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Change Detection in Optical Aerial Images by a
Multi-Layer Conditional Mixed Markov Model

Csaba Benedek and Tamás Szirányi, Senior Member, IEEE

Abstract— In this paper we propose a probabilistic model for
detecting relevant changes in registered aerial image pairs taken
with the time differences of several years and in different seasonal
conditions. The introduced approach, called the Conditional
Mixed Markov model (CXM), is a combination of a mixed
Markov model and a conditionally independent random field of
signals. The model integrates global intensity statistics with local
correlation and contrast features. A global energy optimization
process ensures simultaneously optimal local feature selection and
smooth, observation-consistent segmentation. Validation is given
on real aerial image sets provided by the Hungarian Institute of
Geodesy, Cartography and Remote Sensing and Google Earth.

Index Terms— Change detection, aerial images, mixed Markov
models

I. INTRODUCTION

AERIAL PHOTO repositories nowadays have a rich and
continuously augmenting content. Automatic evaluation of

these databases is an important field of research since manual
administration is time-consuming, cumbersome and needs uneco-
nomically many human resources. Change detection on photos
taken of the same area can be crucial for quick and up-to-
date content retrieval. Through the extraction of changes the
regions of interest in the images can be decreased drastically in
several cases, facilitating applications of e.g. urban development
analysis, disaster protection, agricultural monitoring, detection
of illegal garbage heaps or wood cuttings. Beside being used
as a general preliminary filter, the obtained change map can
also provide useful information about size, shape or quantity of
the changed areas, which could be applied directly by higher
level event detector and object analyser modules [1], [2]. While
numerous state-of-the art approaches in remote sensing deal with
multispectral [3]–[8] or SAR [9]–[12] imagery, the significance
of handling optical photos is also increasing [13], [14]. Here the
processing methods should consider that several optical image
collections include partially archive data, where the photos are
grayscale or contain only poor color information.

This paper focuses on change detection in optical aerial images
which were taken with several years time differences partially in
different seasons and in different lighting conditions. In this case,
simple techniques like thresholding the difference image [15],
[16, Sec. IV.] or background modeling [17] cannot be adopted
efficiently since the observed pixel levels even in the ‘unchanged’
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image regions may be significantly different. Moreover optical
image sensors provide limited information in contrast to [4]
where healthy vegetation has been identified by finding peaks
in the near infrared wavelength band, or to [10] which uses multi
temporal SAR imagery exploiting its insensitivity to atmospheric
conditions. We can only assume to have image repositories which
contain geometrically corrected and registered [18]–[20] grayscale
orthophotos.

The change detection algorithms in the literature follow either
the Post-Classification Comparison (PCC) or the direct approach.
PCC models [7], [13], [14], [21]–[23] segment the input images
with different land-cover classes, like arboreous lands, barren
lands and artificial structures [21]. Thus changes are obtained
indirectly here as regions with different classes in the two image
layers. On the other hand direct methods [3], [5], [6], [9]
derive a similarity-feature map from the input photos [e.g. a
difference image (DI)] and then they segment the feature map to
separate changed and unchanged areas. As for PCC approaches,
besides change detection they classify the observed differences
at the same time (e.g. a barren land turns into a built-up area);
and the quality of their results can be enhanced by interactive
segmentation of the images [22] or exploiting estimated class
transition probabilities [21]. However using PCC models we have
to fix the clusters a priori in the scenes, and we need to find
reliable feature models for each land-cover class with probably
various subclasses. In several applications, ‘intra-class’ transitions
- which are ignored by PCC methods - may also be worth for
the attention: e.g. inside an urban region, it could be necessary
to detect destroyed or re-built buildings, relocated roads. Based
on the above remarks, we introduce a direct method in this paper
which does not use any land-cover class models, and attempts to
detect changes which are statistically unusual based on low-level
features.

Another important point of view is distinguishing supervised
[7], [12], [21], [23], [24] and unsupervised techniques [5], [6],
[8], [9], [25], [26]. Using unsupervised approaches is necessary
in situations where manually labeled ground truth data cannot
be prepared. However many of these methods must use a priori
knowledge [27], outlier detection [28] or clustering [29] for
separation, which may be difficult if the feature statistics for
the different classes is multi-modal and strongly overlapping.
Although we can also find unsupervised techniques which do
not require any a priori assumptions [6], [8], using them the
differences due to atmospheric and light variations may result
in artifacts on optical photos [21]. On the other hand if training
data is available, it can provide significant additional information
for the classification process. Since the photo repositories focused
on in this work contain large batches of images from the same
year taken with the same quality, camera settings and similar
seasonal and illumination conditions, it can be admissible to
prepare ground truth for a minor part of the data. Considering
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these circumstances a supervised approach will be introduced
here.

The next issue deals with probabilistic feature modeling. In the
selected feature space, the different classes can be represented
in a parametric [5], [9], [12], [30], [31], semiparametric [6] or
nonparametric [3], [7], [21], [30], [32] manner. On one hand
nonparametric (e.g. neural networks, kernel density estimation)
or semiparametric models may approximate a general density
function. However problems of over-learning and incomplete
training data provide difficult challenges, which can only partially
be handled by model dimensionality reduction, like fixing the
number of hidden neurons in a multi-layer perceptron. In these
‘black box’ techniques, the responsibility of choosing appropriate
training and test data is highly increased, both in the supervised
and unsupervised cases.

On the other hand parametric models approximate the feature
statistics by particular probability density functions (pdf ), such
as Gaussian [5], generalized Gaussian [9] or bivariate gamma
distribution [12]. Here the chosen pdf may represent additional
a priori or experimental information about the feature-models,
number of classes, or type of the expected noise. We propose a
parametric approach here for the classes change and background
(i.e. unchanged region), where pdf selection is validated by
experiments.

Comparing the goals, several previous methods deal with purely
natural [4] or built-up [14] territories, or they are dedicated
to a specific task like detecting urban areas [13], [22], [33]
or destructions due to earthquakes [34]. The method in [14]
considers the task of change detection as a problem of training-
based object recognition, assuming that objects can be detected
efficiently by simple features like region entropy, edge points,
intensity mean etc. However the latter approach can only be
used if the changes can be interpreted at object levels, which
needs a precisely restricted environment. As Fig. 1, 10 and 12
show, several photos of our interest contain both built-in and
unpopulated regions, including forests, fields and agricultural
lands as well, presenting various types of differences.

Similar environmental conditions are expected by the PCA-
based model [5]. This method assumes that the ‘unimportant’
differences are caused by alteration of illumination (like direct and
diffuse light, transmittance of the atmosphere) and camera settings
(dark current and gain settings of sensors), which influence the
observed sensor values in a multiplicative or additive fashion.
Accordingly the pixel levels corresponding to the same surface
point at two different times are related by a global linear transform
which is estimated by an iterative procedure over the image. Other
examples for linear intensity transformation can be found in [15,
Sec. III.]. However these models do not take into consideration
that the scene may ‘regularly’ alter as well, primarily due to
the seasonal vegetation changes. Moreover in agricultural areas
which follow crop rotation, the shape and arrangement of the
neighboring tracks of a plough-land may be changed significantly.
We will show that the regularity of these changes can also be
measured in a statistical way, although they may cause significant
deviations from the estimated linear approach.

We continue with the formal approach of the problem. Change
detection can be considered as an image segmentation task with
change and background classes. Since the seminal work of
Geman and Geman [35] Markov Random Fields (MRFs) have
been used extensively for various segmentation problems: they

can simultaneously ensure the consistency of the class labels with
local pixel-level cluster descriptors, and spatial smoothness of the
label map through interaction between neighboring pixels. MRFs
have also been adopted for extracting changes in remote sensing
[5], [6]. As separating complex classes may be inaccurate by a
single feature, integration of multiple observations is an increasing
challenge. For this purpose, multi-layer Markovian approaches
have recently been established [16], [36], [37] showing often
significant advantages [37] versus multinomial feature density
modeling [38] or decision fusion [39] techniques. In multi-layer
models, the different observations are assigned to individual
layers. The segmentation of each layer is directly influenced by
its corresponding measurement and indirectly by features of the
other layers, which interact through inter-layer connections. In
this way, data-driven and label-based inferences can be encapsu-
lated in a consistent probabilistic framework providing a robust
segmentation approach.

Since context dependent class models can be hardly encoded
in conventional MRFs, different schemas have been proposed
recently to overcome this limitation. Triplet Markov fields [40]
contain an auxiliary latent process which can be used to describe
various subclasses of each class in different manners. On the other
hand, Mixed Markov models [41] extend MRFs by admitting
data-dependent links between the processing nodes, which enables
configurable structures in feature integration. Since the later prop-
erty proved to be crucial in our multiple feature based approach
we follow the Mixed Markovian schema. As a key contribution
of this paper, we exploit the dynamic connections in a multi-
layer framework. Here the different layer-regions are considered
or ignored upon local statistical estimation of the reliability of
their corresponding features.

In the paper, as an extension of our previous work [42], we
propose a robust multi-layer Conditional MiXed Markov model
(CXM) model to tackle the change detection problem in remote
sensing optical images. Changes are identified through comple-
mentary features: global intensity statistics and local correlation.
A contrast based selection process is responsible for choosing
locally the more reliable feature in the different image regions,
while a smooth change map is ensured using local connectivity
constraints.

The paper is organized into five parts. In Section II
we address feature selection, probabilistic description of the
change/background classes and principles of feature integration.
In Section III a novel mixed Markovian image segmentation
model is introduced for the change detection problem. Section IV
deals with experimental evaluation: we give a detailed description
of the test datasets and ground generation. Thereafter we explain
the manner of parameter estimation and we compare the proposed
model to four state-of-the-art approaches qualitatively and quan-
titatively. Finally concluding remarks are given in Section V.

II. IMAGE MODEL AND FEATURE EXTRACTION

In this section we focus on the issues of feature selection and
modeling. Let G1 and G2 be the two registered grayscale images
which we wish to compare. G1 and G2 have an identical pixel lat-
tice S. The gray values are denoted by g1(s) and g2(s) for a pixel
s ∈ S of G1 and G2, respectively. Our first task is to extract local
features at each s ∈ S which give us information for classifying
s as a changed (ch) or background (bg) i.e. unchanged surface
point. Taking a probabilistic approach, we consider the ch/bg
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Fig. 1. Feature selection: a) image 1 (G1), b) image 2 (G2), c) intensity based change detection (φg(.), changes are marked with white), d) correlation
based change detection (φc(.)) , e) local variance based segmentation, white if φν(s) = c, f) ground truth, g) change detection results obtained by per pixel
integration of φg(.), φc(.) and φν(.) maps

classes as random processes generating the features according to
different distributions. Validation of the upcoming class models
is experimental: we demonstrate the consecutive modeling steps
using a selected image pair shown in Fig. 1(a) and (b). Since
the proposed method is supervised, we assume that each test set
contains a few training images with ground truth. The photo pairs
included in the same test set are taken from nearby locations, and
within a time-layer the illumination conditions and the camera
properties/settings are similar. Note that detailed evaluation will
be given in Section IV.

A. Segmentation based on global intensity statistics

We start our investigations in the joint intensity domain of the
two images. Here, instead of prescribing a global linear transform
between g1(s) and g2(s) for the background areas [5], we give
a multi-modal description of the observed data. Let us consider
the 2-D histogram of the g(s) = [g1(s), g2(s)]

T vectors extracted
over the background regions of the training images [see Fig 2(a)
regarding the image pair of Fig. 1]. Thereafter we approximate
this histogram by a mixture of K Gaussian distributions, where
K is a parameter of the model. In this way, we measure which
intensity values occur often together in the corresponding images.
Thus the probability of the g(s) observation in the background is
calculated as:

P
`
g(s)

˛̨
bg
´

=

KX

i=1

κi · η
“
g(s), µi, Σi

”
, (1)

where η(.) denotes a two dimensional Gaussian density function
with µi mean vector and Σi covariance matrix, while the κi

terms are positive weighting factors (
PK

i=1 κi = 1). Fig 2(b)
shows the EM estimate [43] of the density using K = 5 mixture
components, however only two of them have significant weights.

While the background’s intensity model exploits the presence
of a few frequently co-occuring gray level pairs in the two
images (e.g. the mean color of plough lands or forests), the g(s)

histogram of the changed regions [see Fig 2(c)] has usually several
peaks covering a significant part of the 2-D intensity domain.
Moreover we have observed that inside the test sets the back-
ground histograms of the different image pairs are fairly similar,
meanwhile the change statistics shows large variety from one pair

TABLE I
BHATTACHARYYA DISTANCES BETWEEN THE EMPIRICAL ‘CHANGE’

(RESP. ‘BACKGROUND’) g STATISTICS OF THREE DIFFERENT IMAGE PAIRS

(P1, P2 AND P3) FROM THE SAME SET.

Pairs compared: P1-P2 P1-P3 P2-P3
Dist. of ch histograms: 0.1309 0.1751 0.0963
Dist. of bg histograms: 0.0404 0.0455 0.0321

to another one. This phenomenon is demonstrated in Table I:
first we measured the Bhattacharyya distances [4] between the
empirical change distributions of different image pairs from the
same set, thereafter a similar experiment was achieved regarding
the background as well. The results show that for each comparison
the distance of the change histograms is three-four times higher
than the distance measured in the background. Therefore we use
here a common simplification [15], [17]: expressing that any g(s)

value may occur in the changed areas with similar probabilities,
the ‘ch’ class is modeled by a uniform density [44] [Fig. 2(d)]:

P
`
g(s)

˛̨
ch
´

=

(
1

(b1−a1)·(b2−a2)
, if g(s) ∈ Γ

0 otherwise,
(2)

where g(s) ∈ Γ iff a1 ≤ g1(s) ≤ b1 and a2 ≤ g2(s) ≤ b2.
In summary, the g(s) feature-based model part for ch/bg

separation is described by the following parameters:

Θg = {κi, µi, Σi|i = 1 . . . K} ∪ {a1, b1, a2, b2} (3)

Next we demonstrate the limitations of using the above intensity
based approach. After supervised estimation of the Θg distribution
parameters, we derive the φg change map as the pixel by pixel
maximum likelihood (ML) estimate, where the label of s is

φg(s) = argmaxψ∈{ch,bg}P
`
g(s)

˛̨
ψ
´
. (4)

Fig. 1(c) shows φg projected to the original second image.
One can observe that the procedure erroneously marks several
unaltered regions as changes compared to the proposed ground
truth segmentation [Fig. 1(f)]. However the mistakes are mainly
limited to highly textured regions (e.g. areas of buildings and
roads) since the g(s) gray values occurring there are less frequent
in the global image statistics. Since these artifacts cannot be
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handled in the above approach, we introduce a second feature
in the following section.

B. Segmentation based on local correlation

Normalized cross correlation is an efficient similarity measure
between image parts, assuming the two regions are identical if and
only if the corresponding pixel values are related via an arbitrary
(but for the whole region constant) linear transform. Although we
have previously refused using a globally constant linear intensity
transform for the whole image, the linear dependency often holds
locally for small unchanged image parts.

Denote by Ns,z ⊂ S the rectangular neighborhood of s, with a
fixed window size z×z (used z = 17). Let λi(s) and νi(s) be the
empirical mean and variance values of the gray levels over the
Ns,z subimage of Gi, i ∈ {1, 2}. Derive c(s) as the normalized
cross correlation coefficient between the neighborhoods of s in
the two images:1

c(s) =

P
r∈Ns,z

`
g1(r)− λ1(s)

´ · `g2(r)− λ2(s)
´

z2
p

ν1(s) · ν2(s)
(5)

In Fig 3(a), we plot the histogram of the obtained c(s) values
over the changed respectively background regions of the training
images. Considering the asymmetry of the empirical distributions,
we have found that Beta density approximations [46] are appro-
priate for the classes [Fig 3(b)]:

P (c(s)|ch) = B
`
[c(s) + 1]/2, αch, βch

´
, (6)

where

B(x, α, β) =

(
Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1, if x ∈ (0, 1)

0 otherwise

Γ(α) =

Z ∞

0
tα−1e−tdt.

Note that scaling x = [c(s) + 1]/2 is necessary to transform the
correlation values into the [0, 1] interval where the Beta density
is defined.

Similarly regarding the background class:

P
`
c(s)

˛̨
bg
´

= B
`
[c(s) + 1]/2, αbg, βbg

´
, (7)

As expected, the c(s) features in the changed regions follow
approximately a zero-mean distribution, while the background
values lie within a higher domain of the [−1, 1] interval. Thus
the corresponding parameter-set is:

Θc = {αch, βch, αbg, βbg} (8)

Next we calculate the ML estimation of the segmentation based
on the c(.) descriptor:

φc(s) = argmaxψ∈{ch,bg}P
`
c(s)

˛̨
ψ
´
. (9)

As the segmentation result in Fig. 1(d) shows, this approach is
also weak in itself. However we should observe that g(s) and c(s)

are efficient complementary features. In low contrasted, homoge-
nous image regions, where the noisy c(s) may be irrelevant, the
decision based on g(s) seems to be fairly reliable. On the other
hand in textured areas one should choose c(s) instead of g(s).
In the following section, we formulate the contrast based feature
selection in a probabilistic manner.

1Using the integral image trick [45] the calculation of the whole correlation
map can be performed efficiently.

Fig. 2. a) g-histogram of background pixels b) Mixture of Gaussians
approximation of P (g(s)|bg) obtained by the EM algorithm [43] c) g-
histogram of the changed pixels d) Uniform density estimation [44] for
P (g(s)|ch)

Fig. 3. c histogram and Beta density approximation [46] of the P (c(s)|ch)
and P (c(s)|bg) probabilities. (a) and (b): initial estimation; (c) and (d):
optimized estimation

C. Contrast based feature selection

Previous observations suggest that considering local contrast,
we may estimate the reliability of the segmentation based on the
g(s) intensity respectively c(s) correlation features at each pixel s.
In this section, we give a statistical model for the feature selection.

We will measure the local contrast over image Gi by νi(s)

(i ∈ {1, 2}), i.e. the variance of the gray levels in the Ns,z

neighborhood of s (as defined in Section II-B). Let be ν(s) =

[ν1(s), ν2(s)]
T . We denote by T the manually generated ground

truth mask with t(s) ∈ {ch, bg} labels ∀s ∈ S, and δ is the
Kronecker-delta.

Next we examine quantitatively the correspondence between
the observed ν(s) value and the ML classification performance
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Fig. 4. Illustration of the 2 dimensional hg and hc histograms as function
of the corresponding ν1(s) and ν2(s) values

using the g(s) and c(s) features, respectively. We particionate
the domain of the occurring ν1(s) [similarly ν2(s)] values with
L equal bins: b1, . . . , bL (each bn is a line segment in R.) We
say that ν(s) ∈ bm,n if ν1(s) ∈ bm and ν2(s) ∈ bn (bm,n is
a rectangle in R2). Next we build the following ratio histogram
hg , which measures for each bm,n bin the ratio of the number of
correctly and erroneously classified pixels through φg(.), where
the corresponding ν(s) values lie in bm,n. With Sm,n = {s|s ∈
S, ν(s) ∈ bm,n}:

hg[m, n] =

P
s∈Sm,n

δ
`
t(s), φg(s)

´
P

s∈Sm,n

“
1− δ

`
t(s), φg(s)

´” (10)

hc can be defined similarly for the c(.) feature.
We illustrate the hg and hc 2-D ratio histograms in Fig. 4(a)

and 4(c). High peaks of hg (resp. hc) indicate domains of ν(s)

where the decision based on the g(.) [resp. c(.)] feature is reliable.
After normalization, the histograms can be considered as proba-
bility distributions which we approximate again with parametric
density functions. In this case, the two classes being modeled are
g and c, indicating the ν(s) domains where the g(s) respectively
c(s) features are more reliable regarding the ch/bg classification
of pixel s. In the experiments the two domains proved to be fairly
separable with 2-D Gaussian density approximations of the hg and
hc histograms as it is shown in Fig. 4(b) and 4(d) (see Fig. 4: the
histograms are unimodal and only slightly overlapping). Thus we
use the following distributions:

P
`
ν(s)

˛̨
hg
´

= η
“
ν(s), µg, Σg

”
(11)

P
`
ν(s)

˛̨
hc
´

= η
“
ν(s), µc, Σc

”
(12)

The parameter set assigned to the contrast feature is:

Θν = {µg, Σg, µc, Σc} (13)

Thereafter we can obtain the ML contrast map [Fig. 1(e)] as:

φν(s) = argmaxχ∈{g,c}P
`
ν(s)

˛̨
hχ
´
. (14)

The classes’ feature models: iterative algorithm for parameter
estimation and refinement

Notations: Θ
[k]
g , Θ

[k]
c and Θ

[k]
ν – parameter sets describing the intensity

g(s), correlation c(s) respectively contrast ν(s) features at the kth
iteration. φ

[k]
g , φ

[k]
c and φ

[k]
ν – label maps at the kth iteration.

Steps of the algorithm:
1) Initialization: using the labeled training data, determine Θ

[0]
g

and Θ
[0]
c as calculating the ML estimates of the P

`
g(s)

˛̨
ψ
´

resp. P
`
c(s)

˛̨
ψ
´

distributions for ψ ∈ {ch, bg}.
2) Let be k = 0.
3) Update the label maps corresponding to the intensity resp.

correlation features: calculate φ
[k]
g using (4) with Θ

[k]
g pa-

rameter set; similarly φ
[k]
c using (9) and Θ

[k]
c .

4) Update the contrast based g/c reliability-histogram: calcu-
late h

[k]
g according to (10) using φ

[k]
g ; similarly h

[k]
c based

on φ
[k]
c .

5) Update the contrast parameters: estimate Θ
[k]
ν using his-

tograms h
[k]
g and h

[k]
c .

6) Update the contrast based label map: calculate φ
[k]
ν using

(14) with Θ
[k]
ν parameter set.

7) Update the intensity and correlation parameters: determine
Θ

[k+1]
g through ML estimation, considering only the pixels

of the training images where φ
[k]
ν (s) = g. Estimate Θ

[k+1]
c

through training pixels with φ
[k]
ν (s) = c

8) If the Θg , Θc and Θν parameters converged, or k = kmax

→ STOP; otherwise → k := k + 1 and GOTO step 3.

Fig. 5. Iterative algorithm for estimating the Θg , Θc and Θν parameter
sets. Θg resp. Θc model the g(s) intensity resp. c(s) correlation features
generated by the change and background classes, meanwhile Θν describes the
ν(s) contrast observation, on condition that the intensity (hg) resp. correlation
(hc) factors are reliable (used kmax = 5)

For estimating the final change mask, φ∗, the following pixel-by-
pixel segmentation process can be taken:

φ∗(s) =


φg(s) if φν(s) = g

φc(s) if φν(s) = c
(15)

Moreover the above classification approach enables us to refine
the distribution parameters by using purely the ch/bg labeled
training data. Observe that in Sections II-A and II-B, the pa-
rameters in the Θg and Θc sets were estimated considering all
the pixels of the training images. For example, the background c-
histogram in Fig. 3(a) also encapsulates c(s) features extracted
from ‘low contrasted’ areas, where the correlation coefficient
proved to be unreliable and irrelevant regarding the final change
map. Thus according to (15), we only need to model the c(s)

statistics over the ‘high contrasted’, while g(s) distributions
over the ‘low contrasted’ image regions. Therefore we can re-
estimate the Θg parameters considering only the pixels of the
training images with φν(s) = g; and Θc for the training pixels
with φν(s) = c. Note that in this linear parameter estimation
schema, there is a mutual dependency between the parameter
sets Θν and Θg ∪ Θc. Thus the parameters can be refined by
an iterative algorithm detailed in Fig. 5. In our experiments,
the algorithm converged in 3-5 iterations and caused a notable
evolution especially regarding the Θc parameter set. Fig 3(b) and
(d) demonstrate the initial and final Gaussian density functions
from Θc.

We close this section with an experimental evaluation of the
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Fig. 6. Three different configurations, where A and B regular nodes may
directly interact in mixed Markov models. Empty circles mark address nodes,
continuous lines are edges, dotted arrows denote address pointers.

pixel-by-pixel segmentation schema of (15). In Fig. 1(f) and
1(g) images we can compare the proposed ground truth to the
φ∗-segmentation output. Although the feature integration signifi-
cantly enhances the results of the individual descriptors [see also
Fig. 1(c) and (d)], the combined segmentation in Fig. 1(g) is still
quite noisy. Particularly we expect in the segmented image smooth
and connected blobs representing the changed regions unlike in
Fig. 1(g). To overcome this artifact, neighborhood interaction
should be involved in the process besides the pixel level features.

As mentioned before, using MRFs for observation-consistent
and smooth image segmentation is well established. However the
previously introduced segmentation manner [see (15)] needs a
different approach from conventional single-layer MRF models
(like the Potts model [47]) for two reasons. First we should
integrate efficiently the results of different segmentations, which
will be solved by a multi-layer technique similarly to [16], [36].
Secondly, the ν(s) feature plays a particular role: it can locally
switch ON and OFF the g(s) respectively c(s) features into the
integration process. Since in MRFs the interactions between the
processing nodes must be static, we should use an extended
structure called the mixed Markov model [41], which will be
investigated in the next section.

III. A CONDITIONAL MIXED MARKOV IMAGE

SEGMENTATION MODEL

In this section, we introduce a robust segmentation model for
the addressed change detection problem. The proposed approach,
called the Conditional MiXed Markov Model (CXM), is a com-
bination of a mixed Markov model [41] and a conditionally
independent random field of signals. We start with a brief in-
troduction into mixed Markov models and afterwards we present
the proposed segmentation approach in detail.

A. Introduction into mixed Markov models

Mixed Markov models [41] extend the modeling capabilities
of Markov random fields: beside a priori static connections,
they enable using observation-dependent dynamic links between
the processing nodes. A mixed Markov model – similarly to a
conventional MRF – is defined over an undirected graph G =

(Q, E), where Q and E denote the sets of nodes and edges,
respectively. A label, i.e. a random variable ω(q), is assigned
to each node q ∈ Q as well, and the node labels over the graph
determine a global labeling:

ω = {ω(q)|q ∈ Q}
However in mixed Markov models two types of nodes are
discriminated: J contains regular nodes and A is the set of
address nodes (Q = J ∪ A, J ∩ A = ∅). Regular nodes j ∈ J

have the same roles as nodes in MRFs: in our application the
corresponding variable ω(j) will encode a segmentation label

getting values from the binary {ch, bg} label set. On the other
hand address nodes provide configurable links in the graph by
creating pointers to other (regular) nodes. Thus for a given address
node a ∈ A, the domain of its ‘label’ ω(a) is the set J ∪ {nil}.
In the case of ω(a) 6= nil, let us denote by ω̃(a) the label of the
regular node addressed by a:

ω̃(a) := ω(ω(a)). (16)

There is no restriction on the graph topology: edges can link
any two nodes [41]. The edges define the set of cliques of G,
which is denoted here by C.

In a given configuration, two regular nodes may interact
directly if they are connected by a static edge or by a chain of a
static edge and a dynamic address pointer (see Fig. 6). Particularly
with notation for each clique C ∈ C: ωC = {ω(q)|q ∈ C} and
ωA

C = {ω̃(a)
˛̨
a ∈ A ∩ C, ω(a) 6= nil} the a priori probability of a

given global labeling ω = {ω(q)|q ∈ Q} is given by:

P (ω) = α
Y

C∈C
exp

“
− VC

“
ωC , ωA

C

””
(17)

where VC is a C → R clique potential function, which has a
‘low’ value if the labels within the set ωC ∪ωA

C are semantically
consistent, while VC is ‘high’ otherwise. Scalar α = 1/

P
ω P (ω)

is a normalizing constant, which could be calculated over all
the possible global labelings. Note that a detailed analysis of
analytical and computational properties of mixed Markov models
can be found in [41], which confirms the efficiency of the
approach in probabilistic inference.

B. A mixed Markovian approach of the change detection problem

In the proposed method, we construct a mixed Markovian
probabilistic model on a graph G whose structure is shown in Fig.
7(c). In Section II, we segmented the images in three different
ways, and derived the final result through pixel by pixel label
operations using the three segmentations. Therefore we arrange
the nodes of G into four layers: Sg , Sc, Sν and S∗, where each
layer has the same size as the S image lattice. Sg , Sc and Sν are
called the feature layers, and S∗ is the combined segmentation
layer. We assign to each pixel s ∈ S a unique node in each layer:
e.g. sg is the node corresponding to pixel s on the layer Sg .
We denote sc ∈ Sc, sν ∈ Sν and s∗ ∈ S∗ similarly. However,
instead of segmenting the layers independently (as in Section
II), we obtain the result here by stochastic optimization of a
single energy function which encapsulates all constraints of the
model: spatial smoothness, optimal local feature selection and
observation-consistent classification.

First we introduce a labeling random process, which assigns a
label ω(q) to each q node of G. As usual in mixed models [41],
graph edges and address pointers express direct dependencies
between the corresponding node labels.

The Sg , Sc, and S∗ layers of the model contain regular nodes,
where the label denotes a possible ch/bg segmentation class:

∀s ∈ S, i ∈ {g, c, ∗} : ω(si) ∈ {ch, bg}
For each s, ω(sg) resp. ω(sc) corresponds to the segmentation
directly influenced by the g(s) resp. c(s) feature; while the labels
at the S∗ layer present the final change mask.

On the other hand the Sν layer is responsible for matching the
regions of the final change map S∗ to appropriately segmented
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(a) (b) (c) (d)

Fig. 7. Structure of the proposed model and overview of the segmentation process. (a) registered input photos and ground truth change mask for validation
(b) g(.), ν(.) and c(.) feature maps extracted from the input image pair. (c) Structure diagram of the CXM model. (note: the inter-layer connections are only
shown regarding three selected pixels) (d) Output label maps of the four layers after MMD optimization. The segmentation result is obtained as the labeling
of the S∗ layer.

Fig. 8. Demonstration of (I) intra- and (II.a,II.b) inter-layer connections
regarding nodes associated to pixel s. Continuous line is an edge of G, dotted
arrows denote the two possible a destinations of the address node sν . (in I:
i ∈ {g, c, ν, ∗})

regions either in the Sg or in the Sc layers. Hence Sν will be an
address layer, with node-pointer labels {ω(sν)|∀s ∈ S}.

One can find here semantic analogy between, for example,
the ω(sg) CXM label and the φg(s) label from Section II: both
labels mark the estimated class (change or background) of pixel
s based on the gray level feature. However we emphasize with
the different notations that using the Markovian concept, ω(sg)

depends not only on g(s), but also on other model constraints
defined over the entire G graph.

The next issue describes how the model encapsulates the
information extracted from the input images. We introduce a
f(.) operator which assigns to the nodes of the feature layers
Sg , Sc and Sν the corresponding local observations, so that
f(sg) = g(s), f(sc) = c(s) and f(sν) = ν(s), ∀s ∈ S. Denote
the global observation process by F = {f(q)|q ∈ O}, where
O = Sg ∪ Sc ∪ Sν .

Our proposed CXM segmentation model follows the Maximum
a Posteriori (MAP) approach [16], [35], [36]. The goal is here
to find the global labeling bω which maximizes the following
conditional probability:

bω = arg max
ω∈Ω

P (ω|F) = arg max
ω∈Ω

n
P (F|ω) · P (ω)

o
(18)

As for the P (F|ω) probability component of (18), we use
the common assumption [17] that the observed local features in
the different nodes are conditionally independent given a global
labeling. Thus P (F|ω) can be obtained by as a product of
singleton probability terms assigned to the nodes of the feature
layers:

P (F|ω) =
Y

q∈O
P
`
f(q)|ω(q)

´
(19)

In the Sg and Sc layers, we calculate the node by node
P
`
f(q)|ω(q)

´
singletons using the same probability density func-

tions which have already been defined by (1), (2), (6) and (7) in
Section II. Thus ∀s ∈ S and ψ ∈ {ch, bg}:

P
`
f(sg)|ω(sg) = ψ

´
= P

`
g(s)|ψ´

P
`
f(sc)|ω(sc) = ψ

´
= P

`
c(s)|ψ´

Singletons of Sν will be defined later.
On the other hand using CXM the P (ω) prior probability

derives from a mixed Markov model, thus it follows (17). Ac-
cordingly to calculate P (ω), we have to define appropriately the
edges (or cliques) of G and the corresponding VC clique potential
functions. To fulfill the desired constraints, we use in the model
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Iterative label optimization in CXM using the Modified Metropolis algorithm (MMD)
1. Pick up randomly an initial global labeling (i.e. configuration) ω := ω[0].

Set the iteration counter k := 0 and the temperature T := T0.
2. Create a list from the nodes in the four-layer model: assign to each node a unique ordinal number between 1 and |Q|, applying a

sequential scanning strategy for the consecutive layers. Let denote the index of the actual node by j, and initialize it as j := 1.
3. Choose the jth node from the node-list, and denote it by q. Let be i ∈ {g, c, ν, ∗} the index of the layer which contains q, and

s ∈ S the corresponding image pixel for which q = si.
4. Denote the actual label of q in ω by ω(q). Considering that binary label sets are used in each layer, flip the label of q and denote

it by π(q):
• Examples: if q ∈ Sg and ω(q) = ch then π(q) := bg; if q = sν ∈ Sν and ω(q) = sg then π(q) := sc

Let πq be the global configuration which differs from ω only in the label of q.
5. Let us calculate the difference of the field energies corresponding to πq and ω configurations: with notation U(ω) = − log P (ω|F)

[see (22)], compute ∆U = U(πq)− U(ω) as follows

∆U := ∆U1 + ∆U2 + ∆U3, where

(a) ∆U1 is the observation-dependent term, which can be calculated using (1), (2), (6), (7), (11) and (12) from Section II:

∆U1 :=

8
><
>:

− log P (g(s)|π(sg)) + log P (g(s)|ω(sg)) if i = d,
− log P (c(s)|π(sc)) + log P (c(s)|ω(sc)) if i = c,

− log P
`
ν(s)|hπ(χ)

´
+ log P (ν(s)|hχ) if i = ν, where χ ∈ {g, c} : ω(sν) = sχ, π(sν) = sπ(χ)

0 if i = ∗
(b) ∆U2 is the aggregated difference of the local intra-layer smoothness components based on (20):

∆U2 :=
X

r∈Φs

VC2

“
π(si), ω(ri)

”
− VC2

“
ω(si), ω(ri)

”
.

where Φs is the first ordered neighborhood of pixel s.
(c) ∆U3 is related to the differences in the inter-layer potentials [see (21)]:

∆U3 :=

8
>>>><
>>>>:

VC3

`
ω(s∗), π(sg)

´− VC3

`
ω(s∗), ω(sg)

´
if i = g AND ω(sν) = sg

VC3

`
ω(s∗), π(sc)

´− VC3

`
ω(s∗), ω(sc)

´
if i = c AND ω(sν) = sc

VC3

`
ω(s∗), ω(sπ(χ))

´− VC3

`
ω(s∗), ω(sχ)

´
if i = ν (where ω(sν) = sχ)

VC3

`
π(s∗), ω̃(sν)

´− VC3

`
ω(s∗), ω̃(sν)

´
if i = ∗

0 otherwise

9. Replace the actual configuration by πq , if ∆U is lower than a positive threshold value which is proportional to the (decreasing)
temperature parameter. Otherwise keep the original configuration ω. Considering that ω and πq differ only in the label of q:

ω(q) :=


π(q) if log τ ≤ −∆U

T
,

ω(q) otherwise.
(MMD label update rule)

where τ is a constant threshold (τ ∈ (0, 1)).
10. If j < |Q|: {j := j + 1 and GOTO step 3.}
11. STOP if convergence is reached, i.e. the number of the changes between the kth and k + 1th iteration is lower than a threshold.
12. Increase the iteration counter k := k + 1, decrease the temperature T := Tk and jump to the first node j := 1, thereafter, GOTO

step 3.

Fig. 9. Steps of the Modified Metropolis algorithm (MMD [48]) used for the proposed CXM model. Corresponding notations are given in Sections II and
III-A. Following the suggestion of [48] we used in the tests τ = 0.3, T0 = 4, and an exponential cooling strategy: Tk+1 = 0.96 · Tk

two types of cliques representing intra- and inter-layer interactions
(see Fig. 8).

For the sake of obtaining smooth segmentations, we put con-
nections within each layer among node pairs corresponding to
neighboring2 pixels on the S image lattice. Denote the set of
the resulting intra-layer cliques by C2. The prescribed potential
function of a clique in C2 penalizes neighboring nodes having
different labels. Assuming r and s to be neighboring pixels on S,
the potential of the doubleton clique C2 = {ri, si} ∈ C2 for each
i ∈ {g, c, ν, ∗} is calculated as:

VC2

“
ω(si), ω(ri)

”
=

 −ϕi if ω(si) = ω(ri)

+ϕi if ω(si) 6= ω(ri)
(20)

with a constant ϕi > 0.

2We use first order neighborhoods in S, where each pixel has 4 neighbors.

Now let us continue with the description of the inter-layer
interactions. Based on previous investigations [see (15)], ω(s∗)
should mostly be equal either to ω(sg) or to ω(sc), depending on
the ‘vote’ of the ν(s) feature. Hence we put an edge among s∗

and sν as well as we prescribe that address node sν should point
either to sg or to sc:

∀s ∈ S : ω(sν) ∈ {sg, sc}

The directions of the address pointers are influenced by the
singletons of Sν [from (19)] where we use the distributions
defined by (11) and (12):

P
`
f(sν)|ω(sν) = sχ´ = P

`
ν(s)|hχ

´
, χ ∈ {g, c}

Finally we get the potential function of the inter-layer clique C3 =
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Fig. 10. Change prototypes considered for ground truth generation (a) new built-up regions (b) building operations (c) planting of trees (d) fresh plough-land
(e) groundwork before building over

{s∗, sν} as

VC3

“
ω(s∗), ω̃(sν)

”
=

 −ρ if ω(s∗) = ω̃(sν)

+ρ otherwise
(21)

where ρ > 0, and using (16): ω̃(sν) = ω
`
ω(sν)

´
.

According to (18), the observation-dependent term (19) and
the prior potential functions (20) and (21) substituted into (17)
determine [P (F|ω) · P (ω)] ∝ P (ω|F) for an arbitrary global
labeling. Thus taking the negative logarithm of the probabilities
the optimal bω can be calculated as:

bω = arg min
ω∈Ω

X

s∈S

− log P
`
g(s)|ω(sg)

´
+

+
X

s∈S

− log P
`
c(s)|ω(sc)

´
+
X

s∈S

− log P
`
ν(s)|ω(sν)

´
+

+
X

i;{s,r}∈C2
VC2

`
ω(si), ω(ri)

´
+
X

s∈S

VC3

`
ω(s∗), ω̃(sν)

´ff
(22)

where i ∈ {g, c, ν, ∗} and Ω denotes the set of all the possible
global labelings.

The energy term of (22) can be minimized by conventional
iterative techniques, like ICM [49] or simulated annealing [35].
For choosing a good compromise between the quality factor and
processing speed, we adapted to our CXM model the deterministic
Modified Metropolis relaxation algorithm [48], which is detailed
in Fig. 9. Accordingly the four layers of the model are optimized
simultaneously, and their interactions develop the final segmenta-
tion, which is taken at the end as the labeling of the S∗ layer. Note
that due to the fully modular structure the introduced model could
be completed straightforwardly with additional sensor information

(e.g. color or infrared sensors) or task-specific features depending
on availability.

IV. EXPERIMENTS

A. Test databases and ground truth generation

For evaluation we used three sets of optical aerial image pairs
provided by the Hungarian Institute of Geodesy Cartography &

Remote Sensing (FÖMI) and Google Earth. Data set SZADA

contains images taken by FÖMI in 2000 and in 2005, respectively.
This test set consists of seven - also manually evaluated - photo
pairs, covering in aggregate 9.5km2 area at 1.5m/pixel resolution
(the size of each image in the test set is 952 × 640 pixels). One
image pair has been used here for training and the remaining
six ones for validation. The second test set called TISZADOB

includes five photo pairs from 2000 resp. 2007 (6.8km2) with
similar size and quality parameters to SZADA. Finally, in the test
ARCHIVE, we compared an aerial image taken by FÖMI in 1984
to a corresponding Google Earth photo from around 2007. The
latter case is highly challenging, since the photo from 1984 has a
poor quality, and several major differences appear due to the 23
years time difference between the two shots.

In addition we have performed a few experiments with high
resolution (0.5m/pixel) images as well [Fig. 10(b) and (c)]. In
those cases, already very fine differences caused change alarms,
such as planting single trees [Fig. 10(c)], unlike in photos with
1.5m resolution (Fig. 12).

Ground truth masks have been generated manually for each
image pair of the training and test sets. The following changes
have been considered (see Fig. 10): new built-up regions, building
operations, planting forests or individual trees (the latter only
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at high resolution), fresh plough-lands and groundworks before
building over.

B. Parameter settings

The introduced CXM segmentation model has the following
parameters:
• Preliminary parameters of feature calculation: Λ = {K, z}
• Parameters of the probability density functions introduced

by (3), (8) and (13): Θ = Θg ∪Θc ∪Θν

• Parameters of the intra- and inter-layer potential functions:
Φ =

˘
ρ, ϕi : i ∈ {g, c, ∗, ν}¯

As indicated in the introduction, this paper deals with a
supervised approach of change detection. The first step is de-
termining the Λ preliminary parameters. K, which is the number
of the Gaussian mixture components in the background’s intensity
model, was set by trial and error. We considered the distribution
sequence PK(g(s)|bg) for K = 1, 2, . . . where PK is obtained
by EM estimation [43] from the training data using K mixture
components. Thereafter we measured the Bhattacharyya distances
[4] between the empirical histogram and the approximated distri-
butions. The results are shown in Fig. 11 for the SZADA training
set: the minimal error has been observed at K = 5 which is used
in the following.

On the other hand the size of the correlation window z

particularly depends on the image resolution and textureness.
Since in the considered photos the buildings were the principal
sources of texture, we have chosen a correlation window which
narrowly covers an average house (for the three test sets we used
z = 17). During the tests we found this choice optimal: with
significantly larger windows (z > 30) some individual building
changes have been erroneously ignored, while small rectangles
(z < 5) reported many false changes.

After fixing Λ, the Θ parameters can be obtained automatically
from the training image pairs using conventional estimators [43],
[44], [46] embedded in the iterative framework of Fig. 5.

While Θ parameters strongly depend on the input image data,
factors in Φ are largely independent of it. Experimental evidence
suggests that the model is not sensitive to a particular setting of
Φ within a wide range, which can be estimated a priori. Although
one can also find a few automatic estimation methods for similar
smoothing terms [50], Φ could rather be considered as a hyper-
parameter-set. We used ρ = ϕi = 1, i ∈ {g, c, ∗, ν} in the tests.

C. Evaluation

The aim of this section is to compare quantitatively and
qualitatively the proposed approach to results in the literature.
An overview on related state-of-the-art methods has been given
in Section I. As concluded there, the different approaches use
significantly different assumptions, for example, they are either
supervised or unsupervised. From another aspect, the methods
may have different goals as well, such as change detection (direct
methods) or joint image segmentation (PCC). These method-
ological differences must be considered also in comparative
evaluation. Since our proposed method is supervised, for the
sake of fair validation we utilize the same training data for our
CXM model and regarding the selected reference methods as
well. Therefore we implemented supervised modifications of three
previous unsupervised methods [3], [5], [6] for evaluation.

1 2 3 4 5 6 7 8 9 10
0.06

0.08

0.1

0.12

0.14

0.16

Number of Gaussian components (K)

E
rr

or

Fig. 11. Error of the mixture of Gaussians approximation of the joint
intensity statistics as a function of the number of mixture components (K).
The error is characterized by the Bhattacharyya distance between the empirical
g background histogram and the estimated density.

On the other hand in PCC models (e.g. [7], [13], [21]) the
ground truth used for training and evaluation marks the land-cover
classes in each frame, while changes in our proposed approach
could not be interpreted as such class transition occurrences.
For the above reason, we only investigate direct methods in this
section.

Considering the above remarks, we compared our method
to four previous solutions, which will be introduced briefly in
the following. For easier notation, we mark the pixels of the
difference image (DI) by d(s) = g1(s)− g2(s).

1) PCA: Implementation of the model [5] with supervised
training. The observed g(s) = [g1(s), g2(s)] joint gray level
vectors are projected into the space of the principal components
estimated over the background training regions. Thereafter the
feature value at pixel s is quantified by the magnitude of the sec-
ond principal component normalized by local contrast. Finally the
change-background segmentation of the feature map is obtained
by a Potts-like [47] MRF model.

2) Hopfield: Following [3], a Hopfield-type neural network
is constructed, which is initialized by a DI-based pixel-by-pixel
classification process. The final change mask is obtained by an
iterative procedure, which (sub-)minimizes the global energy of
the network, while inter-node interactions are responsible for
getting smooth change and background regions.

3) Parzen: A nonparametric supervised approach to segment
the DI. The P (d(s)|ω(s) = bg) and P (d(s)|ω(s) = ch) condi-
tional pdf -s are approximated by Parzen kernel density estimators
[51] and a MRF model [6] generates the smooth change map.
Apart from the hereby adopted supervised training, this solution
follows the method [6].

4) MLP: Unlike the previous Parzen approach, this method
approximates the P (ω|d) probabilities instead of P (d|ω). A
MRF segmentation of the DI is investigated again, but here the
P (ch|d(s)) and P (bg|d(s)) distributions are estimated by a multi-
layer perceptron trained with backpropagation from ground truth
data. Note that this approach has been applied in a similar manner
by PCC methods [7], [21] to segment the different image layers,
which makes the above ‘direct’ MLP technique also worth for
the comparison.

During the numerical tests, we use the same metric as [3], [6]:
we compare the segmentation results provided by the different
techniques to the ground truth (GT), and measure the numbers of
false alarms (unchanged pixels which were detected as changes),
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Fig. 12. Qualitative comparison of the change detection results with the different test methods defined in Sec. IV-C and the proposed CXM model. White
regions mark the detected/ground truth changes. Each image part covers a 45m2 sized area (128×156 pixels at 1.5 resolution). Capital letters at the beginning
of the rows refer to the corresponding datasets: SZADA (S), TISZADOB (T) and ARCHIVE (A).
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Fig. 13. Overall errors on the SZADA test set according to the i-evaluation
metrics as a function of i.

missed alarms (erroneously ignored changed pixels) and overall
error (sum of the previous two quantities).

A practical problem of GT-based quantitative evaluation is
that the accuracy of the manually generated reference masks
may impact the results. To achieve a robust comparison between

the different methods we investigated the error rates at different
GT-quality assumptions. Let us assume that in the GT masks
the borders of the change regions may be inaccurate up to
±i pixels. Then we exclude from the false and missed alarm
candidates the pixels which are at most at i distance from the
change blobs’ borders. As i increases the metrics become more
permissive, thus the number of false/missed alarms obviously
decrease monotonically. In Fig. 13 we show the overall errors
on the SZADA test set according to this ‘i-evaluation metrics’ for
i = 0, 1, . . . , 4. We can observe here that the order of methods
is the same for all i-s, and the differences are similar, therefore
we use only the case i = 0 (the most strict assumption) in the
upcoming comparisons.

The further evaluation rates measured on thehree test sets are
given in Fig. 14 in percent of the number of processed image
pixels. As this figure shows, the overall error of the proposed
CXM model is below the error of the reference methods by
about 2− 5 percent. Note that the generally weaker results in the
ARCHIVE tests are primarily caused by the lower image quality.

For the sake of visual demonstration, we show the comparative
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Fig. 14. Quantitative comparison of the different test methods regarding the
three test sets: SZADA, TISZADOB and ARCHIVE. False alarm, missed alarm
and overall error rates are given in percent of the checked pixels.

change detection results of some relevant image parts in Fig. 12.
Each image covers here a 45m2 area. We can observe that the
CXM model produces smooth and more accurate change regions
in the selected areas, compared to the reference techniques.

D. Discussion of the results

The experimental validation on real image sets (Section IV-C)
demonstrates that the introduced CXM model offers measurable
advantages versus earlier techniques for the change detection
problem. The main sources of the improvements are the joint
usage of multiple features and the proposed probabilistic feature
integration schema.

As for feature selection, artifacts of the Hopfield, Parzen
respectively MLP methods show that in the considered optical
photos the changed and background regions cannot be efficiently
separated via pure pixel level intensity differences due to the large
overlap between the classes in the d(s) descriptor’s domain. The
PCA approach uses also a scalar feature: it constructs a linear
physical model for the irrelevant global illumination changes,
and the classification is performed based on the second principal
component of the joint intensity vector. However the experiments
confirm that in optical images, several regular changes (like
vegetation changes) do not fit the linear model, meanwhile noise
and sensor saturation causes additional false alarms. (See Fig.
12, 3rd row’s PCA image: a false building change appears in the
left.) Moreover both of the above pixel level descriptors are less
efficient in areas containing dense 3-D structures where various
illumination artifacts may appear including mirroring effects and
shadows. As a main difference, our method uses different features
in different scene parts exploiting that while the intensity value
is a relevant attribute in homogenous regions; it is rather a source
of noise inside the high contrasted areas where it is preferred to
apply texture comparison with block correlation. Choosing locally
the more reliable feature leads us to obtain more accurate change

regions both in homogenous and highly textured territories (Fig.
10 and 12).

The next key issue has been the construction of the seg-
mentation model. Since pixel by pixel classification proved to
be quite noisy [see Fig. 1(g) and Fig. 15(d)] we considered
Markovian neighborhood interaction for obtaining a smoothed
change map [35]. However the introduced label-based feature
integration approach required a special model structure which
oversteps the single-layer techniques used in the reference meth-
ods. We also emphasize that in the proposed multi-layer model
the segmentations of the different layers are performed in a
synchronised way through the inter-layer interactions. To illustrate
the advantages of this synchronisation we compared in Fig. 15
the CXM result to an ensemble of independent MRFs [image
(e)]. The later model applies first three (conventional) MRF-
segmentations for the g(s), c(s) and ν(s) feature maps which
step is followed by pixel level label fusion based on (15).
Although most erroneous discontinuities can be removed from
the change mask by the ensemble [compare Fig. 15(d) and (e)],
the asynchronous smoothing of the different label maps causes
several artifacts [22], [37] compared to the CXM result [image
(f)].

We tested the proposed method using real world aerial images
with various content, quality and resolution (Fig. 10). Considering
the results our contributions proved to be the most efficient in
processing 1.5m/pixel resolution photos from sparsely populated
areas (Fig. 12). Those images contain equally low contrasted
natural regions and highly textured built-up territories, thus the
improvements of choosing from multiple descriptors become
significant versus the single feature based techniques. Note that at
a resolution of several meters [6] fine land texture is usually not
observable reducing the role of the correlation descriptor. On the
other hand at very fine resolution (≤0.5m) misregistration and
parallax decrease the efficiency of the approach which can be
partially controlled by choosing large regions for c(s) and ν(s)

calculation (z parameter in Section IV-C) or applying a moving
correlation window [16]. However dealing here with dense urban
areas large occlusions and moving objects should be handled at a
higher processing level. False alarms may also appear due to fine
rarefaction of vegetation which changes the texture and color of
the area at the same time in unusual way (Fig. 12, 1st row).

As the image quality becomes lower, the method shows grace-
ful degradation like in Fig. 14 regarding the ARCHIVE test set.
Here additional sources of artifacts appear like blurred textures
and blotches due to film errors which could be filtered as in [52].

V. CONCLUSIONS

This paper has addressed the detection of statistically unusual
changes in optical aerial image pairs taken with significant
time differences. A novel Conditional Mixed Markov model
has been proposed, which integrates the robustness of MRF-
based segmentation techniques [35], the modularity of multi-layer
approaches [37] and semantic flexibility of mixed Markov models
[41]. The introduced method utilizes information from three
different observations: global intensity statistics, local correlation
and contrast. The performance of the method has been validated
using real-world aerial images, and its superiority versus four
earlier reference methods has been shown quantitatively and
qualitatively.
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(a) Image 1: G1 (b) Image 2: G2 (c) Ground truth

(d) Pixel by pixel labeling (e) Ensemble of MRFs (f) Proposed CXM

Fig. 15. Impacts of the multi-layer CXM structure for the quality of the change mask. We compare the results of (d) the pixel by pixel classification without
spatial smoothing, (e) the ensemble of three independent, single-layer MRFs and (f) the proposed multi-layer model

The proposed model presents an efficient and scalable change
detection filter for several remote sensing applications. The
method is based purely on low-level features, working without
object extraction or identification of land cover classes. Therefore
it can be used for a large variety of scenes and purposes, even in
situation where the concept of ‘interesting changes’ is not well
defined. The method can help in manual evaluation of large data
sets by focusing the operator’s attention, and also in automated
systems with decreasing the field of interest and presenting shape
or region based descriptors for higher level image interpretation
modules.
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