| 
 Reconstruction of matrices from submatrices 
 
Authors:
Géza Kós, Péter Ligeti and Péter Sziklai
 
Journal:
Math. Comp. 78 (2009), 1733-1747
 
MSC (2000):
Primary 05B20; Secondary 11B83
 
Posted:
January 23, 2009
 
MathSciNet review:
2501072
 
Full-text PDF 
         Abstract |
References |
Similar Articles |
Additional Information
 
        
        Abstract: For an arbitrary matrix   of   symbols, consider its submatrices of size  , obtained by deleting   rows and   columns. Optionally, the deleted rows and columns can be selected symmetrically or independently. We consider the problem of whether these multisets determine matrix  .   Following the ideas of Krasikov and Roditty in the reconstruction of sequences from subsequences, we replace the multiset by the sum of submatrices. For    we prove that the matrix   is determined by the sum of the   submatrices, both in the symmetric and in the nonsymmetric cases.          
                      
        
        
        
 
- 1.
Peter
Borwein, Tamás
Erdélyi, and Géza
Kós, Littlewood-type problems on [0,1], Proc. London
Math. Soc. (3) 79 (1999), no. 1, 22–46. MR 1687555
(2000c:11111), http://dx.doi.org/10.1112/S0024611599011831
 
- 2.
Miroslav
Dudík and Leonard
J. Schulman, Reconstruction from subsequences, J. Combin.
Theory Ser. A 103 (2003), no. 2, 337–348. MR 1996071
(2005a:05005), http://dx.doi.org/10.1016/S0097-3165(03)00103-1
 
- 3.
William
H. Foster and Ilia
Krasikov, Inequalities for real-root polynomials and entire
functions, Adv. in Appl. Math. 29 (2002), no. 1,
102–114. MR 1921546
(2004a:39055), http://dx.doi.org/10.1016/S0196-8858(02)00005-2
 
- 4.
L.
I. Kalašnik, The reconstruction of a word from
fragments, Numerical mathematics and computer technology, No. IV
(Russian),  Akad. Nauk Ukrain. SSR Fiz.-Tehn-Inst. Nizkih Temperatur,
Kharkov, 1973, pp. 56–57, 137 (Russian). MR 0485573
(58 #5399)
 
- 5.
 P. J. Kelly, On isometric transformations. Ph.D. Thesis, University of Wisconsin (1942).  
 
- 6.
I.
Krasikov and Y.
Roditty, On a reconstruction problem for sequences, J. Combin.
Theory Ser. A 77 (1997), no. 2, 344–348. MR 1429086
(97m:05186), http://dx.doi.org/10.1006/jcta.1997.2732
 
- 7.
Bennet
Manvel and Paul
K. Stockmeyer, On reconstruction of matrices, Math. Mag.
44 (1971), 218–221. MR 0295937
(45 #4998)
 
- 8.
Adam
Marcus and Gábor
Tardos, Excluded permutation matrices and the Stanley-Wilf
conjecture, J. Combin. Theory Ser. A 107 (2004),
no. 1, 153–160. MR 2063960
(2005b:05009), http://dx.doi.org/10.1016/j.jcta.2004.04.002
 
- 9.
 J. Pach, G. Tardos, Forbidden patterns and unit distances. SCG '05: Proc. 21st Annual Symposium on Computational Geometry, Pisa, Italy (2005), 1-9.  
 
- 10.
Gábor
Tardos, On 0-1 matrices and small excluded submatrices, J.
Combin. Theory Ser. A 111 (2005), no. 2,
266–288. MR 2156213
(2006e:05176), http://dx.doi.org/10.1016/j.jcta.2004.11.015
 
- 11.
S.
M. Ulam, A collection of mathematical problems, Interscience
Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New
York-London, 1960. MR 0120127
(22 #10884)
 
 
        
         
        
        -  
   - 1.
 -  P. Borwein, T. Erdélyi, G. Kós, Littlewood-type problems on 
 . Proc. London Math. Soc. 79, No. 1 (1999), 22-46. MR 1687555 (2000c:11111)    - 2.
 -  M. Dudik, L. J. Schulman, Reconstruction from subsequences. J. Combin. Theory Ser. A 103, No. 2 (2003), 337-348. MR 1996071 (2005a:05005) 
   - 3.
 -  W. H. Foster, I. Krasikov, Inequalities for real-root polynomials and entire functions. Adv. Appl. Math. 29, No. 1 (2002), 102-114. MR 1921546 (2004a:39055) 
   - 4.
 -  L. O. Kalashnik, The reconstruction of a word from fragments. Numer. Math. and Comp. Tech., Akad. Nauk. Ukrain. SSR Inst. Mat. IV (1973), 56-57. MR 0485573 (58:5399) 
   - 5.
 -  P. J. Kelly, On isometric transformations. Ph.D. Thesis, University of Wisconsin (1942). 
   - 6.
 -  I. Krasikov, Y. Roditty, On a reconstruction problem for sequences. J. Combin. Theory Ser. A 77 No. 2 (1997), 344-348. MR 1429086 (97m:05186) 
   - 7.
 -  B. Manvel, P. K. Stockmeyer, On reconstruction of matrices. Mathematics Magazine 44, No. 4 (1971), 218-221. MR 0295937 (45:4998) 
   - 8.
 -  A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture. J. Combin. Theory Ser. A 107, No. 1 (2004), 153-160. MR 2063960 (2005b:05009) 
   - 9.
 -  J. Pach, G. Tardos, Forbidden patterns and unit distances. SCG '05: Proc. 21st Annual Symposium on Computational Geometry, Pisa, Italy (2005), 1-9. 
   - 10.
 -  G. Tardos, On 0-1 matrices and small excluded submatrices. J. Combin. Theory Ser. A 111, No. 2 (2005), 266-288. MR 2156213 (2006e:05176) 
   - 11.
 -  S. M. Ulam, A collection of mathematical problems. Interscience Tracts in Pure and Applied Mathematics 8 (1960). MR 0120127 (22:10884) 
            
              
    
    Similar Articles
     
    
    Retrieve articles in Mathematics of Computation
    with MSC (2000):
    05B20,
11B83
     Retrieve articles in all journals
    with MSC (2000):
    05B20,
11B83
 
 
Additional Information
        
  
        Géza Kós
 
Affiliation:
Mathematical Institute, Loránd Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary H-1117; Computer and Automation Research Institute, Kende u. 13-17, Budapest, Hungary H-1111
 
Email:
kosgeza@cs.elte.hu
        
  
        Péter Ligeti
 
Affiliation:
Department of Computer Algebra and Department of Computer Science, Loránd Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary H-1117; Alfréd Rényi Institute of Mathematics, Reáltanoda u. 13-15, Budapest, Hungary H-1053
 
Email:
turul@cs.elte.hu
        
  
        Péter Sziklai
 
Affiliation:
Mathematical Institute, Loránd Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary H-1117
 
Email:
sziklai@cs.elte.hu
 
 
DOI:
http://dx.doi.org/10.1090/S0025-5718-09-02210-8
 
PII:
S 0025-5718(09)02210-8
 
Received by editor(s):
February 15, 2008
 
Received by editor(s) in revised form:
August 8, 2008
 
Posted:
January 23, 2009
 
Additional Notes:
The first and the third authors were supported in part by the Bolyai Grant of the Hungarian Academy of Sciences. 
The third author was partially supported by the OTKA T-67867 grant.
 
Article copyright:
        © Copyright 2009        American Mathematical Society        
             The copyright for this article reverts to public domain after
            28 years from publication.
 
 |