Reconstruction of matrices from submatrices
Authors:
Géza Kós, Péter Ligeti and Péter Sziklai
Journal:
Math. Comp. 78 (2009), 1733-1747
MSC (2000):
Primary 05B20; Secondary 11B83
Posted:
January 23, 2009
MathSciNet review:
2501072
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: For an arbitrary matrix of symbols, consider its submatrices of size , obtained by deleting rows and columns. Optionally, the deleted rows and columns can be selected symmetrically or independently. We consider the problem of whether these multisets determine matrix . Following the ideas of Krasikov and Roditty in the reconstruction of sequences from subsequences, we replace the multiset by the sum of submatrices. For we prove that the matrix is determined by the sum of the submatrices, both in the symmetric and in the nonsymmetric cases.
- 1.
Peter
Borwein, Tamás
Erdélyi, and Géza
Kós, Littlewood-type problems on [0,1], Proc. London
Math. Soc. (3) 79 (1999), no. 1, 22–46. MR 1687555
(2000c:11111), http://dx.doi.org/10.1112/S0024611599011831
- 2.
Miroslav
Dudík and Leonard
J. Schulman, Reconstruction from subsequences, J. Combin.
Theory Ser. A 103 (2003), no. 2, 337–348. MR 1996071
(2005a:05005), http://dx.doi.org/10.1016/S0097-3165(03)00103-1
- 3.
William
H. Foster and Ilia
Krasikov, Inequalities for real-root polynomials and entire
functions, Adv. in Appl. Math. 29 (2002), no. 1,
102–114. MR 1921546
(2004a:39055), http://dx.doi.org/10.1016/S0196-8858(02)00005-2
- 4.
L.
I. Kalašnik, The reconstruction of a word from
fragments, Numerical mathematics and computer technology, No. IV
(Russian), Akad. Nauk Ukrain. SSR Fiz.-Tehn-Inst. Nizkih Temperatur,
Kharkov, 1973, pp. 56–57, 137 (Russian). MR 0485573
(58 #5399)
- 5.
P. J. Kelly, On isometric transformations. Ph.D. Thesis, University of Wisconsin (1942).
- 6.
I.
Krasikov and Y.
Roditty, On a reconstruction problem for sequences, J. Combin.
Theory Ser. A 77 (1997), no. 2, 344–348. MR 1429086
(97m:05186), http://dx.doi.org/10.1006/jcta.1997.2732
- 7.
Bennet
Manvel and Paul
K. Stockmeyer, On reconstruction of matrices, Math. Mag.
44 (1971), 218–221. MR 0295937
(45 #4998)
- 8.
Adam
Marcus and Gábor
Tardos, Excluded permutation matrices and the Stanley-Wilf
conjecture, J. Combin. Theory Ser. A 107 (2004),
no. 1, 153–160. MR 2063960
(2005b:05009), http://dx.doi.org/10.1016/j.jcta.2004.04.002
- 9.
J. Pach, G. Tardos, Forbidden patterns and unit distances. SCG '05: Proc. 21st Annual Symposium on Computational Geometry, Pisa, Italy (2005), 1-9.
- 10.
Gábor
Tardos, On 0-1 matrices and small excluded submatrices, J.
Combin. Theory Ser. A 111 (2005), no. 2,
266–288. MR 2156213
(2006e:05176), http://dx.doi.org/10.1016/j.jcta.2004.11.015
- 11.
S.
M. Ulam, A collection of mathematical problems, Interscience
Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New
York-London, 1960. MR 0120127
(22 #10884)
-
- 1.
- P. Borwein, T. Erdélyi, G. Kós, Littlewood-type problems on
. Proc. London Math. Soc. 79, No. 1 (1999), 22-46. MR 1687555 (2000c:11111) - 2.
- M. Dudik, L. J. Schulman, Reconstruction from subsequences. J. Combin. Theory Ser. A 103, No. 2 (2003), 337-348. MR 1996071 (2005a:05005)
- 3.
- W. H. Foster, I. Krasikov, Inequalities for real-root polynomials and entire functions. Adv. Appl. Math. 29, No. 1 (2002), 102-114. MR 1921546 (2004a:39055)
- 4.
- L. O. Kalashnik, The reconstruction of a word from fragments. Numer. Math. and Comp. Tech., Akad. Nauk. Ukrain. SSR Inst. Mat. IV (1973), 56-57. MR 0485573 (58:5399)
- 5.
- P. J. Kelly, On isometric transformations. Ph.D. Thesis, University of Wisconsin (1942).
- 6.
- I. Krasikov, Y. Roditty, On a reconstruction problem for sequences. J. Combin. Theory Ser. A 77 No. 2 (1997), 344-348. MR 1429086 (97m:05186)
- 7.
- B. Manvel, P. K. Stockmeyer, On reconstruction of matrices. Mathematics Magazine 44, No. 4 (1971), 218-221. MR 0295937 (45:4998)
- 8.
- A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture. J. Combin. Theory Ser. A 107, No. 1 (2004), 153-160. MR 2063960 (2005b:05009)
- 9.
- J. Pach, G. Tardos, Forbidden patterns and unit distances. SCG '05: Proc. 21st Annual Symposium on Computational Geometry, Pisa, Italy (2005), 1-9.
- 10.
- G. Tardos, On 0-1 matrices and small excluded submatrices. J. Combin. Theory Ser. A 111, No. 2 (2005), 266-288. MR 2156213 (2006e:05176)
- 11.
- S. M. Ulam, A collection of mathematical problems. Interscience Tracts in Pure and Applied Mathematics 8 (1960). MR 0120127 (22:10884)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
05B20,
11B83
Retrieve articles in all journals
with MSC (2000):
05B20,
11B83
Additional Information
Géza Kós
Affiliation:
Mathematical Institute, Loránd Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary H-1117; Computer and Automation Research Institute, Kende u. 13-17, Budapest, Hungary H-1111
Email:
kosgeza@cs.elte.hu
Péter Ligeti
Affiliation:
Department of Computer Algebra and Department of Computer Science, Loránd Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary H-1117; Alfréd Rényi Institute of Mathematics, Reáltanoda u. 13-15, Budapest, Hungary H-1053
Email:
turul@cs.elte.hu
Péter Sziklai
Affiliation:
Mathematical Institute, Loránd Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary H-1117
Email:
sziklai@cs.elte.hu
DOI:
http://dx.doi.org/10.1090/S0025-5718-09-02210-8
PII:
S 0025-5718(09)02210-8
Received by editor(s):
February 15, 2008
Received by editor(s) in revised form:
August 8, 2008
Posted:
January 23, 2009
Additional Notes:
The first and the third authors were supported in part by the Bolyai Grant of the Hungarian Academy of Sciences.
The third author was partially supported by the OTKA T-67867 grant.
Article copyright:
© Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain after
28 years from publication.
|