Further results on the covering radious of small codes
Kéri, Gerzson and Östergard, P. R. J. (2007) Further results on the covering radious of small codes. Discrete Mathematics, 307. pp. 69-77.
Full text not available from this repository.Abstract
The minimum number of codewords in a code with t ternary and b binary coordinates and covering radius R is denoted by K(t,b,R). In the paper, necessary and sufficient conditions for K(t,b,R)=M are given for M=6 and 7 by proving that there exist exactly three families of optimal codes with six codewords and two families of optimal codes with seven codewords. The cases M<=5 were settled in an earlier study by the same authors. For binary codes, it is proved that K(0,2b+4,b)>=9 for b>=1. For ternary codes, it is shown that K(3t+2,0,2t)=9 for t>=2. New upper bounds obtained include K(3t+4,0,2t)<=36 for t>=2. Thus, we have K(13,0,6)<=36 (instead of 45, the previous best known upper bound).
Item Type: | ISI Article |
---|---|
Uncontrolled Keywords: | covering code, covering radius, mixed code, surjective code |
Subjects: | Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány |
Depositing User: | Eszter Nagy |
Date Deposited: | 11 Dec 2012 15:30 |
Last Modified: | 11 Dec 2012 15:30 |
URI: | https://eprints.sztaki.hu/id/eprint/5082 |
Update Item |