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Abstract—This paper introduces a new LQ optimal, infinite
horizon output tracking solution. It publishes results from
problem formulation to real flight tests. After a short literature
review, it rigorously derives the problem solution and states all
of the properties of this new control method. Then it introduces
the lateral-directional aircraft model on which the algorithm was
tuned and tested. The LQ optimal algorithm was compared by
a baseline PID control solution in several simulations and real
flight tests. Finally, the pros and cons are summarized and the
future direction of development is mentioned.

I. INTRODUCTION

LQ optimal state and output tracking control is an actively

researched field since the 1960s. Several exact or approximate

solutions were derived using different approaches. The existing

methods can be classified in two main groups, such as a

priori given reference signals over the known future horizon

and solutions using only instantaneous and past reference

values. The authors are interested in the latter techniques

which provide real time applicability.

LQ Servo (integral) control in [1] requires the imple-

mentation of additional integrators which increases system

dimension. These new states are related to the output error

terms.

An alternate technique in [2] deals with continuous time

(CT) output tracking, considering linear time varying (LTV)

finite horizon and linear time invariant (LTI) large horizon

solutions. The finite horizon solution is rigorously derived and

contains state feedback with an extra forcing function. Both

the LTV and the LTI optimal solutions have to be calculated

backward in time, so these approaches need the reference

signal in advance. Nevertheless, the large horizon solution

is only an approximation, it does not consider infinite time.

The solution assumes to have a constant reference signal. A

discrete time representation is derived for the same problems

in [3] and [4].

The large horizon technique proposed in [2] and [3] is

further improved in [5] and [6].

In [5], the CT infinite horizon problem for constant refer-

ence tracking has been elaborated but asymptotical tracking

can not be guaranteed with.

In [6], the authors derive a system of algebraic equations

based on the initial state of the forcing function (see also [2]).

The backward recursion is avoided, but the structure of the

reference signal has to be fixed (assumed to be polynomial).

The author's previous works ([7] and [8]) deal with the

problem of deriving an infinite horizon LQ optimal output

tracking solution which guarantees zero steady state tracking

error for constant references. Unfortunately the derived solu-

tion is not optimal, because finite functional value can not be

guaranteed even for constant references.

In this paper the results of the previous papers are revised

and an optimal (for constant references) and sub-optimal (for

time-varying references) solution is derived in a unified frame-

work. The derived method is applied in the roll angle reference

tracking control of an aircraft. It was tested and compared by

a baseline PID solution ([9]) in Matlab simulations and real

flights.

The outline of the paper is as follows: Section II deals

with the problem formulation and solution. Section III intro-

duces the lateral dynamical model of the aircraft on which

the method was tuned and tested and describes the tuning

and testing procedure. Section IV publishes the simulation

and flight test results and finally, the paper ends with the

conclusion.

II. PROBLEM FORMULATION AND SOLUTION

This article deals with discrete time, linear, time invariant

systems in the following form:

xk+1 =Axk +Bũk +Wwk

yrk =Crxk

yk =Cxk + V vk

(1)

Where xk ∈ R
n, ũk ∈ R

m, yrk ∈ R
r, yk ∈ R

p, wk ∈
R

w, vk ∈ R
v are the system state, input, tracking output,

measured output, stochastic disturbance and measurement

noise respectively and the matrices A,B,Cr, C,W, V have

appropriate dimensions. It is assumed that the pair (A,B) is

stabilizable and the pair (C,A) is observable. Such system

model can well describe the motion of an aircraft around a

trim point subject to stochastic wind disturbances for example.

The goal is to track constant or time-varying references with

the tracking output. It is assumed that the noise effects are

handled by the state estimator. The derived solution is a multi

step algorithm as follows:
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1) Design a stabilizing state feedback controller for the

pair (A,B) if A is unstable (either with pole placement

or LQ optimal design) in the form: ũk = −Kx1xk +uk

2) Determine the solution of the steady state constant

reference tracking problem considering the stabilized

system with φ = A−BKx1

x∞ = φx∞ +Bu∞

y∞ = Crx∞ = r∞

Cr (I − φ)
−1

B
︸ ︷︷ ︸

F

u∞ = r∞

u∞ = pinv(F )r∞

(2)

3) Construct an LQ sub-optimal tracking controller for time

varying references, centering the original system with

the setady state and applying linear extrapolation. The

result will be LQ optimal for constant references. The

centered state equations:

xk+1 − x∞ = φ (xk − x∞) +B (uk − u∞)

∆xk+1 = φ∆xk +B∆uk

∆yk = Cr∆xk

∆rk = rk − r∞

(3)

The functional to be minimised:

J (∆x,∆x̃,∆u) =

=
1

2

∞∑

k=0

[(∆xk −∆x̃k)
T
Q (∆xk −∆x̃k)+

+∆uT
kR∆uk]

where :

∆x̃k = CT
r

(
CrC

T
r

)−1
∆rk = H∆rk

C = I − CT
r

(
CrC

T
r

)−1
Cr

Q = C
T
Q1C + CT

r Q2Cr

(4)

Here, Q2 weights the tracking error, while Q1 weights

the states not included in the tracking output.

4) Sum up all the control input components from steps 1-3.

The solution in the 3rd step was derived using Lagrange mul-

tiplier method. The costate variable resulted as (parameterized

by P∞, S1 and S2):

λk+1 = P∞

[
I +BR−1BTP∞

]−1
φ∆xk−

−
[
I + P∞BR−1BT

]−1
S1∆rk+1+

+
[
I + P∞BR−1BT

]−1
S2∆rk+2

(5)

from which the following system of equations results consid-

ering the condition for optimality: λk = Q∆xk −QH∆rk +

φTλk+1 and introducing M2 =
[
I + P∞BR−1BT

]−1
:

P∞∆xk =

= Q∆xk + φTP∞

[
I +BR−1BTP∞

]−1
φ∆xk

∀∆xk ⇒ DARE

− S1∆rk = −QH∆rk

S2∆rk+1 = −φTM2S1∆rk+1

0 = φTM2S2∆rk+2

(6)

Here, the first equation is the well known steady state Discrete

Algebraic Riccati Equation (DARE) which means that it is

satisfied in all time steps if P∞ is calculated accordingly.

The last three equations are automatically satisfied in case

of constant references (∆rk = 0 ∀k). However, for time-

varying references they can not be satisfied only by using

linear extrapolation of the reference signal. By using linear

extrapolation, a different set of equations results:

∆rk+2 = 2∆rk+1 −∆rk

− S1∆rk = −QH∆rk − φTM2S2∆rk

S2∆rk+1 = −φTM2S1∆rk+1 + 2φTM2S2∆rk+1

(7)

(7) is a system of equations for S1 and S2 which has a closed

form solution:

[
I −φTM2

φTM2 I − 2φTM2

] [
S1

S2

]

=

[
QH
0

]

⇒

[
S1

S2

]

=

=






I − φTM2

((
I − φTM2

)2
)−1

φTM2 (. . .)

−
((

I − φTM2

)2
)−1

φTM2 (. . .)






[
QH
0

]

(8)

The resulting control input consists of a state feedback and a

reference feedforward part.

∆uk = −Kx2∆xk +KS1
∆rk+1 +KS2

∆rk where

Kx2 = −R−1BTP∞

[
I +BR−1BTP∞

]−1
φ

KS2
= R−1BTM2S2 KS1

= R−1BTM2S1 − 2KS2

(9)

From step 4. the resulting control input is the following

(considering the estimated state x̂k instead of the real xk, and

substituting rk+1 in place of r∞):

ũk = −Kxx̂k +
(
KS1

+Kr∞

)
rk+1 +KS2

rk

where : Kx = Kx1 +Kx2 Kr∞ =

= KS2
−KS1

+
(

Kx2 (I − φ)
−1

B + I
)

pinv(F )

(10)

The properties of this new control solution has been derived

and proven (the proofs are omitted due to the limited space) :

1) It satisfies the separation principle both for constant and

time-varying references.

2) It does not require anti-windup compensation because

of memoryless control.

3) It guarantees asymptotic stability, zero steady-state

tracking error, finite LQ functional value (on infinite

horizon!) and so, LQ optimality for constant references.
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4) It is LQ sub-optimal, BIBO and l1/l2 stable for time-

varying references.

5) It guarantees finite tracking error in all time steps for

ramp type references.

After deriving the control solution its tuning and testing was

done using the lateral dynamical model of a small UAV (see

[9]).

III. AIRCRAFT LATERAL DYNAMICAL MODEL

This section first describes the used simulation model of the

aircraft, then introduces the model used in control design and

explains the steps of tuning and testing.

A. The aircraft simulation model

The lateral-directional aircraft model used in the article was

derived from the model developed in [9]. Besides the linear

aircraft dynamics, the model contains actuator dynamics and

time delay (see Figure 1). u, u0, u1 are the input vectors

including δa aileron and δr rudder deflections. x is the state

vector including p rollrate, r yaw-rate and φ roll angle. The

tracking output yr will be defined later.

delay- Gact Gac
- - -

u0(t) u1(t) u(t) y(t)

x(t)

Fig. 1. The simulation model block diagram

The CT linear dynamic equation of the system (Gac) is:





ṗ
ṙ

φ̇





︸︷︷︸

ẋ

=





Lp Lr 0
Np Nr 0
1 0 0





︸ ︷︷ ︸

A





p
r
φ





︸︷︷︸

x

+





Lδa Lδr

Nδa Nδr

0 0





︸ ︷︷ ︸

B

[
δa
δr

]

︸︷︷︸

u

(11)

The coefficients (aircraft stability and control derivatives) in

A and B were obtained in [9] using system identification

techniques. Three different model parameter sets resulted from

three flight measurements. The parameters are summarized in

Table I.

TABLE I
AIRCRAFT PARAMETERS

Param. Lp Lr Np Nr Lδa Lδr Nδa Nδr

MOD1 -12 12.7 0.294 -8.48 58.1 13.6 -6.58 -17.5

MOD2 -12.8 14.4 -0.448 -6.08 61.4 12.4 -3.67 -15

MOD3 -11.1 8.62 0.687 -4.62 43.3 8.99 -4.76 -11.9

The considered actuator dynamics is (derived together with

system identification):

Gact =
631.6

s2 + 35.2s+ 631.6

The time delay in the controlled aircraft system is approx-

imately 0.08s published in [9] and verified by the authors

in hardware in the loop (HIL) simulation. But tuning the

controller for this delay gave unsatisfactory results in real

flight tests so, the real delay should be larger. Examination

of real flight data shown that the delay can be about 0.2s so,

this value was used finally. In the simulation model this was

implemented as an integer delay.

B. The model used in control design

In the control design, a simplified model was used neglect-

ing actuator dynamics and using the Padé approximation of

delay (0.2s) (see Figure 2). An additional washout filter was

inserted to select the high frequency component of yawrate.

delay-
u0(t) Gac

- -
u(t) y(t)

x(t)
- Gfilt

-
r

Fig. 2. The controlled model block diagram

For the Padé approximation of delay both first and second

order functions were tested. The step response of the second

order one is better, because it does not start from negative

value so, finally it was selected (see Figure 3):

Gdelay =
0.004s2 − 0.1s+ 1

0.004s2 + 0.1s+ 1

ẋd = Adx
d +Bdu

u = Cdx
d +Ddu

(12)
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Fig. 3. Padé step responses

The applied washout filter was Gfilt = s
s+15

(from [9]). Its

equivalent state space representation is:

ẋF = AFx
F +BF r, r = CFx

F +DF r (13)

Here xF is filter state, while r is the filtered yaw-rate. The

augmented CT controlled system can be constructed from (11),

(12) and (13) as follows:
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



ẋ
ẋd

ẋF



 =





A BCd 0
0 Ad 0

[
0 BF 0

]
0 AF









x
xd

xF



+

+





BDd

Bd

0



u

yr =

[
φ
r

]

=

[
0 0 1 0 0
0 DF 0 0 CF

]









p
r
φ
xd

xF









(14)

(14) shows that the tracking outputs are aircraft roll angle and

filtered yawrate.

C. Controller tuning and testing

The LQ optimal, infinite horizon output tracking controller

derived in Section II was tuned to track roll angle reference

commands and to hold the high frequency yawrate at zero on

the system model (14). At first, the discrete time equivalent

of the model was calculated for all three parameter sets (see

Table I). Second, an averaged model was constructed from

model 1 and 2. The poles of this discrete time augmented

system model were:

p0 =
[
1 0.5488 0.6145 0.7412

]
&

[
0.5616± 0.2291i 0.5616± 0.2291i

] (15)

The prescribed stable and non-oscillating poles in step 1 were:

p =
[
0.98 0.5488 0.6145 0.7412

]
&

[
0.5616 0.5616 0.6 0.6

] (16)

The weighting matrices were:

Q1 =< 100, 0, 0, 0, 0, 0, 0, 0 >

Q2 =< 2000, 2 > R =< 5000, 50000 >

Here < > symbolizes a diagonal matrix. This shows that the

roll rate (Q1(1, 1)), the roll angle tracking error, the filtered

yawrate and the control inputs were weighted. The resulting

closed loop poles are:

pc =
[
0.1856 0.536 0.5874± 0.0158i 0.7279

]
&

[
0.7304± 0.2567i 0.8432

] (17)

After tuning, the algorithm was tested in different simula-

tions and in real flight. The test cases were the following:

1) Matlab test (ML) using the three different linear lateral

dynamical model with delay (0.2s) and actuator dynam-

ics, implementing the control in Simulink blocks. The

testing on three different models gives some proof of

robustness.

2) Software in the loop (SIL) simulation using the full

nonlinear aircraft model with delay (0.2s) and actuator

dynamics, implementing the control in C code.

3) Hardware in the loop (HIL) simulation using the full

nonlinear aircraft model with delay (0.2s) and actuator

dynamics, implementing the control on the microcon-

troller.

4) Real flight (RF) test using the same microcontroller as

in HIL.

The test results are summarized in the next section.

IV. TEST RESULTS

The ML test results are published in Figure 4. The LQ

optimal controller was tested on all three linear models, while

the baseline one only on the first model. The figure shows that

the LQ optimal tracking results are a bit better. The settling

times are summarized in Table II, some normalized signal 2-

norms (‖x‖
√∑n

i=1
x2
i /n) are summarized in Table III.
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Fig. 4. ML simulation results

TABLE II
ML SETTLING TIMES

Time PID LQ/1 LQ/2 LQ/3

Ts1 [s] 0.68 0.56 0.56 0.8

Ts2 [s] 0.68 0.68 0.92 0.96

TABLE III
ML SIGNAL 2-NORMS

Ctrl φerr p rerr δa δr
PID 0.2271 0.5279 0.0768 0.0593 0.002

LQ/1 0.1935 0.528 0.0404 0.0621 0.02

LQ/2 0.1929 0.5259 0.0379 0.0619 0.0199

LQ/3 0.2034 0.4488 0.0638 0.063 0.0206

Considering the settling times, the LQ controller is not

better, but considering the 2-norms it is better in roll angle

tracking (φerr) and in yaw damping (rerr). Of course with

the cost of larger control input energy especially for δr.

The SIL test results are published in Figures 5, 6. Here, the

azimuth angle of aircraft was also calculated and examined.

The motor reaction torque was considered in the nonlinear
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simulation and this caused problems with the LQ optimal

tracking. The figure shows that it tracked the roll angle

reference only with a constant deviation because lack of

integral term in the control, but with much smaller overshoots

then the baseline solution. The azimuth angles are also a bit

worse, but yaw damping is better.
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Fig. 5. SIL simulation results (roll angle and yawrate)
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Fig. 6. SIL simulation results (azimuth angle)

TABLE IV
SIL SIGNAL 2-NORMS

Ctrl φerr p rerr δa δr
PID 0.1672 0.5157 0.1295 0.1228 0.0031

LQ 0.2522 0.2404 0.0881 0.0685 0.0237

The settling times were 1.36s and 1.32s for the PID and they

can not be measured for the LQ because the roll angle is out

of the ±95% range. Signal 2-norms are summarized in Table

IV. The Table shows that the LQ method gives smaller roll

rate activity (smaller 2-norm) and less aileron control activity

also.

The HIL test results are published in Figures 7, 8. Normal-

ized signal 2-norms are summarized in Table V. The results

are similar to the SIL case. The yaw damping of LQ is better,

but with larger control energy. The constant deviation of roll

angle also occurs.
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Fig. 7. HIL simulation results (roll angle and yawrate)
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Fig. 8. HIL simulation results (azimuth angle)

TABLE V
HIL SIGNAL 2-NORMS

Ctrl φerr p rerr δa δr
PID 0.2741 0.4124 0.1672 0.0707 0.0042

LQ 0.372 0.5482 0.1658 0.0857 0.0337

The last case is real flight testing. Results are published in

Figures 9, 10. Normalized signal 2-norms are summarized in

Table VI.

TABLE VI
FLIGHT TEST SIGNAL 2-NORMS

Ctrl φerr p rerr δa δr
PID 0.283 0.9 0.2894 0.0926 0.0136

LQ 0.1775 0.9 0.2367 0.071 0.0213
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Fig. 9. Flight test results (roll angle and yawrate)
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Fig. 10. Flight test results (azimuth angle)

The results are very different from expected (from SIL and

HIL). Both yaw damping and roll angle tracking are much

better with LQ then with the baseline controller (see Figures

and signal 2-norms). The aileron control activities are smaller,

the rudder activities are larger considering the 2-norms.

V. CONCLUSION

This paper described a LQ optimal, infinite horizon output

tracking solution from problem formulation to real flight tests.

It started with literature review, then rigorously derived

the sub-optimal (for time-varying references) solution together

with the optimal one (for constant references). It stated all the

properties of the derived solution.

Then it introduced the lateral-directional aircraft model on

which the algorithm was tuned and tested (see [9]). The LQ

optimal algorithm was compared by a baseline PID control

(see again [9]). After publishing the steps of tuning and testing,

the test results were plotted.

At first, the Matlab simulation results for the three different

linear models were evaluated. Then SIL and HIL simulation

results were plotted. Finally, real flight test results were

summarized.

As a summary, it can be stated that the results are sat-

isfactory especially in real flight. The LQ control is a bit

better then the baseline controller. Its main advantage is the

simple structure, the smaller overshoots and that it does not

need anti-windup compensation. The largest problem of this

control method is the sensitivity to constant disturbances -

such as motor torque - which cause constant tracking errors.

This problem can be (and was) solved by deriving a minimax

tracking control solution (see [10]).
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