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Detection of Object Motion Regions in Aerial
Image Pairs with a Multi-Layer Markovian Model
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and Josiane Zerubia, Fellow, IEEE

Abstract— We propose a new Bayesian method for detecting
the regions of object displacements in aerial image pairs. We use
a robust but coarse 2-D image registration algorithm. Our main
challenge is to eliminate the registration errors from the extracted
change map. We introduce a three-layer Markov Random Field
(L3MRF) model which integrates information from two different
features, and ensures connected homogenous regions in the
segmented images. Validation is given on real aerial photos.

Index Terms— Aerial images, change detection, camera motion,
MRF

I. INTRODUCTION

EXTRACTING regions of object motions in the presence of
camera drift is a key issue in several applications of aerial

imagery. In surveillance and exploitation tasks [1] it can be used
as a preliminary step of object detection, tracking and event
analysis. On the other hand, in 2-D mosaicking [2] and in 3-
D stereo reconstruction [3] independent object motions generate
outlier regions for image alignment, thus, they should be detected
and skipped from the resulting static scene models.

In this paper, we focus on the object motion detection problem
having two partially overlapped images which were taken by
moving airborne vehicles with a few seconds time difference.
The significance of the addressed two-view approach of motion
detection [4], [5] is increasing nowadays due to situations, where
multiview [6] or video based techniques [2], [7]–[9] cannot be
adopted. For example, in many applications huge geographical
areas should be covered by high quality and high resolution
images, which can be only captured at a low frame-rate [10].
In that case, considering the high expenses of aerial photography,
significantly large scene regions may appear in only two shots.
Similar problem can occur if due to poor transmission conditions
the frame-rate of an aerial surveillance video stream is very low
and unsteady. Two-view methods must be also used for processing
archive stereo images, where multiple overlapping is not available
at all: Fig. 1 shows such high resolution stereo photos.

Working with the introduced image pairs raises different
challenges compared to high frame-rate image sequences. First,
several previous models [7]–[9] assume that the magnitudes of
camera and object motions are small between two successive
frames, a case which facilitates image registration [2], [11] by
minimizing 3-D distortion effects [12] and low level object
tracking [4], [7]. However, in the photos which we compare,
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the global camera motion and the object displacements are often
significant (see Fig. 1) making image alignment and tracking more
difficult. On the other hand, dealing with sequences, composite
geometric constraints over three or more views can enhance the
quality of the detection [6], [7]; while two-view geometric tools
available for image pairs provide less structure information [13].
Finally, due to the lack of long temporal image statistics or an
object-free reference frame, background subtraction cannot be
performed in our case, in contrast to [7], [14], [15]. Instead of
this, we introduce a change detection method for photo pairs,
which extracts image regions corresponding to moving objects
in either of the two frames. Two key issues of this problem are
image registration and segmentation model selection, which we
summarize next, in Sections I-A and I-B.

A. Related works in image alignment and change detection

The addressed change detection problem needs an efficient
combination of image registration for camera motion compen-
sation and frame differencing. Considering ideal circumstances,
registration should assign each pixel of the first image to the
corresponding pixel in the second frame, which represents the
same 3-D static scene point unless occluded by a moving object.
In practise, block matching algorithms or iterative optical flow
computation [16] enable us to estimate a dense motion field
between two frames, however, they cause significant artifacts
both in static (occlusion, parallax) and in dynamic image parts
(inaccurate motion boundaries [2], [4]).

A widely used registration approach is based on feature cor-
respondence, where localizable primitives, such as corner pixels,
edges, contours, shape etc. are detected and tracked in the images
to be compared [11], [17], [18]. However, due to featureless
regions, this process presents correct pixel correspondences only
for sparsely distributed feature points instead of matching the
two frames completely. A possible way to handle this problem is
searching for a global 2-D transform between the images. Two
main approaches are available here. Pixel correspondence based
techniques estimate the optimal linear coordinate transform (i.e.
homography) which maps the extracted feature points of the first
image to the corresponding pixels identified by the feature tracker
module in the second frame [11]. In global correlation methods,
the goal is to find the parameters of a similarity [19] or affine
transform [20] for which the correlation between the original
first and transformed second image is maximal. For computational
purposes, these methods work in the Fourier domain.

Since purely 2-D techniques may cause significant parallax
errors [11] at locations of static scene objects with considerable
height, additional geometrical constraints should be exploited in
most 3-D scenes. Parallax elimination is especially crucial in
urban photos where the background cannot be considered as
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Fig. 1. High resolution stereo image pair taken by the Hungarian Ministry of Defence Mapping Company c© above Budapest with a few sec. time difference.

planar (Fig. 1). For the above purposes the epipolar constraint
is commonly used in object motion detection tasks [7], [21].
However, it only gives a necessary condition for pixels, which
correspond to the same static scene point in the two views. On
the other hand, objects moving in the same direction as the
camera may be falsely ignored by the epipolar filter [7], and the
difficulties with finding dense and accurate point correspondences
remain open here. In addition, the performance of that approach
is very sensitive to find the accurate epipoles, which may fail if,
besides camera motion, many independent object displacements
are present in the scene [21]. Note that shape constancy [6]
and structure consistency [7] constraints have been proposed to
overcome the limitation of the epipolar model, but these methods
need at least three frames and cannot be implemented in the
current two-view framework.

The ‘plane+parallax’ representation of 3-D scenes is a well
established approach [21]. Here, the displacement vector between
the corresponding ‘static’ pixels is decomposed into a global
projective component, which can be eliminated by 2-D regis-
tration, and a remaining local parallax component which must
be separately handled. As shown in [21], different environmen-
tal conditions and circumstances may raise essentially different
practical challenges, thus the corresponding scenes (and the con-
cerning methods) can be onward divided into subcategories. We
can distinguish scenes with dense or sparse parallax depending
on the density of the local parallax vectors with significant
magnitude. From another aspect, based on the maximal expected
parallax magnitude we can classify the models into bounded
and heavy categories. In the bounded case [14], [22], one can
give a few pixels upper bound for the expected size of the
distortion, while in case of heavy parallax, usually the multiview
structure information is necessary [6]. An example for sparse
and heavy parallax model is given in [6], which processes very
low altitude aerial videos captured from sparsely cultural scenes
with sparsely appearing moving objects. On the other hand, the

scenes being investigated in the current paper are fairly different:
the independent object motions are densely distributed, but the
frames are captured from higher altitude. Thus, here the parallax
distortions usually cause errors of a few pixels, and a bounded
model can be constructed.

A probabilistic model for eliminating parallax after coarse 2-D
image registration is introduced in [14] and applied for video
coding in [23]. Here the authors assume that parallax errors
mainly appear near sharp edges. Therefore, at locations where
the magnitude of the gradient is large in both images, they
consider that the differences of the corresponding pixel-values
are caused by registration errors with higher probability than
by object displacements. However, this method is less effective,
if there are several small objects (containing several edges) in
the scene, because the post processing may also remove some
real objects, while leaving errors in smoothly textured areas (e.g.
group of trees).

Similarly to [14], [21], our proposed method focuses on de-
creasing registration and parallax artifacts in two input images
after homography alignment. We estimate the motion regions
statistically by a new model which is introduced in Sections I-B,
II and III. Note that later on further comparative experiments are
given regarding the state-of-the-art methods as well (see Section
IV-B and Table I).

B. Approaches on information fusion

Selecting appropriate segmentation model is another important
issue. Since the seminal work of Geman and Geman [24],
Markov Random Fields (MRF) have been frequently used in
image segmentation, often clearly outperforming approaches with
morphology-based postprocessing. For many problems, scalar val-
ued features may be weak to model complex segmentation classes
appropriately, therefore integration of multiple observations has
been intensively examined. In a straightforward solution called
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hereafter observation fusion, the different feature components are
integrated into an n dimensional feature vector, and for each class,
the distribution of the features is approximated by an n dimen-
sional multinomial density function [25], [26]. The distribution
parameters can be estimated by maximum likelihood strategies
over training images in a supervised or unsupervised manner.
For example, one can fit a Gaussian mixture to the multivariate
n-D feature histogram of the training images [26], where the
different mixture components correspond to the different classes
or subclasses. However, in the above case, each relevant prototype
of a given class should be represented by a significant peak in the
joint feature histogram, otherwise the observation fusion approach
becomes generally less efficient.

Recently introduced multi-layer segmentation models can over-
come the above limitation [4], [27], [28]. Here the layers cor-
respond to different segmentations which interact through pre-
scribed inter-layer constraints. The model is called decision fusion
if the layers are first segmented independently by e.g. MRFs,
thereafter, a pixel by pixel fusion process inferences purely on the
obtained labels [28]. In a third step, the final segmentation map
can be smoothed by morphological or Markovian post processing
[28].

The label fusion-reaction framework proposed by [4] imple-
ments also a sequential model, but here the integration process
simultaneously considers semantic constraints for each single
pixel and spatial smoothing over the neighborhoods. In the first
step, two independent label fields are constructed: a region map,
which is an oversegmented image usually based on color; and
an application map, which is a coarse estimation of the expected
results, e.g. a clustered optic flow field [22]. The second step
is the label fusion, which attempts to get a segmented image,
which is ‘not too far’ from the initial application map (reaction
constraint), but it is smooth and the cluster boundaries fit the
cluster boundaries in the region map (fusion constraint). However,
this process may fail if the initial application mask has a poor
quality or the region map has several discontinuities due to
strongly textured background.

A multi-layer MRF framework has been introduced in [27],
[29], where a single energy function encapsulates all the con-
straints of the model, and the result is obtained by a global
optimization process in one step. Here, in contrast to decision
[28] or label [4] fusion, the observed features are in interaction
with the final label map during the whole segmentation process.
More specifically, in [4] and [28] the features vote independently
for label-candidates, thereafter, the fusion step only considers
these labels. In contrary, multi-layer MRFs also assign weights to
the label-votes based on their reliability through local likelihood
terms [27].

In this paper, as an extension of our previous work [30], we pro-
pose a new multi-layer MRF model to eliminate the registration
errors and to obtain the true changes caused by object motions
based on two input images. We extract two different features
which statistically characterize the ‘background’ membership of
the pixels, and integrate their effects via a three-layer Markov
Random Field (called in the following L3MRF). From a structural
point of view, the proposed L3MRF model is similar to [27], but
the observation processing and labeling are significantly different.
In our L3MRF, the inter-layer interactions are defined for semantic
reasons purely by label-constraints. However, the proposed energy
function encapsulates data dependent terms as well, which influ-

ence directly or - through the inter-layer interactions - indirectly
all labels in the model during the whole optimization.

Contribution of the proposed method focuses on two aspects.
First, we choose efficient complementary features for the change
detection problem and we support the relevancy of their joint
usage by offering experimental evidence. Here the probabilistic
description of the classes is given by different feature distribu-
tions. Secondly, we propose a new fusion model showing how
data-driven and label-based inferences can be encapsulated in a
consistent probabilistic framework providing a robust segmenta-
tion approach. At the end (Sec. IV), we give a detailed qualitative
and quantitative validation versus recent solutions of the same
problem and also versus different information fusion approaches
with the same feature selection.

II. REGISTRATION AND FEATURE EXTRACTION

Denote by X1 and X2 the two input images which we compare
above the same pixel lattice S. The gray value of a given pixel
s ∈ S is x1(s) in the first image and x2(s) in the second one.

Formally, we consider frame differencing as a pixel labeling
task with two segmentation classes: foreground (fg) and back-
ground (bg). Pixel s belongs to the foreground, if the 3-D scene
point, which is projected to pixel s in the first frame (X1), changes
its position in the scene’s (3-D) world coordinate system or is
covered by a moving object by the time taking the second image
(X2). Otherwise, pixel s belongs to the background.

The procedure begins with coarse image registration using a
conventional 2-D frame matching algorithm, which should be
chosen according to the scene conditions. We use the Fourier
shift-theorem based method [19] for this purpose, since as detailed
in [31] it proved to be the most robust regarding the considered
image pairs. In the following, the registered second frame is
denoted by eX2, and its pixel values by {x̃2(s)}.

Our next task is to define local features at each pixel s ∈
S which give us information for classifying s as foreground or
background point. Thereafter, taking a probabilistic approach, we
consider the classes as random processes generating the selected
features according to different distributions.

The feature selection is shown in Fig. 2. The first feature is the
gray level difference of the corresponding pixels in eX2 and X1

respectively:

d(s) = x̃2(s)− x1(s). (1)

Although due to the imperfect registration, x1(s) and x̃2(s)

usually do not represent exactly the same scene point, we can
exploit the spatial redundancy in the images. Since the pixel levels
in a homogenous surface are similar, the occurring d(.) feature
values in the background can be statistically characterized by a
random variable with a given mean value µ (i.e. global intensity
offset between the images) and deviation σ (uncertainty due to
camera noise and registration errors). We validate this feature
through experiments [Fig. 2(c)]: if we plot the histogram of d(s)

values corresponding to manually marked background points, we
can observe that a Gaussian approximation is reasonable:

P (d(s)|bg) = N(d(s), µ, σ) =
1√
2πσ

exp

„
− (d(s)− µ)2

2σ2

«
.

(2)
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(a) First input image: X1

0-0.6 0.6

d(.) histogram in
the background
fitted Gaussian
density function

(c) d(.) feature statistics
0 0.5 1

c(.) histogram in
the background
fitted Beta
density function

(e) c(.) feature statistics (g) Ground truth

(b) Registered second image: eX2 (d) D image - segmented image
based only on d(.)

(f) C image - segmented image
based only on c(.)

(h) Result of the AND operation on
D and C images

Fig. 2. Feature selection. Notations are given in the text of Section II.

On the other hand, any d(s) value may occur in the foreground,
hence the foreground class is modeled by a uniform density:

P (d(s)|fg) =

 1
bd−ad

, if d(s) ∈ [ad, bd]

0 otherwise.
(3)

Next, we demonstrate the limitations of this feature. After
supervised estimation of the distribution parameters, we derive
the D image in Fig. 2(d) as the maximum likelihood estimate:
the label of s is

arg maxψ∈{fg,bg}P (d(s)|ψ).

We can observe that several false positive foreground points are
detected, however, these artifacts are mainly limited to textured
‘background’ areas and to the surface boundaries. In these cases,
the x1(s) and x̃2(s) values correspond to different surfaces in the
3-D scene, so d(s) may have an arbitrary value, which appears
as an outlier with respect to the previously defined Gaussian
distribution.

For the above reasons, we introduce a second feature. Denote
the rectangular neighborhood of s, with a fixed window size (v),
by Λ1(s) in X1, and by Λ2(s) in eX2. Assuming the presence of
errors of a few pixels, if s is in the background, we can usually
find an os = [ox, oy] offset vector, for which Λ1(s) and Λ2(s +

os) are strongly correlated. Here, we use the normalized cross
correlation as similarity measure.

In Fig. 3, we plot the correlation values between Λ1(s) and
Λ2(s+os) for different values of the offset os around two selected
pixels marked by the starting points of the arrows. The upper pixel
corresponds to a parallax error in the background, while the lower
one is part of a real object displacement. The correlation plot has
high peak only in the upper case. We use c(s), the maxima in the
local correlation function around pixel s as second feature:

c(s) = max
os

Corr{Λ1(s), Λ2(s + os)},

the search window of the offset os has also a fixed size, l.
By examining the histogram of c(s) values in the background

[Fig. 2(e)], we find that it can be approximated by a beta density
function (similarly to other test images):

P (c(s)|bg) = B(c(s), α, β), (4)

where

B(c, α, β) =

(
Γ(α+β)
Γ(α)Γ(β)

cα−1(1− c)β−1, if c ∈ (0, 1)

0 otherwise

Γ(α) =

Z ∞

0
tα−1e−tdt.

The foreground class will be described again by a uniform
probability P (c(s)|fg) with ac and bc parameters, as in (3).

We see in Fig. 2(f) [C image] that the c(.) descriptor alone
causes also poor result: similarly to the gray level difference, a lot
of false alarms have been presented. However, the errors appear
at different locations compared to the previous case. First of all,
due to the block matching, the spatial resolution of the segmented
map decreases, and the blobs of object displacements become
erroneously large. Secondly, in homogenous areas, the variance
of the pixel values in the blocks to be compared may be very low,
thus the normalized correlation coefficient is highly sensitive to
noise1. In summary, the d(.) and c(.) features may cause quite
a lot of false positive foreground points, however, the rate of
false negative detection is low in both cases: they only appear
at location of background-colored object parts, and they can be
partially eliminated by spatial smoothing constraints discussed
later. Moreover, examining the gray level difference, d(s), results
usually in a false positive decision if the neighborhood of s is
textured, but in that case the decision based on the correlation
peak value, c(s), is usually correct. Similarly, if c(s) votes
erroneously, we can usually trust in the hint of d(s).

Consequently, if we consider D and C as a Boolean lattice,
where ‘true’ corresponds to the foreground label, the logical AND
operation on D and C improves the results significantly [see
Fig. 2(h)]. We note that this classification is still quite noisy,

1We have also tested other similarity measures than the normalized cross
correlation. Although the simple squared difference gave alone better seg-
mentation than the normalized cross correlation, it was less efficient in the
subsequent label fusion procedure [31].
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Fig. 3. Plot of the correlation values over the search window around two given
pixels. The upper pixel corresponds to a parallax error in the background,
while the lower pixel is part of a real object displacement.

although in the segmented image, we expect connected regions
representing the motion silhouettes. Morphological postprocess-
ing of the regions may extend the connectivity, but assuming the
presence of various shaped objects or object groups, it is hardly
possible to define appropriate morphological rules. On the other
hand, taking a MRF approach, our case is particular: we have two
weak features, which present two different segmentations, while
the final foreground-background clustering depends directly on
the labels of the weak segmentations. To decrease the noise, both
the weak and the final segmentations must be ‘smooth’. For the
above reasons, we introduce a novel three-layer Markov Random
Field (L3MRF) segmentation model in the next section.

III. MULTI-LAYER SEGMENTATION MODEL

In the proposed approach, we construct a MRF model on a
graph G whose structure is shown in Fig. 4. In the previous
section, we segmented the images in two independent ways, and
derived the final result through pixel by pixel label operations
using the two segmentations. Therefore, we arrange the sites of
G into three layers Sd, Sc and S∗, each layer has the same size
as the image lattice S. We assign to each pixel s ∈ S a unique
site in each layer: e.g. sd is the site corresponding to pixel s on
the layer Sd. We denote sc ∈ Sc and s∗ ∈ S∗ similarly.

We introduce a labeling process, which assigns a label ω(.) to
all sites of G from the label-set: L = {fg, bg}. The labeling of
Sd (resp. Sc) corresponds to the segmentation based on the d(.)

(resp. c(.)) feature alone, while the labels at the S∗ layer represent
the final change mask. A global labeling of G is

ω =
n

ω(si)|s ∈ S, i ∈ {d, c, ∗}
o

.

Furthermore, in our model, the labeling of an arbitrary site
depends directly on the labels of its neighbors (MRF property).
For this reason, we must define the neighborhoods (i.e. the
connections) in G (see Fig. 4). To ensure the smoothness of the
segmentations, we put connections within each layer between site
pairs corresponding to neighboring pixels2 of the image lattice

2We use first order neighborhoods in S, where each pixel has 4 neighbors.

Fig. 4. Structure of the proposed three-layer MRF (L3MRF) model

S. On the other hand, the sites at different layers corresponding
to the same pixel must interact in order to produce the fusion
of the two different segmentation labels in the S∗ layer. Hence,
we introduce ‘inter-layer’ connections between sites si and sj :
∀s ∈ S; i, j ∈ {d, c, ∗}, i 6= j. Therefore, the graph has doubleton
‘intra-layer’ cliques (their set is C2) which contain pairs of sites,
and ‘inter-layer’ cliques (C3) consisting of site-triples. We also use
singleton cliques (C1), which are one-element sets containing the
individual sites: they will link the model to the local observations.
Hence, the set of cliques is C = C1 ∪ C2 ∪ C3.

Denote the observation process by

F = {f(s)|s ∈ S},
where f(s) = [d(s), c(s)].

Our goal is to find the optimal labeling bω, which maximizes
the posterior probability P (ω|F) that is a maximum a posteriori
(MAP) estimate [24]:

bω = arg max
ω∈Ω

P (ω|F).

where Ω denotes the set of all possible global labelings. Based
on the Hammersley-Clifford Theorem [24] the a posteriori prob-
ability of a given labeling follows a Gibbs distribution:

P (ω|F) =
1

Z
exp

0
@−

X

C∈C
VC(ωC)

1
A ,

where VC is the clique potential of C ∈ C, which is ‘low’ if ωC

(the label-subconfiguration corresponding to C) is semantically
correct, and ‘high’ otherwise. Z is a normalizing constant, which
does not depend on ω.

In the following, we define the clique potentials. We refer to
a given clique as the set of its sites (in fact, each clique is a
subgraph of G), e.g. we denote the doubleton clique containing
sites sd and rd by {sd, rd}.

The observations affect the model through the singleton poten-
tials. As we stated previously, the labels in Sd and Sc layers are
directly influenced by the d(.) and c(.) values, respectively, hence
∀s ∈ S:

V{sd}
“
ω(sd)

”
= − log P (d(s)|ω(sd)),

V{sc}
`
ω(sc)

´
= − log P (c(s)|ω(sc)),
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where the probabilities that the given foreground or background
classes generate the d(s) or c(s) observation have already been
defined in Section II by (2), (3) and (4).

Since the labels at S∗ have no direct links with the above
measurements, uniformly zero potentials can be used there:

V{s∗}
`
ω(s∗)

´
= 0

In order to get a smooth segmentation at each layer, the potential
of an intra-layer clique C2 = {si, ri} ∈ C2, i ∈ {d, c, ∗} favors
homogenous labels:

VC2 = θ
“
ω(si), ω(ri)

”
=

 −δi if ω(si) = ω(ri)

+δi if ω(si) 6= ω(ri)
(5)

with a constant δi > 0.
As we concluded from the experiments in Section II, a pixel is

likely to be generated by the background process, if at least one
corresponding site has the label ‘bg’ in the Sd and Sc layers. Its
indicator function is noted here as:

Ibg : Sd ∪ Sc ∪ S∗ → {0, 1},
where

Ibg(q) =


1 if ω(q) = bg

0 if ω(q) 6= bg.

With this notation the potential of an inter-layer clique C3 =

{sd, sc, s∗} is:
VC3(ωC3

) = ζ
“
ω(sd), ω(sc), ω(s∗)

”
=

=

(
−ρ if Ibg(s∗) = max

“
Ibg(sd), Ibg(sc)

”

+ρ otherwise,
(6)

with ρ > 0.
Therefore, the optimal MAP labeling bω, which maximizes

P (bω|F) (hence minimizes − log P (bω|F)) can be calculated using
(2)−(6) as:

bω = arg min
ω∈Ω

n
−
X

s∈S

log P (d(s)|ω(sd))−
X

s∈S

log P (c(s)|ω(sc))+

+
X

i;{s,r}∈C2
θ
“
ω(si), ω(ri)

”
+
X

s∈S

ζ
“
ω(sd), ω(sc), ω(s∗)

”o

(7)
where i ∈ {d, c, ∗}.

The energy term of (7) can be optimized by conventional
iterative techniques, like ICM [32] or simulated annealing [24].
Accordingly, the three layers of the model are simultaneously
optimized, and their interactions develop the final segmentation,
which is taken at the end as the labeling of the S∗ layer.

IV. EXPERIMENTS

The evaluations are conducted using manually generated
ground truth masks regarding different aerial images. We use
three test sets provided by the Hungarian Ministry of Defence
Mapping Company c©, which contain 83 (=52+22+9) image pairs.
The time difference between the frames to be compared is about
1-3 seconds. The image pairs of the ‘balloon1’ and ‘balloon2’
test sets have been captured from a flying balloon, while images
of the ‘Budapest’ test set originate from high resolution stereo
photo pairs taken from a plane (see Fig. 1). In the quantitative
experiments, we investigate on how many pixels have the same
label in the ground truth masks and in the segmented images
obtained by the different methods. For evaluation criteria, we

5
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m
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Fig. 5. Performance evaluation as a function of the block matching (v) and
search window size (l) using training images from the ‘balloon1’ test set.
Here, v = 7 and l = 7 proved to be optimal.

use the F -measure [33] which combines Recall and Precision
of foreground detection in a single efficiency measure.

With C++ implementation and a Pentium desktop computer
(Intel Core(TM)2, 2GHz), processing image parts of size 320 ×
240 (see Fig. 6) takes 5 − 6 seconds. The correlation map for
the c(.) feature is calculated with an efficient algorithm using dy-
namic programming similarly to [34]. To find a good suboptimal
labeling according to (7), we use the modified Metropolis [35]
optimization method [31].

A. Parameter settings

The introduced L3MRF segmentation model has the following
parameters:
• Parameters of the search window (l) and block matching

window (v) used for calculating the c(.) correlation feature
(defined in Section II).

• Parameters of the probability density functions introduced
by (2), (3) and (4):

Θ = {µ, σ, ad, bd, α, β, ac, bc}
• Parameters of the intra- and inter layer potential functions

Φ =
˘
ρ, δi : i ∈ {d, c, ∗}¯

The parameters of correlation calculation are related to a priori
knowledge about the object size and magnitude of the parallax
distortion. The correlation window should not be significantly
larger than the expected objects to ensure low correlation between
an image part which contains an object and one from the same
‘empty’ area. The maximal offset (l in Section II) of the search
window determines the maximal parallax error, which can be
compensated by the method. If ground truth training data is
available, the optimal parameters can be automatically set as the
location of maximum in the F -performance function (see Fig. 5).

The Θ distribution parameters can be obtained by conventional
Maximum Likelihood estimation algorithms from background and
foreground training areas [see Fig. 2(c) and (e)]. If manually
labelled training data is not available, the foreground training
regions must be extracted through outlier detection [36] in the
d(.) and c(.) feature spaces.

While Θ parameters strongly depend on the input image data,
factors in Φ are largely independent of it. Experimental evidence
suggests that the model is not sensitive to a particular setting
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Φ within a wide range, which can be estimated a priori. The
parameters of the intra-layer potential functions, δd, δc and
δ∗ influence the size of the connected blobs in the segmented
images. Although automatic estimation methods exist for similar
smoothing terms [37], δi is rather a hyper-parameter, which can
be fixed by trial and error. Higher δi (i ∈ {d, c, ∗}) values result
in more compact foreground regions, however, fine details of the
silhouettes may be distorted that way. We have used in each layer
δi = 0.7 for test images with relatively small objects (‘balloon1’
and ‘Budapest’ sets), while δi = 1.0 have been proved to be the
most appropriate regarding images captured from lower altitude
(‘balloon2’). Parameter ρ of the inter-layer potentials determines
the strength of the relationship between the segmentation of the
different layers. We have used ρ = δ∗: this choice gives the same
importance to the intra-layer smoothness and the inter-layer label
fusion constraints.

B. Evaluation versus reference methods for this task

The aim of this section is to compare quantitatively and
qualitatively the proposed approach to results reported in the
literature. Validation in this section is performed in a supervised
manner, in the same way for both the reference methods and the
proposed model. The parameters are estimated over 2-5 training
image pairs for each of the three image sets, and we examine the
quality of the segmentation on the remaining test pairs.

A short overview on corresponding state-of-the-art methods
(detailed in Section I-A) can be found in Table I. Since the
proposed L3MRF model focuses on the case of two input frames,
only reference methods working with image pairs are used for
comparison. The method of Farin [14] is an exception here,
which originally deals with video sequences. However, long
temporal frame statistics is used there only for background image
synthesis, thus the method can be straightforwardly applied in
“frame differencing” mode instead of background subtraction. For
similar reasons and due to the multiview structure constraint, [7]
can neither be adopted here directly, but we found the model part
regarding homography and epipolar consistency checking in itself
relevant for comparison.

Considering the above remarks, we compared our method to
five previous solutions, which is briefly introduced next:

1) Reddy: After the images have been automatically registered
by the FFT-based method of Reddy & Chatterji’s [19], a con-
ventional MRF-Potts model [15], [24] is applied to segment the
difference image.

2) Farin: Implementation of the method of Farin & Width
[14]. The result is obtained by stochastic optimization of a
MRF model which considers a difference map after coarse 2-D
registration [19] and a risk map which aims to decrease the
registration errors [14], [23].

3) Affine: Several methods attempt to automatically estimate
an accurate global affine transform between the frames [12], [20].
In our implementation, the affine transform is determined in a
semi-supervised way, through manually filtered matching points.
Thereafter, a MRF-based segmentation is applied similarly to the
Reddy method. Note that in case of unsupervised affine model
estimation, usually further artifacts are expected [31], thus these
experiments can provide an upper bound for the performance of
the affine approach.

4) Epipolar: This method partially implements the sequential
model introduced in [7]: each pixel is checked against the
homography and epipolar [21] constraints, and outliers of both
comparisons are labelled as foreground. Thereafter, morphology
is applied to enhance smoothness of the segmentation.

5) K-Nearest-Neighbor-Based Fusion Procedure (KNNBF):
The motion segmentation method introduced first in [22] is one
of the main applications of the label fusion framework [4] (see
Section I-B). We applied this approach with two classes (motion
and background) for the 2-D registered photos, exploiting the fact
that the test images contain bounded parallax.

For qualitative comparison, Fig. 6 shows four selected image
pairs from the test database, segmented images with the different
methods and ground truth change masks. Quantitative results
using the F -measure can be found in Fig. 7.

We can conclude that both the unsupervised Reddy and the
supervised Affine methods cause many false positive foreground
pixels due to the lack of parallax removal. The Farin model can
eliminate most of the misregistration errors got by [19], however,
it may leave false foreground regions in areas with densely
distributed edges and makes some small and low contrasted
objects disappear. Since the Epipolar filter is based on local pixel
correspondences, its artifacts may appear due to the failures of
the feature tracker as well as in the case of objects moving in the
epipolar direction [7]. During the tests of the Epipolar method,
we have observed therefore both false alarms and missing objects
(Fig. 6 and 8).

The bottleneck of using KNNBF proved to be the poor quality
of the region and application maps which could be extracted
from the test images. The color based region segmentation was
less efficient in cases of textured background and low contrasted
small objects. On the other hand, due to large and dense object
motions between the frames, the different motion blobs by op-
tical flow were erroneously large and overlapped, which merged
several objects into one connected foreground region in the initial
application map. We demonstrate the later effect in Fig. 9 and 10
using different image pairs from the KARLSRUHE test sequence
[4]. Since the frame-rate of that video is about 25fps, it enables
to compare the performance of KNNBF to the proposed L3MRF

model as a function of the time difference between the images.
Fig. 9 shows the obtained change masks for two selected frame
pairs. The results confirm that processing two consecutive frames
of the video with slight object motions is successful with KNNBF

as in [4]. However, if we select two images with one second time
difference, the fusion process can less accurately correct the large
distortions of the initial optical flow mask. Similar tendencies
can be observed from the quantitative results of Fig. 10: dealing
with frames of cca. 0.04 − 0.1s difference is preferred with the
KNNBF method, but as the elapsed time (thus the size of object
displacements) increases, the proposed L3MRF model becomes
clearly more efficient.

Note that the above results show two limitations of the proposed
L3MRF model as well. First, it detects small object motions with
less accuracy (Fig. 9, 10). However, we have not focused on
that case, which is successfully addressed by other methods in
the literature [2], [4]. The second limitation can be observed in
the ‘Budapest’ #2 image pair in Fig. 6. The parallax distortion
of a standing lamp (marked by an ellipse in both frames and
in the change maps) is higher than the side of the correlation
search window, which results in two false objects in the motion
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Fig. 6. Comparative segmentations: four selected test image pairs, segmentation results with different methods and ground truth. Reference methods are
described in Section IV-B. In the right column, the ellipses demonstrate a limitation: a high standing lamp is detected as a false moving object by all methods.
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TABLE I
COMPARISON OF DIFFERENT RELATED METHODS AND THE PROPOSED MODEL. (NOTES FOR TEST METHODS: †IN FRAME-DIFFERENCING MODE

‡WITHOUT THE MULTIVIEW STRUCTURE CONSISTENCY CONSTRAINT)

Author(s) Published paper(s) Input of the
method

Frame-rate
of the image
source

Compensated par-
allax

Expected
object
motions

Related test
method in Sec.
IV-B

Reddy and Chat-
terji

TIP 1996 [19] Image pair no limit none arbitrary Reddy

Irani and Anandan TPAMI 1998 [21] 2 or 3
frames

no limit no limit arbitrary Epipolar

Sawhney et al. TPAMI 2000 [6] 3 frames no limit sparse, heavy arbitrary -
Pless et al. TPAMI 2000 [2] Sequence video (≈ 25) fps no limit small -
Kumar et al. TIP 2006 [38] ([12]) Image pair video fps none arbitrary Affine
Farin and With TCSVT

2006[23]([14])
Image pair† no limit dense/sparse,

bounded
large Farin †

Yin and Collins CVPR 2007 [8] Sequence 6fps none small -
Yuan et al. TPAMI 2007 [7] Sequence 5fps dense parallax small Epipolar †,‡
Jodoin et al. TIP 2007 [4] ([22]) Image pair video fps bounded small KNNBF

Proposed method Image pair 0.3− 1 fps dense/sparse,
bounded

large L3MRF

Balloon1 Balloon2 Budapest
0.4

0.6

0.8

1

F
−

m
ea

su
re

 

 

Reddy

Farin

Affine

Epipolar

KNNBF

L3MRF

Fig. 7. Numerical comparison of the proposed model (L3MRF) to five ref-
erence methods, using three test sets: ‘balloon1’ (52 image pairs), ‘balloon2’
(22) and ‘Budapest’ (9).

mask, similarly to the reference methods. That artifact should be
eliminated at a higher level.

In summary, the experiments showed the superiority of the
proposed L3MRF model versus previous approaches in cases of
large camera and object motions and bounded parallax.

C. Evaluation versus different fusion models

Another relevant issue of validation is to compare the proposed
L3MRF model structure - in the context of the addressed appli-
cation - to different information fusion approaches introduced in
Section I-B. Note that we already tested the KNNBF label fusion-
reaction method [4] in the previous section. Here we will focus on
different fusion models, which use the same features as defined in
Section II. The advantages of the proposed multi-layer Markovian
structure (eq. (7)) will be demonstrated for this problem versus
four other approaches.

1) Observation fusion: In this case, the 2-D f(s) = [d(s), c(s)]

feature vectors should be modeled by joint 2-D density functions:
P (f(s)|bg) and P (f(s)|fg), thereafter the segmentation can be
performed by a single-layer Potts MRF [15], [24]. For a selected
training image, we plot in Fig. 11 the 2-D f(s)-histograms of
the background and foreground regions. Based on this experi-
ment, the statistics is approximated by a mixture of Gaussian

Fig. 8. Segmentation example with the Epipolar method and the proposed
L3MRF model. Circle in the middle marks a motion region which erroneously
disappears using the Epipolar approach.

Fig. 9. Comparison of the proposed L3MRF model to the KNNBF method
[4], using image pairs from the KARLSRUHE sequence (# denotes the frame
number). In consecutive frames of the video (above) KNNBF produces better
results, however, our L3MRF model significantly dominates if (below) we
chose two frames with 1 second time difference
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Fig. 10. Comparing KNNBF to L3MRF. Quantitative segmentation results
(F -measure) of different frame pairs from the KARLSRUHE test sequence, as
a function of the time difference between the images. The proposed method
dominates if the images are taken with larger elapsed time, which results in
large object displacements.
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Fig. 11. Limitations of the observation fusion approach with the proposed
feature selection. Above: 2-D joint histogram of the f(s) = [d(s), c(s)]
vectors obtained in the background and in the foreground training regions. Be-
low: two selected background pixels and backprojection of the corresponding
feature vectors to the background histogram.

(a) Image 1 (X1) (b) Image 2 (X2) (c) GT motion regions

(d) Observation fusion (e) Decision fusion (f) L3MRF-δ∗0

(g) L3MRF-δd,c
0 (h) Proposed L3MRF (i) Binary ground truth

Fig. 12. Evaluation of the proposed L3MRF model versus different fusion
approaches. Methods are described in Section IV-C.
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Fig. 13. Numerical comparison of the proposed model (L3MRF) to different
information fusion techniques with the same feature selection.

distributions for the background class, and by a 2-D uniform
density for foreground. As Fig. 11 shows, high density areas in
the background histogram correspond to f(s) features where both
following conditions hold: i) d(s) is near to zero and ii) c(s) is
near to one. However, according to our experiments (see Section
II) several background pixels satisfy only one of i) or ii). This
strong limitation is demonstrated in Fig. 11 below, regarding two
selected background points. Although pixel s1 corresponds to the
high peak of the background histogram, for the second static point
s2, f(s2) lies out of the high density region. For the above reasons
we have observed poor segmentation results with this approach
[Fig. 12(d)] independently from the number of Gaussian mixture
components fit to the background histogram. Quantitative results
are presented in Fig. 13.

2) Decision fusion: Applying the decision fusion scheme [28]
(Section I-B) in a straightforward way, one should implement a
sequential process. First, two label maps are created based on the
d(.) and c(.) features respectively, so that the Sd and Sc layers
are segmented with ignoring the inter-layer cliques. Thereafter,
the segmentation of S∗ is derived by a pixel by pixel AND
operation from the two change maps. As the main difference,
in the sequential model the label maps in Sd and Sc are
obtained independently, while in L3MRF, they are synchronised
by the inter-layer interactions. Experimental evidence suggests
the superiority of the L3MRF segmentation model over decision
fusion [Fig. 12(e) and (h), 13].

3) L3MRF-δ∗0 and L3MRF-δd,c
0 : The proposed 3-layer struc-

ture (Fig. 4) contains intra-layer smoothing terms both in the
feature layers (δd, δc) and in the final segmentation layer (δ∗). The
reason for the applied redundancy is that one can show different
effects of the two terms. On one hand, δ-factors in the feature
layers are primarily used to decrease the noise of the features
(compare the noisy D-map in Fig. 2(d) and the smoothed Reddy
result for the same image pair in Fig. 6). On the other hand, δ∗

is responsible for providing a noiseless final motion mask in S∗

through indirectly synchronising the segmentations of the Sd and
Sc layers. To demonstrate the gain of using booth model elements
we test two modifications of the introduced L3MRF structure. The
first one, called L3MRF-δ∗0 , uses δ∗ = 0 while leaving the original
values of δd > 0 and δc > 0 as defined in Section IV-A. Similarly,
we obtain the L3MRF-δd,c

0 segmentation with δd = 0, δc = 0 and
δ∗ > 0 parameters. Experiments show that both modifications of
the proposed L3MRF model result in less accurate motion masks
[Fig. 12(f) and (g), Fig. 13].

This experimental section has confirmed the benefits of the
introduced L3MRF structure for the addressed problem versus
four different information fusion models. It has been shown that
the 2-D joint density representation of the two examined features
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(i.e. observation fusion) cannot appropriately express here the
desired relationship between the feature and label maps, while
the multi-layer approach provides an efficient solution. On the
other hand, considering the task as a global Bayesian optimization
problem (7) is preferred to apply a sequential decision fusion
process. Finally, using intra-layer smoothing interactions in each
layer contributes to the improved segmentation result.

V. CONCLUSION

We have introduced a novel three-layer MRF model (L3MRF)
for extracting the regions of object motions from image pairs
taken by an airborne moving platform. The output of the proposed
method is a change map, which can be used e.g. for estimating
the dominant motion tracks (e.g. roads) in traffic monitoring
tasks, or for outlier region detection in mosaicking and in stereo
reconstruction. Moreover, it can also provide an efficient prelim-
inary mask for higher level object detectors and trackers in aerial
surveillance applications.

We have shown that even if the preliminary image registra-
tion is relatively coarse, the false motion alarms can be fairly
eliminated with the integration of frame-differencing with local
cross-correlation, which present complementary features for de-
tecting static scene regions. The efficiency of the method has
been validated through three different sets of real-world aerial
images, and its behavior versus five reference methods and four
different information fusion models has been quantitatively and
qualitatively evaluated. The experiments showed that the proposed
model outperforms the reference methods dealing with image
pairs with large camera and object motions and significant but
bounded parallax.
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