s|s ∈ u}+#{s|s ∈ v}

where s ∈ u means that pixel s is covered by the rectangle

of object u, and # refers to the cardinality of a set.

To fit the above framework to the building detection task,

we need to handle two key issues. Firstly, an appropriate

ΦD(ω) energy function should be constructed where the

ωML configuration efficiently estimates the true building

population. Based on (1) this is primarily related with the

definition of the AD(u) data term, thus we dedicate Sec. III

to this problem. Secondly, we need to choose an optimization

technique. We use the Multiple Birth and Death (MBD)

algorithm [3] for this purpose, which evolves the population

of buildings by alternating randomized object generation

(birth) and removal (death) steps in a simulated annealing

framework. Experimental evidences [3] show, that regarding

computational complexity, MBD outperforms MCMC-based

[6] relaxation algorithms, see details in [1], [2].

III. FLEXIBLE DATA TERM CONSTRUCTION

This section deals with the construction of the AD(u) data

term. The process consists of three parts: feature extraction,

energy calculation and feature integration. First, we define

different f : {u,D} → R features which evaluate a

building hypothesis for u in the image, so that ‘high’ f
values correspond to efficient building candidates. We must

consider here, that the decision based on a single f feature

can lead to a weak classification, since the buildings and

background may overlap in the f -domain. On the other hand,

f might be an incomplete descriptor i.e. it can be relevant

only for a group of buildings in the population.

In the test image of Fig. 3 three features are used. The

gradient descriptor exploits that below the edges of

a relevant rectangle candidate (Ru), we expect pixels (s)

with large intensity gradient vectors (∇gs) directing to the

local normal vector (ns) of the rectangle. Therefore the Λu

gradient descriptor is obtained as
∑

s∈∂̃Ru
∇gs· ns , where

‘·’ denotes scalar product and ∂̃Ru is the dilated edge mask

of rectangle Ru. The process is demonstrated in Fig. 3 (c)-

(d).

The shadow feature is based on a preliminary cast

shadow map (Fig. 3(e)). Exploiting that cast shadows are

located next to the Ru object rectangles, one should check

the presence of shadows in a parallelogram T sh
u defined by

Ru and the estimated sun direction vector, d [8] (Fig. 3(f)).

The χu feature is calculated as the minimum of the filling

ratio of shadowed pixels in T sh
u , and the filling ratio of non-

shadowed pixels in Ru.

Several roofs can be identified by their typical colors, for

example pixels of red tiles have high a* color component

values in CIE L*a*b* color space representation as shown in

Fig. 3(g). Assume that based on a roof color hypothesis

we can derive a binary mask image containing the estimated

roof pixels e.g. by thresholding (Fig. 3(h)). Thereafter,

we define the Cu color feature similarly to the shadow

descriptor, prescribing high ratio of roof pixels inside Ru

and low ratio in the region around Ru. Parameters can be

set using Ground Truth data and conventional Maximum

Likelihood estimation algorithms.

In the second step, we construct energy subterms for each

f ∈ {Λ, χ, C} feature, so that we attempt to satisfy ϕf (u) <
0 for real objects and ϕf (u) > 0 for false candidates. For

this purpose, we project the feature domain to [−1, 1] with

a monotonously decreasing function:

ϕf (u) =







(

1− f(u)

d
f
0

)

if f(u) < df0

exp
(

−
f(u)−d

f
0

Df

)

− 1 if f(u) ≥ df0

where df0 and Df are parameters. Consequently, object u is

attractive according to the ϕf (u) term iff f(u) > df0 , while

Df performs data-normalization.
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(a) Input (color image) (c) Gradient map (e) Shadow map (g) a* channel in CIE L*a*b* space

(b) Ground Truth (GT) (d) Gradient feature for GT objects (f) Shadow feature & GT overlaid (h) Color mask & GT overlaid

Figure 2. Feature maps of an image from the CÔTE D’AZUR test set.

Usually, the individual features are in themselves inap-

propriate to describe all buildings of the scene, which is

illustrated in Fig. 2. We have chosen here two sample

buildings segments u and v so that for u, the gradient

and shadow features are efficient, while the roof color is

irrelevant. The case of v is just the opposite. To handle

such data heterogeneity, the proposed framework enables

flexible feature integration. First, from the ϕf (.) primitive

terms introduced previously we construct different build-

ing prototypes. For each prototype we can prescribe the

fulfillment of one or many feature constraints whose ϕf -

subterms are connected with the max operator in the joint

energy term of the prototypes (logical AND in the negative

fitness domain). As well in a given image several building

prototypes can be detected simultaneously if the prototype-

energies are joined with the min (logical OR) operator. In

our example, we use two prototypes: the first prescribes

the edge and shadow constraints, the second one the roof

color alone (as it is can detect the red roofs in itself

accurately), thus the joint energy term is calculated as:

AD(u) = min
{

max {ϕΛ(u), ϕχ(u)}, ϕc(u)
}

.

IV. EXPERIMENTS

We evaluated our method on five aerial data sets obtained

from Google Earth and the City Council of Budapest. To

guarantee the heterogeneity of the test sets, we chose five

completely different regions: Côte d’Azur (French Riviera),

Normandy (France), Manchester (UK), Bodensee (Germany)

and Budapest (Hungary). We collected samples from densely

populated suburban areas, and built a manually annotated

database for the validation, containing 567 buildings.

For comparison, we have selected two methodologically

different reference techniques from the literature: an Edge

Verification (EV) method [8] and a Segment-Merge (SM)

model [7]. We have focused on validating the model struc-

tures instead of special input-dependent descriptors, thus we

have taken care of choosing references which use similar

image features (gradient, shadow, color) to our framework,

but they exploit them in different manners. More precisely,

in EV [8], the shadow and roof color information is only

used to coarsely detect the built-in areas, while the object

verification is purely based on matching the edges of the

building candidates to the Canny edge map extracted over

the estimated built-in regions. On the other hand, the SM

model iterates three steps: (i) building segment estimation

by seeded region growing, (ii) region merging and shadow

evidence verification, and (iii) filtering based on geometric

and photometric features.

For a sample image, Fig. 3 shows detection results with

the three methods (EV, SM and the proposed MP) and

the Ground Truth (GT) configuration. In the quantitative

evaluation we counted the number of missing and falsely

detected objects, results are provided in Table I (in the last

row, the error rates are given in percent of the population).

We continue with the discussion. Since both the EV

and SM reference methods follow the deterministic object

generation-acceptance scheme, buildings ignored in the hy-

pothesis generator phase appear automatically as missing

objects (see Fig 3 (a) and (b)). On the contrary, the intro-

duced MP model proposes buildings in a stochastic way,

thus objects can be generated with any position and ap-

pearance parameters. The acceptance depends on the robust

inverse object description in the energy model, while the

computational tractability is ensured by optimized relaxation

parameters [3] and a non-uniform birth process [2].

Another important observation is that the EV and SM
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(a) Edge verification (b) Segment-Merge (c) Proposed MP (d) Ground Truth (GT)

Figure 3. Evaluation (from the CÔTE D’AZUR set): comparing the MP model to the EV technique [8] and the SM method [7]. Circles denote completely
missing or false objects.

Table I
NUMERICAL COMPARISON OF THE EV [8], THE SM [7] AND THE

PROPOSED METHODS (MP).

Missing objects False objects

Data Set #B∗ EV SM MP EV SM MP

CÔTE D’AZUR 123 14 20 5 20 25 4

BODENSEE 80 11 18 7 13 15 6

BUDAPEST 41 11 9 2 5 1 4

NORMANDY 152 18 30 18 32 58 1

MANCHESTER 171 46 53 19 17 42 6

ALL (%∗∗) 567 18% 23% 9% 15% 25% 4%

∗#B denotes the number of buildings in the test sets
∗∗the missing/false objects are given in percent of #B

methods are sequential, thus the failure of each step may

cause a bottleneck for the whole process, e.g. due to a

weak edge map, missing shadows or overlapping color

domains. On the contrary, the proposed model uses different

prototype-hypothesizes parallely, thus they may enable to

detect the buildings even in cases of partially missing or

irrelevant feature information. Results in Fig. 3 and Table

I confirm the generality of the proposed model and its

superiority versus the EV and SM approaches.

V. CONCLUSION

We have proposed a Marked Point Process framework for

building extraction in a single remotely sensed image. The

method implements a flexible hierarchical feature integration

scheme to characterize different buildings based on different

feature-tuples. The evaluation confirmed the advantages of

the approach in various building datasets.
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