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Abstract

In this paper we introduce a novel surveillance system,
which uses 3D information extracted from multiple cameras
to detect, track and re-identify people. The detection method
is based on a 3D Marked Point Process model using two
pixel-level features extracted from multi-plane projections
of binary foreground masks, and uses a stochastic optimiza-
tion framework to estimate the position and the height of
each person. We apply a rule based Kalman-filter tracking
on the detection results to find the object-to-object corre-
spondence between consecutive time steps. Finally, a 3D
body model based long-term tracking module connects bro-
ken tracks and is also used to re-identify people.

1. Introduction
The detection, localization and tracking of pedestrians

are key issues in intelligent surveillance systems. The loca-
tion and the trajectory of people are used in many applica-
tions, such as pedestrian counting, behavior analysis, or ab-
normal activity detection. However, detection becomes dif-
ficult in outdoor environment, where the monitored scenes
are cluttered and the occlusion rate between the pedestri-
ans and other static or moving objects (e.g. waving trees,
traffic signs) is high. If the cameras are fixed and the ob-
ject size is still limited with respect to the entire image,
background subtraction is a widely used technique to sep-
arate moving objects. However, it faces two main prob-
lems in real conditions. First, since the local foreground
and background color domains may partially overlap, the
resulted masks of the moving objects may break apart. Sec-
ondly, due to occlusion, pixels corresponding to different
objects can be merged in the same connected blobs of the
motion masks. To handle the above challenges, multi-view
approaches [8, 10, 19] have recently been proposed. The
method in [8] uses a discretized grid on the ground plane,

and assumes that the people have approximately a uniform
height. [10] attempts to obtain a configuration which ex-
plains the observed data with a minimal number of occlu-
sions, expecting that people should not be occluded in all
views. Both methods [8, 10] attempt to match the com-
plete projections of the proposed object silhouettes to the
observed foreground masks, thus they strongly depend on
the quality of the background subtraction step. Similarly to
[19], we purely focus on the head and leg regions, when we
calculate simple pixel-level features from the projections of
foreground pixels on multiple parallel planes. However, we
distinguish two different gait phases and derive separate de-
scriptors to indicate pedestrians with closed and open legs,
respectively. Finally, the optimal configuration of people is
obtained by a stochastic birth-death process [5].

Frame-by-frame detections need to be temporally
matched by means of a discriminative tracking system. To
this aim we propose to use a two-stage approach, similarly
to the two levels approach by Mitzel et al [15]. The first
stage contains a rule based tracking system, which exploits
geometrical information only (3D position and trajectory).
Since occlusions and perspective problems are intrinsically
solved by the detection stage, the short-term tracking per-
formances are reliable enough [20], even if it leads to over-
segmentation (i.e., the complete trajectory of some people is
broken into two or more parts). However, the second stage
is used to perform a long-term tracking, both connecting
broken tracks and re-identifying people. Our proposal is
based on the simplified 3D body model proposed by Baltieri
et al [2], which embeds both geometrical and appearance
information.

People Re-identification is a fundamental task for the
analysis of long-term activities and behaviors by specific
persons or to connect interrupted tracking. Algorithms have
to be robust in challenging situations, like widely varying
camera viewpoints and orientations, varying poses, rapid
changes in clothes appearance, occlusions, and varying
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lighting conditions. The first studied re-identification prob-
lem was related to traffic analysis [13] for long-term vehi-
cle tracking, where objects are rigid, they move in well de-
fined paths and they have mostly uniform colors. People re-
identification however requires more elaborate methods in
order to cope with the widely varying degrees of freedom of
a person’s appearance. Various algorithms have been pro-
posed in the past: a first category of person re-identification
methods rely on biometric techniques, such as face [3] or
gait [12], but high resolution or PTZ cameras are required
in this case. Other approaches suppose easier operative con-
ditions, calibrated cameras and precise knowledge of the
geometry of the scene: the problem is then simplified by
adding spatial and/or temporal constraints and reasoning in
order to greatly reduce the candidate set [14]. Finally, most
re-identification methods purely rely on appearance-based
features; a comparison and evaluation of some of them is
reported in [7, 11]. For example, Farenzena et el [7] pro-
posed to divide the person appearance into five parts using
a rule based approach to detect head, torso and legs and im-
age symmetries to split torso and leg regions into left and
right ones. For each region, a set of color and texture fea-
tures are collected and used for the matching step. Recently,
Alahi et al [1] proposed a general framework for simultane-
ous tracking and re-detection by means of a grid cascade
of dense region descriptors. Various descriptors have been
evaluated, like SIFT, SURF and covariance matrices, and
the latter are shown to outperform the formers. Finally, [9]
proposed the concept of Panoramic Appearance Map to per-
form re-identification. This map is a compact signature of
the appearance information of a person extracted from mul-
tiple cameras, and can be though of as the projection of a
person appearance on the surface of a cylinder.

Our contribution is two-fold. First, we improved the lo-
calization accuracy of an existing people detection method
by using an additional pixel-level feature. According to our
tests, this additional step does not decrease the processing
performance significantly, while it improves the accuracy
by approx. 5%. Second, we applied a 3D human body
model based tracking module on the frame-by-frame detec-
tions to generate the trajectories of the walking pedestrians.

2. Proposed System
The synchronized streams of input frames are processed

by the people detection module, which integrates the infor-
mation of all the views in order to detect people and to es-
timate their frame by frame position on the ground plane.
A short-term tracking system is exploited to locally match
the extracted detections using geometrical information and
spatial constraints only. The short-term tracking parameters
and thresholds should be selected to generate reliable tra-
jectories to the detriment of their length. Finally, the long
term tracking match and merge together the trajectories that

Figure 1. Work-flow of the combined tracking system

are recognized to belong to the same person. The over-
all system can thus be decomposed into three main mod-
ules, namely People Detection, Short-term Tracking, and
Long-term Tracking, as depicted in Fig. 1. Section 2.1
discusses the 3D people detection method, including the
feature extraction and the stochastic optimization steps. The
short-term Kalman-tracker is presented in Section 2.2. Fi-
nally, the 3D body model based re-identification module is
presented in Section 2.3.

2.1. People Detection

The proposed method operates in a multi camera sys-
tem, and its inputs are the Tsai’s calibration parameters [18]
and the foreground masks extracted from each view using a
Mixture of Gaussians (MoG) background model [17]. The
key idea of this step is to simultaneously project the fore-
ground pixels on the ground plane, and on a parallel plane
shifted to the estimated height of the person, see Fig. 2.
If this estimation is correct, we can observe from a birds-
eye viewpoint that the point of osculation of the silhouette’s
ground and head plane projections is the ground position of
the person. Since the heights of the people are unknown,
we project the masks on multiple planes having distances
from the ground in the range of typical human sizes. Then
we fuse the projections from multiple views, and search for
the optimal configuration in an iterative process using the
above features and geometrical constraints.

2.1.1 Feature extraction

Our hypothesis on the location and height of a person is
based on the 2D image formation of a 3D object in the con-
ventional pinhole camera model. Let us consider in Fig. 2
the person with height h, and project the silhouette on the
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P0 ground plane (marked with blue) and on the Pz plane
with the height of the person (i.e. z = h, marked with red).
Also consider the v vertical axis of the person that is per-
pendicular to the P0 plane. We can observe that from this
axis, the silhouette points projected to the Pz|z=h plane lie
in the direction of the camera, while the silhouette print on
P0 is on the opposite side of v.

Based on the above observation we define a numerical
feature, which evaluates a given [p, h] object candidate. We
denote by ri0(p) a unity vector, which points from p to-
wards the ground position of the ith camera on the P0 plane,
and by riϕ(p) the rotation of ri0(p) with angle ϕ. We denote
the foreground points of the ith view projected to the P0 and
Ph planes by Ai0 (blue in Fig. 2) and Aih (red), respectively.

An object hypothesis [p, h] is relevant according to the
ith camera data if it jointly meets constraints about the head
and leg positions. On one hand, we should find projected
pixels on Ph (i.e. red prints) in the neighborhood of the
p point in the ri0(p) direction, but penalize such silhou-
ettes points in the opposite direction riπ(p). To measure
this property, we define circular sectors S+

h and S−h around
p directed into ri0(p) (red in Fig. 3) and riπ(p) respectively.
The sectors have fixed arc and radius, which are parame-
ters of the model. Then, following Fig. 3(a) and (d), we

Figure 2. The available camera calibration model is used for pro-
jecting the moving body silhouettes on the ground plane (blue) and
on parallel planes (red) having different heights, source: [19].
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Figure 3. Calculation of the f i
h(p), f

i
cl(p) and f i

ol(p) features in
two selected positions, corresponding to a person with closed (top)
and open (bottom) legs, respectively.

calculate the head feature as:

f ih(p) =
Area

(
Aih ∩ S

+
h (p)

)
−Area

(
Aih ∩ S

−
h (p)

)
Area

(
S+
h (p)

) .

On the other hand, we distinguish two different cases
by the definition of the leg position constraint. People with
closed legs can be handled in an analogous manner to the
head feature (see Fig. 3(b)). Here S+

cl and S−cl sectors cor-
respond to riπ(p) and ri0(p) directions respectively, and

f icl(p) =
Area

(
Ai0 ∩ S+

cl(p)
)
−Area

(
Ai0 ∩ S−cl (p)

)
Area

(
S+
cl(p)

) .

However, if the person is in the swing phase of the gait
cycle the previous descriptor proves to be inaccurate (see
Fig. 3(e)). Instead, we have developed an open leg fea-
ture (see Fig. 3(c) and 3(f)), whose attractive region, S+

ol,
consists of two, half sized circular sectors corresponding to
the directions ri±3π/5(p). The repulsive sector, S−ol is con-
structed in the same way as S−cl . Then, f iol(p) feature term is
derived similarly to f icl(p). Since we have observed that for
our purposes, the gait phase of each person can be fairly ap-
proximated either by the closed or by the open leg states, the
joint leg feature is obtained as f il (p) = max(f icl(p), f

i
ol(p)).

Finally, the head and leg features are truncated to take val-
ues in the [0, f̂ ] range, and are normalized by f̂ , which con-
trols the ratio required to produce the maximal output.

If the object defined by the [p, h] parameters is com-
pletely visible for the ith camera, both the f ih(p) and f il (p)
features should have high values. However, in the available
views, some of the legs or heads may be partially or com-
pletely occluded by other pedestrians or static scene objects,
which can strongly corrupt the feature values. Therefore
we construct a stronger feature by averaging the responses
of the N available cameras: f̄h(p) = 1/N ·

∑N
i=1 f

i
h(p),

f̄l(p) = 1/N ·
∑N
i=1 f

i
l (p). Finally, the joint data feature

f(p, h) is derived as f(p, h) =
√
f̄h(p) · f̄l(p).

2.1.2 3D Marked Point Process model

Since the goal of the proposed model is position and height
estimation of the people, we approximate a person by a
cylinder u in the 3D scene, with a fixed radius R. The
free parameters of the cylinder object are the center coor-
dinate p on P0 and the height h, i.e. u = (p, h) We aim
to extract a configuration of n cylinder objects in the scene:
ω = {u1, . . . , un} where n is also unknown.

We refer to the global input data with D in the model
which consists of the foreground masks and the calibration
matrices. We introduce an input-dependent energy function
on the configuration space: ΦD(ω), which assigns a nega-
tive likelihood value to each possible object population, and
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is divided into data dependent JD and prior I parts:

ΦD(ω) =
∑
u∈ω

JD(u) + γ ·
∑
u,v∈ω
u∼v

I(u, v) , (1)

where JD(u) ∈ [−1, 1], I (u, v) ∈ [0, 1] and γ is a weight-
ing factor between the two terms. The u ∼ v relation holds
if the two cylinders intersect. We derive the optimal object
population as the maximum likelihood configuration esti-
mate, i.e. ωML = argminω∈Ω

[
ΦD(ω)

]
.

In the next step, we should define the I prior and JD
data-based potential functions appropriately so that the ωML

configuration efficiently describes the group of people in the
scene. First of all, we have to avoid configurations which
contain many objects in the same or strongly overlapping
positions. Therefore, the I(u, v) interaction potentials real-
ize a prior geometrical constraint: they penalize intersection
between different object cylinders in the 3D model space:

I(u, v) = Area
(
u ∩ v

)
/Area

(
u ∪ v

)
. (2)

On the other hand, the JD(u) unary potential character-
izes a proposed object candidate segment u depending on
the image data, but independently of other objects. Cylin-
ders with negative unary potentials are called attractive ob-
jects. Based on (1) the optimal population should consist
of attractive objects exclusively: if JD(u) > 0, removing
u from the configuration results in a lower ΦD(ω) global
energy.

At this point we utilize the fu = f(p, h) feature in the
Marked Point Process (MPP) model. Let us remember,
that the fu fitness function evaluates a person-hypothesis
for u, so that ‘high’ fu values correspond to efficient ob-
ject candidates. For this reason, we project the feature do-
main to [−1, 1] with a monotonously decreasing Q(fu, d0)
function: JD(u) = Q(fu, d0) = 1 − fu/d0, if fu < d0;
exp

(
D−1 · (fu − d0)

)
− 1 otherwise. Here the d0 parame-

ter defines the minimal value required for acceptance. Con-
sequently, object u is attractive according to the JD(u) term
iff fu > d0, where the d0 parameter defines the minimal
value required for acceptance.

Since finding the optimal configuration according to (1)
is NP-hard, we need to use quicker optimization techniques.
We have chosen the Multiple Birth and Death (MBD) algo-
rithm [5] for this purpose, which evolves the population of
people-cylinders by alternating randomized object genera-
tion (birth) and removal (death) steps in a simulated anneal-
ing framework, see details in [5, 19].

2.2. Short-term People Tracking

The output of the detection stage is the set of detections
{utn};n ∈ [1 . . . N t] where N t is the number of detected
objects at time t. The short-term tracking system, instead,

aims at creating and keeping updated a set of moving ob-
jects {op}. The current and future state of each object is
estimated by means of a constant velocity Kalman filter. At
each frame, a distance matrix between current detections
and tracked objects is computed and, after a thresholding
step, passed to a zero/one integer programming formula-
tion for the assignments. The detection-to-object distance is
computed using the Euclidean distance in the 3D space of
the position and height of each object. The distance thresh-
old has been set to a very low value in order to avoid wrong
matches even if an over segmentation of the trajectories is
introduced and handled by the long-term tracking system.

Unmatched detections are used to create new tracks only
if they are localized in an entering area (to prune the wrong
multiple detections which can be found in the center of the
scene). Tracks without a matching detection, instead, are
kept alive and updated using the Kalman prediction only.
After a predefined time of inactivity or if their position exits
from the scene the objects are definitively deleted. Fig.4(a)
reports a qualitative example of the short-term tracking,
with people id, position and trajectory superimposed. The
red rectangle represents the region of interest (ROI).

2.3. Long-term People Tracking

Broken trajectories and people entering again the scene
after a while are managed by the long-term tracking al-
gorithm. To this aim we adopted the 3D body model by

(a)

(b)

Figure 4. (a) Estimated positions and heights are represented by a
line. The ids and trajectories are also superimposed using differ-
ent color. The red area corresponds to the ROI. (b) The 3D body
models are placed in the estimated ground positions, orientation is
estimated from the trajectory.
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Baltieri et al [2]. They proposed a monolithic 3D model,
similar to a mummy’s sarcophagus, which is simple enough
to be processed in real time, and which embeds color ap-
pearance features useful for the re-identification stage. A
new model instance Γp is created for each tracked person
op obtained as in Sect. 2.2. The model Γp = (hp, {vpi })
contains the person height hp (as extracted by the detection
module) and a vertex set {vpi }.

For the sake of completeness, let us report a brief de-
scription of the 3D body model. The model was obtained
by sampling M = 628 vertices from a human-like surface.
Appearance features together with some additional relia-
bility information are stored for each vertex. In addition
to the four items proposed by [2], we propose to include
a saliency measure spi ∈ [0 . . . 1] for each vertex. Thus,
the following features are considered (the superscript p has
been neglected for the sake of clarity): (i) the normal vector
~ni of the sampled surface computed at the vertex location;
this feature is static and pre-computed during the manual
model creation; (ii) the vertex mean color ci; (iii) a local
HSV histogram Hi which describes the color appearance
of the vertex neighbor; it is a normalized three dimensional
histogram with 8 bins for the hue channel and 4 bins for
the saturation and value channels respectively; (iv) the op-
tical reliability θi of the vertex, which takes into account
how well and precisely the vertex color and histogram have
been captured from the data; (v) the saliency of the vertex
si, which indicates its uniqueness with respect to the other
models; i.e., the saliency of a vertex will be high in corre-
spondence to a distinctive logo on the person clothing and
low on a common jeans patch.

2.3.1 Model creation

The 3D placement of the model in the real scene is obtained
from the short-term tracking using the camera calibration.
Assuming a vertical standing position of the people, the
challenging problem to solve is the horizontal orientation
of the person. To this aim, we consider that people move
forward and thus we exploit the trajectory on the ground
plane to give a first approximation. Given the last part of
the trajectory (e.g., the last K = 10 positions), we try to fit
a quadratic curve; if we obtain a good fit then the trajectory
is classified as stable in the analyzed window and the tan-
gent direction to the curve in the central point is assumed
as the orientation of the person. A finer angle adjustment is
provided by a generative approach using the already com-
puted part of the 3D model. In Fig. 5 a sample frame and
the corresponding model placement is provided: the sample
positions used for the curve fitting and orientation estima-
tion are highlighted in Fig. 5(b). An additional example is
also reported in Fig. 4(b).

Given the 3D placement and orientation of the model,

(a) (b)

Figure 5. 3D Model positioning and orienting: (a)the input frame;
(b) estimation of the orientation from the tangent to the trajectory.

each vertex is projected to the camera image plane and re-
lated to a frame pixel x(vi), y(vi). The vertex color ci is
initialized using the image pixel upon which the vertex is
projected, the histogram Hi is computed on a squared im-
age patch of sizeN centered around (x(vi), y(vi)). The size
N of the patch was selected taking into account the sam-
pling density of the 3D model surface and the mean size of
the blobs items. In our experiments, N = 10. Finally, the
optical reliability value is initialized as: θi = ~ni · ~p, where
~p is the normal to the image plane; the reliability gives an
higher weight to front-viewed vertices and their surround-
ing surface rather than to lateral viewed ones. The vertices
belonging to the occluded side of the person are also pro-
jected onto the image, but their reliability has a negative
value due to the opposite directions of ~ni and ~p. In such a
manner each vertex of the model is initialized even with a
single image: from a real view if available or using a sort
of symmetry-based hypothesis in absence of information.
However, negative values of the reliability allow to identify
vertices initialized with a forecast and not directly from the
data. The vertices having no match with the current image
(i.e., projected outside of the person silhouette) are itera-
tively initialized with a copy of the features of the nearest
initialized vertex. Their reliability values however, are set
to the minimum value (i.e., θi = 0). By means of the re-
liability value it is possible to distinguish among vertices
directly seen at least once (θ > 0), vertices initialized us-
ing a mirroring hypothesis (θ < 0) and vertices initialized
from its neighborhood (θ = 0). The described steps of the
initialization phase are depicted in Fig. 6.

If multiple cameras are available or if the short-term
tracking system provides more detections for the same ob-
ject, the 3D model could integrate all the available frames.
For each of them, after the alignment step, a new feature
vector is computed for each vertex successfully projected
inside the silhouette of the person. The previously stored
feature vector is then averaged or overwritten with the new
one, depending on the signs of the reliabilities. In particu-
lar, direct measures (positive values of θ) always overwrite
forecasts (negative values of θ), otherwise they are merged.
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2.3.2 Object matching using 3D models

Focusing on the set {Γp} of 3D models generated start-
ing from the short-term tracked objects, the re-identification
step aims at finding correspondences between pairs of mod-
els. First of all, a rule based selection criteria assures
that candidates pairs fulfills temporal and spatial constraints
(e.g., the individuals have been detected in the scene at the
same time). A compatibility ranking of the remaining pairs
is obtained by means of a model-to-model distance mea-
sure, which is based on the comparison of each correspond-
ing vertex:

d(vpi , R) = dHe
(
Hp

i ,H
R
i

)
=

=
√

1−
∑
h,s,v

√
Hp
i (h, s, v) ·HR

i (h, s, v)
(3)

The final score is the weighted average of the vertex-
wise distances, using the product of the two reliabilities as
weight:

DH(Γp,Γt) =

∑
i=1...M (wi · d(vpi , v

t
i))∑

i=1...M (wi)
(4)

d(vpi , v
t
i) = dHe

(
Hp

i ,H
t
i

)
, wi = f(θpi ) · f(θti) (5)

One of the main limitation of the proposed distances is
that each vertex has the same importance and the weights
wi are based only on optical properties of the projections or
the reliability of the data. Global features are useful to re-
duce the number of candidates (e.g., “I’m looking at people

(a) (b)

(c) (d) (e) (f)

Figure 6. Initialization of the 3D model of a person. (a) the generic
model, (b) projection of the model vertices to the image, (c,d,e,f)
a sample frame and the corresponding 3D models from the PETS
dataset

dressed with white shirt and blank pants”); the final deci-
sion, however, should be guided by original patterns and
details, as humans normally do to recognize people without
biometric information (e.g., a logo in a specific position of
the shirt). To this aim we have enriched the vertex feature
vector vpi with a saliency measure spi ∈ [0 . . . 1] as antic-
ipated. Given a set of body models, the saliency of each
vertex is related to its minimum distance from all the corre-
sponding vertices belonging to the other models:

spi ∝ min
t

(
dH(Hp

i ,H
t
i )
)

+ s0 (6)

where s0 is a fixed parameter to give a minimum saliency to
each vertex. The saliences spi are normalized such that they
sum up to 1. If s is low, the vertex appearance is similar to
the one of other models and it is not distinctive; otherwise,
the vertex has completely original properties and it could be
used as a specific identifier of the person. A saliency-based
distance can be formulated embedding the saliency in the
weights of Eq. 5:

w′i = f(θpi ) · f(θRi ) · spi (7)

and obtaining a corresponding saliency-based distance
DS(Γp,Γs). The final distance measure used for re-
identification is the product of the two distances DH ·DS :
the first term assures the correspondence of the color dis-
tribution while the second one of the specific details. Two
3D models are classified as belonging to the same person
(re-identification match) if they fulfill temporal and spatial
constraints (i.e., they are not simultaneously detected in two
different positions) and if their model distance is below a
fixed threshold λ̄.

3. Experiments
We used the publicly available PETS outdoor dataset

[16] and the EPFL Terrace indoor dataset [6] to evaluate the
proposed method. From the database we selected the City
center sequence with three overlapping camera views, and
manually selected a 12.2m × 14.9m ROI, which is visible
from all cameras. Background subtraction was performed
with the MoG [17] technique in the CIE L?u?v? color space,
parameters were initialized by Expectation-Maximization
[4]. During the evaluation of the proposed method the fol-
lowing parameters were fixed. In the feature extraction step
(Sec. 2.1.1) the sector radius was set to r = 25cm, the angle
range was constant 30◦, and the feature dynamic range pa-
rameter was f̂ = 0.8. As for the parameters of the MBD op-
timization process, we followed the guidelines provided in
[5], and used δ0 = 20000, β0 = 50, and geometric cooling
factors 1/0.96. A sample frame from View 001 is reported
in Fig. 4(a).

For visualizing the results, we backprojected the esti-
mated ground positions on the first camera view and draw a
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Figure 7. Example output of our people detector using the EPFL
Terrace dataset[6].

line between the ground plane and the estimated height (see
Fig. 8). We performed visual evaluation by counting the
missed detections (MD, the number of human bodies, that
were not detected), the false detections (FD, the number of
detections appear at positions, which are not occupied by
a person), and the multiple instances (MI, the number of
people localized multiple times in the same video frame at
different positions). The false localization results (MD, FD,
MI) are expressed in percent of the number of all objects,
we denote these ratios by MDR, FDR, and MIR. Finally, we
calculated the total error rate: TER = MDR + FDR + MIR.
We assumed that at least one view should correctly con-
tain the feet and another one the head of a person, which
implies a d0 = 1/3 object acceptance parameter. How-
ever, due to the noisy foreground images we evaluated the
d0 ∈ {1/3.0, 1/3.25, 1/3.5} set in our experiments, and
we selected the d0 parameter where the TER was minimal
(1/3.25 in case of [19], and 1/3.0 for the combined fea-
ture model). In both cases we obtained TER ≈ 10%. In
our second experiment we evaluated the first 1000 frames
of the EPFL Terrace dataset, and we obtained TER ≈ 7%
(Fig. 7 demonstrates an example output of the detector).

Next, we evaluated the localization accuracy of the pro-
posed method using the combination of fcl and fol, and
compared it to the [19] model which is purely based on the
fcl feature. We carefully counted the number of success-
ful detections where the localization accuracy of the two
methods was significantly different (see Fig. 8 for exam-
ples). According to our experiments in 80.40% of the cases
the combined feature model produced better results. Ex-
pressing in percent of the number of all people detections
counted in the 400 frames we obtained 5.04% improvement
over [19].

The short-term tracking system parameters were se-
lected in order to minimize errors at the expense of over-
segmentation of tracks. For this reason, the Kalman filter
based tracker does not introduce particular errors and the

Figure 8. Center lines of the detected cylinders projected to the
images. Top: results of [19] which uses the closed ground fea-
tures only. Bottom: results by using both ground features in the
proposed model.

provided detections are correctly handled and linked, with-
out any id-exchange or missing detection. Thus, the cor-
responding numerical results are not reported in this sec-
tion. However, since the same people enter and exit the
rectangular ROI and since almost all tracks have been over-
segmented by the short term tracker, the long-term track-
ing system is used to detect correspondences among tracks.
During tracking, a 3D model was created for each track.
Not all frames were used to initialize and update the model’s
appearance features: only those with the highest overlap
between the 3D model backprojection and the foreground
were automatically chosen. Then saliency measures were
computed between all the model created so far and re-
identification was performed. The long term tracking sys-
tem was able to correctly link most of the tracks, obtaining
precision and recall values of 72.73% and 88.8% respec-
tively.

4. Conclusions
In this paper we presented a novel system for visual

surveillance applications. The main novelty of our approach
is that we use 3D information to detect, track and re-identify
pedestrians. Moreover, we improved the localization accu-
racy of a state-of-art method by using an additional feature.
The proposed method has been tested on a public dataset,
and according to our experiments it achieves accurate re-
sults in cluttered outdoor environment.
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