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Abstract— In in this paper we propose a new model regarding video flow. For several video surveillance applicationshhig
foreground and shadow detection in video sequences. The meld resolution images are crucial. Due to the high bandwidth
works without detailed a-priori object-shape information, and it requirement, the sequences are often captured at a low [9] or

is also appropriate for low and unstable frame rate video sotces. . . o
Contribution is presented in three key issues: (1) we propas unsteady frame rate depending on the transmission conslitio

a novel adaptive shadow model, and show the improvements These problems appear, especially, if the system is coedect
versus previous approaches in scenes with difficult lightig and to the video sources through narrow band radio channels
coloring effects. (2) We give a novel description for the fazground  or over saturated networks. For another example, quick off-
based on spatial statistics of the neighboring pixel valugsvhich line evaluation of the surveillance videos is necessargr aft
enhances the detection of background or shadow-colored odsgt - S . - .
parts. (3) We show how microstructure analysis can be used cr|m|n.al incident. Since all the. video streams correspog_dl

in the proposed framework as additional feature components 0 & given zone should be continuously recorded, these sideo
improving the results. Finally, a Markov Random Field modelis may have a frame rate lower than 1 fps to save up storage
used to enhance the accuracy of the separation. We validate resources.

our method on outdoor and indoor sequences including real For these reasons, a large variety of temporal informatike,

surveillance videos and well-known benchmark test sets. pixel state transition probabilities [10][11][12], pediaity cal-

Index Terms— Foreground, Shadow, Texture, MRF. culus [2][13], temporal foreground description [3], ordking
[14][15], are often hard to derive, since they usually need a
I. INTRODUCTION permanently high frame rate. Thus, we focus on using frame

rate independent features to ensure graceful degradétios i

tORIE.GRQUNID det§|<|:t|on IS atn mngtant egrly VISIOame rate is low or unbalanced. On the other hand, our model
ask In visuai survelfiance systems. Shape, siz€, numbgl, exploits temporal information for background and shad
and position parameters of the foreground objects can

derived f te silhouette mask and used by manodeing.
erived from an accurate stinouette mask and used by me}@iechnique used widely for background subtraction is the
applications, like people or vehicle detection, trackingl a

lassificati adaptive Gaussian mixtures method of [4], which can be
_T_\r/]em classl |cat|cf)n. . ¢ shad the back used together with shadow filters of e.g. [16][17][18]. Tdes
ekpre_tsedr?;_e (I)t tmow?g ctas r;s a ovlvs onb he oac gzgro thods classify each pixel independently, and morphology
mivﬁfg Iobjel.\clt(;u Sin?:eejr::jn:r gofn:irl)lirgigla?iron ioi\clili?i:b@Es] Ols used later to create homogenous regions in the segmented
' . image. That way, the shape of the silhouettes may be strong|
50% of the non-background points may belong to shado oad way P rho y gy

i I . W@orrupted as it is shown in [12][19].
methods W'thouF shadow filtering [3][4][5] can be less et An alternative segmentation schema is a Bayesian approach
in scene analysis.

. . _ 6[12]. The background, shadow and foreground classes are con

In_ the paper we deal with an image segmentation probl ered to be stochastic processes which generate thevetiser
with three classesforegroundobjects,backgrounohndshadow ixel values according to locally specified distributioiie
of thg f(_)regroun_d objects being <_:ast on the b_ackground. Satial interaction constraint of the neighboring pixeds ©e
exploit mformatl_on from local plxel_—levels, mlcrostrmmall madelled by Markov Random Fields (MRF) [20].
features and n(_a_lghborhood c_:onnectlon. We assume h?"'” e previous Bayesian methods [21][22] detect foreground
stable, or stab|l_|ze(_1 [6] static camera, since it is aVwabobjects by building adaptive models regarding the backgiou
for sgveral applications. Note that t_here are papers [[#]/] and shadow, and the foreground pixels are purely recognized
focusmg.on .the presence of dynamu: background and Camgganon-matching points to these models. That way, backdroun
ego'm"“?” mstead.of the.var|ous shadow effects. . or shadow colored object-parts cannot be recognized. &pati
Another important issue is related to the properties of tr2)‘;'I‘Jject description has been used both for interactive [28] a
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TABLE |
COMPARISON OF DIFFERENT CORRESPONDING METHODS AND THE PROSED MODEL. NOTES. * TEMPORAL FOREGROUND DESCRIPTION'* PIXEL
STATE TRANSITIONS

Method High frame rate| Shadow detec{ Shadow param- Foreground indoor / out- | texture Dynamic back-
requirement tion eter update estimation from| door ground
current frame

Mikic 2000 [21] | No global, constant] No No outdoor No No
ratio

Paragious 2001] No illumination in- | No No indoor No No

[28] variant

Salvador 2004| No illumination in- | No No both No No

[29] variant

Martel-Brisson No local process Yes No indoor No No

2005 [31]

Sheikh 2005 [3] | Yes: tfd * No - No both No Yes

Wang 2006 [12] | Yes: pst ** global, constant] No No indoor first  ordered| No
ratio edges

Proposed No global, Yes Yes both different No

method probabilistic microstructures

Our method (partly introduced in [25]) is a Bayesian techrig background in [4]. In this way, the differences in the light
which uses spatial color information instead of temporalbsorption-reflection properties of the scene points can be
statistics to describe the foreground. It assumes thagfotmd notably considered. However, a single pixel should be shad-
objects consist of spatially connected parts and theses panived several times till its estimated parameters converge,
can be characterized by typical color distributions. Sithese whilst the illumination conditions should stay unchanged.
distributions can be multi-modal, the object-parts shauddl This hypothesis is often not satisfied in outdoor survedéan
be homogenous in color or texture, while we exploit the sphatienvironments, therefore, this local process based apiprisac
information without segmenting the foreground componentdess effective in our case.

In the literature, different approaches are available ndigg We follow another approach: shadow is characterized with
shadow detection. Although there are some methods [26][2@lobal’ parameters in an image (or in each subregion, irecas
which attempt to find and remove shadows in the singtd videos having separated scene areas with different-light
frames independently, their performance may be degradads), and the model describes how the background values of
[26] in video surveillance, where we must expect imagehke different sites change, when shadow is projected on.them
with poor quality and low resolution, while the computatdn We consider the transformation between the shadowed and
complexity is too high for practical use [27]. background values of the pixels as a random transformation,
For the above reasons, we focus on video-based shadow muehce, we take several illumination artifacts into consitien.
eling techniques in the following. Here the ‘shadow invatia On the other hand, we derive the shadow parameters from
methods convert the images into an illumination invariagobal image statistics, therefore, the model performasce
feature space: they remove shadows instead of detecting theeasonable also on the pixel positions where motion is rare.
This task is often performed by color space transformatioBolor space choice is a key issue in several corresponding
Widely used illumination-invariant color spaces are elte t methods. We have chosen the CIE L*u*v* space for two well
normalized rgb [16][28] and;c2c3 spaces [29]. [30] exploits known properties: we can measure the perceptual distance
hue constancy under illumination changes to train a weak cldbetween colors with the Euclidean distance [32], and the
sifier as a key step of a more sophisticated shadow detector. &lor components are approximately uncorrelated witheeisp
find an overview of the illumination invariant approaches ito camera noise and changes in illumination [33]. Since we
[29] indicating that several assumptions are needed ragardderive the model parameters in a statistical way, there is no
the reflecting surfaces and the light sources. These asmumaptneed for accurate color calibration and we use the common
are usually not fulfilled in a real-world environment. Outdls, CIE D65 standard. It is not critical to consider the exact
for example, the illumination is the composition of the dire physical meaning of the color components, which is usually
sunlight, the diffused light corresponding to the blue skgnvironment-dependent [29]; we use only an approximate
and various additional light components reflected from theterpretation of thd., u, v components and show the validity
field objects with significantly different spectral distiions. of the model via experiments.

Moreover, the camera sensors may be saturated, espeaiallBésides the color values, we exploit microstructure infarm
the case of dark shadows, therefore the measured colorstcation to enhance the accuracy of the segmentation. In some
be calculated by simplified physical models. Since some pfevious works [7][8] texture was used as the only feature fo
these color spaces ignore the luminance components of Beekground subtraction. That choice can be justified in oase
color, the resulting models become sensitive to noise. strongly dynamic background (like a surging lake), but \egi

In a ‘local’ shadow model [31] independent shadow processlesver performance than pixel value comparison in a stable
are proposed for each pixel. The local shadow parameterssironment. We find a solution for integrating intensitydan
are trained using a second mixture model similarly to thexture differences for frame differencing in [34]. Howeve
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that is a slightly different task than foreground detectgince  [36]: P(X|Q) = [], g P(Ts|ws), while to present smooth
we should compare the image regions to background/shadmmnected regions in the segmented image, the a-prioraprob
models. Respect to the background class, our color-textiniéty of a labeling, P(2), is defined by the Potts model [37].
fusion process is similar to the joint segmentation apgioaghe key point in the model is to define the conditional density
of [12], which integrates gray level and local gradient fedunctionspy(s) = P(Ts|ws = k), forall k € ® ands € S. For
tures. We extend it by using different and adaptively chosexamplepy,,(s) is the probability that the background process
microstructural kernels, which suit better the local scergenerates the observed feature vafyeat pixels. Later onz,
properties. Moreover, we show how this probabilistic apgto in the background will also be featured as a random variable
can be used to improve our shadow model. with the probability density functiopy, (s).

For validation we use real surveillance video shots and algée define the conditional density functions in Section IlI-V
test sequences from a well-known benchmark set [35]. Taledled the segmentation procedure will be presented in Section
| summarizes the different goals and tools regarding some\di in detail. Before continuing, note that in fact we miniei

the above mentioned state-of-the-art methods and the pedpathe minus-log of eq. (2). Therefore, in the following we use t

model. For detailed comparison see also Section VII. ex(s) = —logpi(s) local energy terms, for easier notation.
In summary, the maircontributions of this paper can be

divided into three groups. We introducestatistical shadow |ll. PROBABILISTIC MODEL OF THE BACKGROUND AND
modelwhich is robust regarding the forthcoming artifacts in SHADOW PROCESSES

real-world surveillance scenes (Section IlI-B.), and a-Coj  General model

responding automatic parameter update procedure, which 'We model the distribution of feature values in the back-

usually missing from previous similar methods (Section V-B . . : ) .
We in¥roduce% non-%bject based, spatial des(cription )(\)/f tﬁ(raound and in the shadow by Gaussian density functions, like

. . e.g. [11][12][35].
foregroundwhich enhances the segmentation results also Bnsidering the low correlation between the color comptsien

low frame rate videos (Section 1V). Meanwhile, we show ho . . S
. : : L . 133], we approximate the joint distribution of the features
microstructure analysigan improve the segmentation in thi . . : . . o
y a 4 dimensional Gaussian density function with diagonal

framework (Section III-C). ovariance matrix:
We also have a few assumptions in the paper. First, the camery '

stands in place and it has no significant ego-motion. Segondl 3, (s) = diag{o} 1,(5), 0% . (5), 0% (5), o1 (5)}

we expect static background objects (e.g. there is no wavi %

river in the background). The third assumption is related F8 k e_{bg’Sh}' e

the illumination: we deal with one emissive light source iéccordlngly, the distribution parameters are

_ T = _

the scene, however, we consider the presence of additi afs) = [“kvL(S>"T"’“’“=T(S)] mean, andoy(s) =

diffused and reflected light components. ok,L(8),...,0r7(s)]" standard deviation vectors. With this
‘diagonal’ model we avoid matrix inversion and determinant

recovery during the calculation of the probabilities, ahé t

ex(s) = —logpr(s) terms can be directly derived from the
An image S is considered to be a two-dimensional gricdbne dimensional marginal probabilities:

of pixels (sites), with a neighborhood system on the lattice 9

The procedure assigns a lahel to each pixels € S form er(s)=C+ Z log o..i(s) + 1 (M)

the label-set® = {fg,bg,sh} corresponding to three possible i={Loww,T} 2 Ok,i(8)

classes: foreground (fg), background (bg) and shadow (sh). 3)

Therefore, the segmentation is equivalent to a global lafel with C = 2log2x. According to eq. (3), each feature

O ={ws | s € S}.Asitis typical, the label field2 is modelled contributes with its own additional term to the energy chisu

as a Markov Random Field based on [20]. Therefore, the model is modular: the one dimensional model

The image data at pixel is characterized by a 4 dimensionaparametersj ;(s), o3 ;(s)], can be estimated separately.

feature vector:

To = [ (s), 2u(s), 2o (s), a7 ()] (1) B. Color features

where the first three elements are the color components of therhe yse of a Gaussian distribution to model the observed
pixel in the CIE L*u*v* space, andr(s) is a microstructural color of a single background pixel is well established in
response which we introduce in Section IlIl-C in detail. Sghe Jiterature, with the corresponding parameter estinati
X = {Z,|s € S} marks the global image data. procedures such as in [4][38]. We train the color components
We use a Maximum A Posteriori (MAP) estimator for they the background parameterg,[(s), 7ug(s)] in a similar
label field, where the optimal labelin@, corresponding t0 manner to the conventional online K-means algorithm [4].
the optimal segmentation, maximizes the probability: [1bg.1.(5), Hbg.u(s), fng.o(s)]T Vvector estimates the mean
P(§|X) o<P(X|SA))-P(SA)) @) background_ cglor of_ pixels mez_;tsured_ over the recent
frames, whilea.(s) is an adaptive noise parameter. An
We assume that the observed image data in the differefficient outlier filtering technique [4] excludes most okth
pixel positions is conditionally independent given a lalbgl non-background pixel values from the parameter estimation

Il. FORMAL MODEL DESCRIPTION
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Fig. 1. lllustration of two illumination artifacts (the fn@e in theleft image has been chosen from the ‘Entrance pm’ test sequehickght band caused
by a non-Lambertian reflecting surface (a glass door) 2: dhddow part between the legs (more object parts change fteeted light). The constant ratio
model (see image in theniddle causes errors, while the proposed modiglht image) is more robust.

. - . - Shadow Foreground

process, which works without user interaction.
As we have stated in the introduction, we characterizi |¥i b
shadows by describing the background-shadow color vall
transformation in the images. The shadow calculus i ‘ M__
based on the illumination-reflection model [39], which has 05 o8 11 14 05 08 1 14
been originally introduced for constant lighting, flat and v, v,
Lambertian reflecting surfaces. Usually, our scene does n
fulfill these requirements. The presented novelty is that w 1 ‘
use a probabilistic approach to describe the deviation ef th 0E 0e T B e o -
scene from the ideal surface assumptions, and get a mc
robust shadow detection. vy Yy

1) Measurement of color in the Lambertian modatcord- A G

ing to the illumination model [39] the respongés) of a given  '* 08 08 1€ 18 08 o6 18
image sensor placed at pixelcan be written as Fig. 2.  Histograms of the)y, . and i, values for shadowed and
. foreground points collected over a 100-frame period of tllew@ sequence
‘Entrance pm’ (frame rate: 1 fps). Each row corresponds tolercomponent.
9(5) = [ el 5o s (N)ax (4) ' ( Ps) ; P

wheree()\, s) is the illumination functionp(s) depends on the

surface albedo and geometny,\) is the sensor sensitivity. I 2) Proposed modelThe previous section suggests that the
the ‘background’, the illumination function is the compasi  ratio of the shadowed and background luminance values of the
of a direct and some diffused-reflected light componentgixels may be useful, but not powerful enough as a descriptor
while a shadowed surface point is illuminated by the diftisse of the shadow process. Instead of constructing a more difficu
reflected light only. illumination model, for example in 3D with two cameras, we
With further simplifications [39], eq. (4) implies the well-overcome the problems with a statistical model. For eacél pix
known ‘constant ratio’ rule. Namely, the ratio of the shaédw s, we introduce the variablé (s) by:

gsh(s) and illuminated valuey,.(s) of a given surface point .
. X . (s) _ R L(S)
is considered to be constant over the imagers = A. Yr(s) = )
The ‘constant ratio’ rule has been used in several appdicati Hbe,L
[11][12][21]. Here the shadow and background Gaussiandermhere, as defined earlieg;,(s) is the observed luminance
corresponding to the same pixel are related via a globallglue ats, andu,g 1. (s) is the mean value of the local Gaussian
constant linear density transform. In this way, the resultmckground term estimated over the previous frames [4].

may be reasonable when all the direct, diffused and reflect€dus, if they(s) value is close to the estimated shadow
light can be considered constant over the scene. Howewer, tlarkening factors is more likely to be a shadowed point.
reflected light may vary over the image in case of severdatstaMore precisely, in a given video sequence, we can estimate th
or moving objects, and the reflecting properties of the seda distribution of the shadoweg, values globally in the video
may differ significantly from the Lambertian model (See Figparts. Based on experiments with manually generated shadow
1). masks, a Gaussian approximation seems to be reasonable
The efficiency of the constant ratio model is also restrictaggarding the distribution of shadowedg values (Fig. 2 shows

by several practical reasons, like quantification errorshef the globak) statistics regarding a 100-frame period of outdoor
sensor values, saturation of the sensors, imprecise égtimatest sequence ‘Entrance pm’). For comparison, we have also
of gne(s) and A, or video compression artifacts. Based oplotted the statistics for the foreground points, whichdak

our experiments (Section VII), these inaccuracies cause pa significantly different, more uniform distribution.

detection rates in some outdoor scenes. Due to the spectral differences between the direct and arhbie

(®)
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illumination, cast shadows may also change theand v 2) Analytical estimation of the distribution parameters:
color components [40]. We have found an offset between thkere, we show that with some further reasonable assump-
shadowed and backgroundvalues of the pixels, which cantions, the features defined by eq. (10) have also Gaussian
be efficiently modelled by a global Gaussian term in a givedistribution, and the distribution paramet@ig + (s), ok, 7 (s)],
scene (similarly as for the component). Hence, we definek € {bg,sh} can be determined analytically.

¥ (s) (@nd,(s)) by As a simplification we exploit that the neighboring pixelsbda
usually the same labels, and calculate the probabilities by

wu(s) = l‘u(S) - /ng,u(s) (6)
) pi(s) = P(as|lws = k) = P(as|lw, = k,r € Ny)
As Fig. 2 shows, the shadowed, (s) and,(s) values follow
approximately normal distributions. This assumption is inaccurate near the border of the objects
Consequently, the shadow color process is characterized pRut it is a reasonable approximation if the kernel size (dwed t
three dimensional Gaussian random variable: size of setlVy) is small enough. To ensure this condition, we
— - o use3 x 3 kernels in the following.
Vs € §:9(s) = [Yr(s), Yuls), Pu(s)]” = Nlpy,Ty] Accordingly, with respect to eq. (10} (s) in the background

According to eq. 5 and 6, the color values in the shadow &nd similarly in the shadow) can be considered as a linear
each pixel position are also generated by Gaussian distrig@mbination of Gaussian random variables from the follgvin

tons o Ae= {0 re V) a1
s =1xL(r)| r e Ng
[22.(), 2u(s), 20 (5)]" < NlEg(s),Ten(s)]
wherezr,(r) < Npwg,(7), obg,(r)]. We assume that the
with the following parameters: xr(r) variables have joint normal distribution, therefore,

) xp(s) is also Gaussian with parametéfg,s 1(s), obg,7(5)]-
The mean valugu,, (s) can be determined directly [41] by
Ufh,L(S) = G?/;,L '/L%g,L(S) (8) .
pg7(5) = Y as(r) - figL(r) (12)
Regarding the: (and similarly to thev) component: reN,
(9) On the other hand, to estimate thg, r(s) parameter, we

peh,u(5) = g + Hbgu(s), 0 u(5) = 07 ;
S_ b . o gqf o v should model the correlation between the elements ,of
The estimation and the time dependence of paramet@isffect, thex, (r) variables inA, are non-independent, since

fsh, L (8) = o, L + ping,L(S)

[7z,,7y] are discussed in Section V-B. fine alterations in global illumination or camera white lreda
cause correlated changes of the neighboring pixel values.
C. Microstructural features However, very high correlation is not usual, since strongly

In this section, we define th&® dimension of the pixels’ textured details or simply the camera noise result in some
feature vectors (eq. (1)), which contains local microgtied  independence of the adjacent pixel levels. While previous
responses. methods have ignored this phenomenon e.g. by considering

1) Definition of the used microstructural featureRixels the features to be uncorrelated [12], our goal is to give a
covered by a foreground object often have different locAlOre appropriate statistical model by estimating the ooder
textural features from the background at the same locatigi®/relation for a given scene.
moreover, texture features may identify foreground point4e model the correlation factor between the ‘adjacent’ Ipixe
with background or shadow like color. In our model, texturgalues by a constant over the whole image. yeandr be
features are used together with color components and tH& sites in the neighborhood ef(¢, r € N;), and denote the
enhance the segmentation results as an additional comporéfrelation coefficient betweepandr by c,,.. Accordingly,
in the feature vector. Therefore, we make restrictionsndigg 1 ifg=r
the texture features: we search for components that we can Cq,r = { c ifg#r

get by low _addmonal computing time from the existing mOdevIvherec is a global constant. To estimate we randomly
elements, in exchange for some accuracy.

: . . choose some pairs of neighboring sites. For each sele¢ted si
According to our model, the textural feature is retrieveatrir . P 9 93
. . pair (¢,r), we make a sel,, from time stamps correspond-
a color feature-channel by using microstructural kerneés. '

. . ._ing to common background occurrences of pixeland r.

practical reasons, and following the fact that the humanalis 9 g . pixe "
. L . Thereafter, we calculate the normalized cross correlatign

system mainly percepts textures as changes in intensityseve . D [t i
texture features only for the ‘L’ color component. A novedty bitween_tlg_we Se”e@t? (q)|tt€ Lg.r} ?ntfxé[% ()t € L ’T}’t
the proposed model is (as being explained in Section Il)-C.3. erltet Indices are |rtne ;ar:;}ps 0 L rr;e;}surenrlentsa
that we may use different kernels at different pixel locasio ina Iy,t_we ap?rro_xm:g & by e” avleratgz O't € collecte
More specifically, there is a set of kernel coefficients fazctea correlation coetiicients, . over all selected site pairs.
site s: K — {a.(r)|r € N,}, whereN, is the set of pixels Thereafter, we can calculatg, ,.(s) according to the variance

arounds covered by the kernel. Feature-(s) is defined by: theorem for sum of random variables [41]
2 P . . . .
‘TT(S) — Z GS(T) -z ('f') (10) Ubg,T(S) - Z as(q) QS(T) Gbg,L(q) Gbg,L(T) Cq.,'r

q,mENg

rENg (13)
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Similarly, the Gaussian shadow parameters regarding the 1isi very low and unbalanced, we must consider consecutive
crostructural components by using eq. (7), (8), (12): images containing different scenarios with different clge
Previous works [21][22] used uniform distribution to deker
psn1(s) = Z as(r) - pp,1, - Hog,L(r) = py,1 - o, 7(5)  the foreground process which agrees with the long-termrcolo
reNs (14) statistics of the foreground pixels (Fig. 2), but it present
2 _ 2 a weak description of the class. Since the observed feature
O 7(8) = 01 Z baur(s) (15) values generated by the foreground, shadow and background
processes overlap strongly in numerous real world scenes,
where many foreground pixels are misclassified that way.
byr(s) = as(q) - as(r) - pvg.0(q) - g1 (r) - Cqr Instead of temporal statistics we use spatial color infdiona
to overcome this problem by using the following assumption:
3) Strategies for choosing kerneldn the following we whenevers is a foreground pixel, we should find foreground
deal with zero-mean kernel&’s : > _\ as(r) = 0) as pixels with similar color in the neighborhood. Consequgrit|
a generalization of simple first-order edge features by.[13}e can estimate the color statistics of the nearby foregtoun
Here we face an important problem from an experimentsites, we can decide if a pixel with a given color is likely
point of view. Each kernel has an adequate pattern, for whiglrt of the foreground or not. Unfortunately, when we want to
it generates a significant nonzero response, while mosteof #ssign a probability value to a given pixel describing itsefo
pixel-neighborhoods in an image are ‘untextured’ with e$p ground membership, the positions of the nearby foreground
to it. Therefore, one single kernel is unable to discrinénat pixels are also unknown. However, to estimate the localrcolo
‘untextured’ object point on an ‘untextured’ background.  distribution, we do not need to find all foreground pixelstju
An evident enhancement uses several kernels which can-reaggme samples in each neighborhood. The key point is that
nize several patterns. However, increasing the numberef e identify some pixels whiclcertainly correspond to the
microstructural channels would intensify the noise, beeauforeground: these are the pixels having significantly dffe
at a given pixel position all the ‘inadequate’ kernels givievels from the locally estimated background and shadow
irrelevant responses, which are accumulated in the energy t values, thus they can be found by a simple thresholding:
eq. (3). .
To overcome the above problem, we use one microstructuralw? = { fg i (Ebg(.s) > ¢) AND (esn(s) > ¢) (16)
channel only (see eq. (1)), and we use the most appropriate bg  otherwise
kernel at each pixel. Our hypothesis is: if the kernel resgonwhere( is a threshold (which is analogous with the uniform
at s is significant in the background, the kernel gives more irvalue in previous models [22] choosirg,(s) = ¢), andw?
formation for the segmentation there. Therefore, after axeh is a ‘preliminary’ segmentation label 6t
defined a kernel set for the scene, at each pixel positithhe Next, we estimate for each pixelthe local color distribution
kernel having the highest absolute response in the backgrowf the foreground, using theertainly foreground pixels in the
centered ast is used. According to our experiments, differenteighborhood ofs. The procedure is demonstrated in Fig. 4
kernel-sets, e.g. corresponding to the Laws-filters [4Bthe (for easier visualization with 1D grayscale feature vesyor
Chebyshev polynomials [43][42], produce similar results. We use the following notationg®” denotes the set of pixels
the following sections we use the kernels shown in Fig. &arked ascertainly foreground elements in the preliminary
which we have found reasonable for the scenes. Regarding th@sk:
‘Entrance pm’ sequence, each kernel of the set corresponds t F={r|res8, v’ =fg}
a significant number of background points according to o L
choice strategy (distributed as 44-19-22-15%). showira thWote that ' may be a coarse estimation of the foreground

q,rEN

_ (Fig. 4b).
each kemel is valuable. Let beV, the set of the neighboring pixels arousdconsid-
ERIEEE NEEE ERIERE WERE ering a rectangular neighborhood with window sizex m

(Fig. 4a). ThereafterF; is defined with respect te as the
set of neighboring pixels determined as ‘foreground’ by the
rjog4 1o r]-21 r]-21 preprocessing stefd@, = F NV, (Fig. 4c).

The foreground color distribution aroursdcan be character-
Fig. 3. Kernel-set used in the experiments: 4 of the impuspaonse arrays jzed by a normalized histogram over F (Fig. 4d). However,
corresponding to thé x 3 Chebyshev basis set proposed by [43] instead of using the noisk, directly, we approximate it by a
‘smoothed’ probability density functiory,(z), and determine
the foreground probability term ag,(s) = fs(Ts).*

To deal with multi-colored or textured foreground compasen

IV. FOREGROUND PROBABILITIES . X .
o ) the estimatedf,(.) function should be multi-modal (see a
The description of background and shadow characterizes the
scene and illumination properties, consequently it hasbeein the spatial foreground model, we must ignore the textacahponent

possible to collect statistical information about themiimea. ©f Z. since different kernels are used in different pixel lowadi, and the
microstructural responses of the various pixels may benmmarable. Thus in

In our lcase' the_ color Q|str|but|on regarding the fOregml"ths sectionT is considered to be a three dimensional color vector, fand
areas is unpredictable in the same way. If the frame rateee dimensional histogram.

o0 1] 202 1] oo 242

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Author manuscript, published in IEEE Trans. on Image Processing, vol. 17, no. 4, pp. 608-621, 2008
mEv

D h,: histogram of gray values in F,

.li / ’
©) KN,
=271 : : _/NQ(S):ALDB
0 &0 100 150 X 250

2

Fig. 4. Determination of the foreground conditional prabgbterm for a given pixels (demonstrated in grayscale). a) video image, with markirand

its neighborhood; (with window sidem = 45). b) noisy preliminary foreground mask c) Set: preliminary detected foreground pixels . (Pixels of
Vs\Fs are marked with white.) d) Histogram &, markingzs, and itsT neighborhood e) Result of fitting a weighted Gaussian temth®[zs — 7, s + 7]
part of the histogram. Herg, = 2.71 is used (it would be the foreground probability value forteaxel according to the ‘uniform’ model), but the procedure
increases the foreground probability 4003. f) Segmentation result of the model optimization with théfarm foreground calculus g) Segmentation result
by the proposed model

bimodal case in Fig. 4d). Note that we uge(.) only to Algorithm 1: foreground probability calculation

calculate the foreground probability valuesodis f,(Z ). Thus, 1) The Pi|>|<e|S Odes whose pixel values are close enougtwto
it is enough to estimate the parameters of the modg; 0, are collected into a set:
which coverst, (see Fig. 4e). Therefore, we conside(.) as FP={r|reF, |- Z| <1}
a mixture ofawelghted Gauss,la}n ter/r(n) anq aresidual t_grm 2) The empirical mean and deviation values are calculated
195(-)1_ for Wh'?h we only prescrlbe that(.) is a prObap'“ty regarding the color levels of sét”: i”, 2. These values
density function andds(Z) = 0 if ||Ts — T|| < 7. (ks IS @ estimate the mean and deviation parameters of the Gaugsian
weighting factor:0 < x5 < 1.) Hence, componenty(.).
_ 3) Denote by#HDthe number of the elements in a given get
fs(T) = [fis T[Ty, Xs) + (1 — ks) - 05(T) H. s = £7 is introduced as the ratio of the number
) - o of pixels witﬁ similar color tos and all pixels, among the
Accordingly, the foreground probability value of siteis sta- neighboring foreground initialized sites.
tistically characterized by the distribution of its neiginbood 4) An extra term is used to keep the probability low if there ar
in the color domain: none or only a few foreground pixels in the neighborhogd.
_ Denote byxt” = £ the ratio of the number of pixels in
€ig(s) = —log fs(Ts) = —log ks — log n(Ts|h,, Xs) Fs and the size of the neighborhodd. This term biaseg

. . the weight through a sigmoid function:
The steps of the foreground energy calculation are detailed

in Fig. 5. We can speed up the algorithm, if we calculate ke = kD 12 (17)
the Gaussian parameters by considering only some randomly L+ exp [~ (48" — Kamin/2)]
selected pixels i, [19]. We describe the parameter settings 5) Finally, the energy term is calculated as:

in Section V-A and in Table II.

erg(s) = —log ke —logn(Ts, I, 7)) (18)

V. PARAMETER SETTINGS

Our method works with scene-dependent and conditioRig. 5.  Algorithm for the estimation of the foreground prbbity term.
dependent parameterScene-dependeniarameters can be Notations are defined in Section IV.
considered constant in a specific field, and are influenced by,
€.g. camera sett!ngs, a-prior knowledg¢ about th? amgear'la\_ Background and foreground model parameters
objects or reflection properties. We provide strategies@m h
to set these parameters if a surveillance environment engiv  Thebackgroundparameter estimation and update procedure
Condition-dependenparameters vary in time in a sceneis automated, based on the work in [4], which presents
therefore, we use adaptive algorithms to follow them. reasonable results, and it is computationally more effecti
We emphasize two properties of the presented model. Regatdhn the standard EM algorithm.
ing the background and shadow processes, only the one diméhne foregroundmodel parameters (Section V) correspond to
sional marginal distribution parameters should be esgthata-priori knowledge about the scene, e.g. the expected size
(Section llI-A). On the other hand, we should estimate hieee tof the appearing objects and the contrast. These features
color-distribution parameters only, since the mean-dmna exploit basically low-level information and are quite geade
values corresponding to the microstructural component drerefore the method is able to consider a large variety of
determined analytically (see Section 11I-C.2). moving objects in a scene. In our experiments, we set these
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TABLE Il
FOREGROUND PARAMETER SETTINGS
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©
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Parameter | Definition and setting strategy 05 07 09 1
m the size of the neighborhood windoW; in pixels consid-
ered in the process. It depends on the expected size of the
objects in the scene, used = 1/3\/Tg, whereTg is ‘ ‘ .
the approximate average territory of the objects’ boundjng z——57 o8 . ’ . .
boxes

Kmin control parameter for the minimum required number |of

pre-classified foreground pixels in the neighborhood.| If ‘ . .

the ratio of the pixels and the size of the neighborhgod

is smaller thank,,i,, the foreground probability will be| : . )
low there, due to the sigmoid function of eq. (17). Small
Kmin INCreases the number of detected foreground pixels
and can be used if the objects are of compact shape |like
in the sequence ‘Highway'. Otherwise small,;,, causes 05 07 09 11 .08 03 03 08 18 09 0 09
high false foreground detection rate. Applyirg,i, = 0.1 o
for vehicle monitoring andk.,;, = 0.25 for pedestrians| Fig. 7. Shadow ¢ statistics on four sequences recorded by the ‘Entrance’
(including cyclists, baby carriages etc.) proved to be gopd camera of our University campus. Histograms of the occgrein,, v, and
T the threshold parameter which defines the maximum ¢lis<)» values of shadowed points. Rows correspond to video shmts diifferent
tance in the feature space between pixels generated bparts of the day. We can observe, the peak of ¢he histogram strongly
one Gaussian process. We use outdoors in high contfasgepends on the illumination conditions, while the changehia other two
7= 0.2 - dmax, iNdoorsT = 0.1 - dmax, Wheredmax shadow parameters is much smaller.
is the maximum occurring distance in the feature space.
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Fig. 6. Different periods of the day in the ‘Entrance’ sequesrsegmentation ‘

results. Above left: in the morning (‘am’), right: at noorelow left: in the s 7 e T s o e
afternoon (‘pm’), right: wet weather.

-
.

Fig. 8. 1 statistics for all non-background pixels Histograms of the
occurring,, ¥, andi, values of the non-background pixels in the same
sequences as in Figure 7.

parameters empirically. Table 1l shows a detailed overview
on the foreground parameters and how to set them. Notes on

parameter, are given in Section VIl and in Fig. 15. ) S
For the above reasons, we use supervised initializatiod, an

focus on the parameter adaption process in the following. Th

B. Shadow parameters presented method is built into a 24-hour surveillance syste

The changes in the global illumination significantly alte@f our university campus. We validate our algorithm via four
the shadow properties (Fig. 6). Moreover, changes can H@nually evaluated ground truth sequences captured by the
performed rapidly: indoors due to switch on/off differeight Same camera under different illumination conditions (fp.
sources, while outdoors due to the appearance of clouds. According to section IlI-B, the shadow parameters are 6
Regarding the shadow parameter settings, we discrimingg@lars: 3-3 components pf, respectivelys,, vectors. Fig. 7
parameter initialization and re-estimation. From a pcadti Shows the one-dimensional histograms for the occuriing
point of view, initialization may be supervised with margin %» andy, values of shadowed points for each video shot. We
shadowed regions in a few video frames by hand, once afé&n observe that while the variation of paramet@rs j,u
switching on the system. Based on the training data, @8d/y, are low,u, 1 varies in time significantly. Therefore,
can calculate maximum likelihood estimates of the shadoig update the parameters in two different ways.
parameters. On the other hand, there is usually no oppoyrtuni 1) Re-estimation of  parameters [y, 04, and
for continuous user interaction in an automated surveiban(u, ., 0y .]: The procedure is similar to which was
environment, thus the system must adopt the illuminatiarsed in [22]. We show it regarding the component only,
changes raising a claim to an automatic re-estimation prosince thev component is updated in the same way.
dure. We re-estimate the parameters at fixed time-intervals
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Denoteysy . [t], oy [1] the parameters at time W, is the set | Algorithm 2: updating the 1y, . shadow parameter
containing the observeg, values collected over the pixelsy 1) For each framé we determine:
detected as shadow between timandt + 7 U, = { [w[tl( 1t | s €S, Wt £bgt

Wy = {5 g =t,... t+T -1, wl? =sh, se 5} 2) We append?; to Q.
3) We may remove elements fro@x:

where upper indejp] refers to time# W, is the number of the « if #Q < MIN, we keep all the elements.

elements M, and D, are the empirical mean and the standaid o if #Q > MIN we find the eldest timestamp in Q
deviation values ofV;. We update the parameters: and remove all the elements fro@ with time stamp
te.
pypult + T = (1= &)pp,ult] + &My 4) If #Q > MAX after step 3: in order of their timestamp
we remove further (‘old’) elements frog#Q till we reach
Ui,u[t +T]=(1- ft)ai,u[t] +&Dj #Q < MAX.

Parameter; is a weighting term ( < ¢, < 1) depending 5) We update the histograiy, regarding@ and apply:

on #W;, namely greater number of detected shadow points #E/fi” = argmax{hz}
increaset; and the influence of tha/, respectivelyD? term.
We useT = 60 sec.

2) Re-estimation of parameter§i, .o ]: Parameter Fig. 9. Updating algorithm for parametgr; .
1.1, corresponds to the average background luminance dark-
ening factor of the shadow. Except from window-less rooms
with constant lightningy.,, 1, is strongly condition dependent. ~ adaptation, since it is faster to modify the shape of a
Outdoors, it can vary between 0.6 in direct sunlight and @95  smaller histogram.
overcast weather. The simple re-estimation from the pmﬁ/iOParametemb,L is updated similarly tar,, ,, but only in the
section does not work in this case, since the illuminatiafine periods whenu,, ;, does not change significantly.
properties between time andt + 7 may rapidly change a Note that the above update process may fail in scenarios free
lot, which would result in absolutely false detected shadogf shadows. However, that case occurs mostly under artificia
values in set?; presenting false\/; and D; parameters for jllumination conditions, where the shadow detector module
the re-estimation procedure. can be switched off using a priori knowledge.
For this reason, we derive the actyal ; from the statistics
of all non-backgroundy;-s (where the background filter-
ing should be done by a good approximation only, we use
the Stauffer-Grimson algorithm). In Fig. 8 we can observe The MAP estimator in eq. (2) is realized by combining
that the peaks of the ‘non-background’ -histograms are a conditional independent random field of signals and an
approximately in the same location as they were in Fig. énconditional Potts model [37]. The optimal segmentation
The video shots corresponding to the first and second rowrresponds to the global Iabelin@, defined by
were recorded around noon where the shadows were relatively
small, however, the peak is still in the right place in the = argmlrhz log P(Ts|ws) + Z O(wr,ws)  (19)
histogram. SGST rs€S
These experiments encourage us to identify; with the :
location of the peak on the ‘non-backgroung) -histograms where the minimum is searched over all the possible segmen-
for the scene. tations (2) of a given input frame. The first part of eq. (19)
The description of the update-algorithmef ;, is as follows. contains the sum of the local class-energy terms regartimg t
We define a data structure which containg’a value with pixels of the image (see eq. (3) and eq. (18)). The second part
its timestamp:[+/, t]. We store the ‘latest’ occurring,¢] is responsible for the smooth segmentatiéxic,, w,) = 0 if
pairs of the non-background points in a @t and update s andr are not neighboring pixels, otherwise:
the histogramh of the ¢y values in@ continuously. The )
key point is the management of sgt We define MAX and O(wr, ws) = { —p }f Wr = Ws
MIN parameters which control the size @. The queue B if wr # ws
management algorithm, which is introduced in Fig. 9, fobow|n applications using the Potts-MRF models, the quality of
four intentions: the segmentation depends both on the appropriate pratabili

« () contains always the latest availahlg values. model of the classes, and on the optimization techniquetwhic

o The algorithm keeps the size @ between prescribed finds a good global labeling with respect to eq. (19). The

bounds MAX and MIN ensuring the topicality and relelatter factor is a key issue, since finding the global optinism

VI. MRF OPTIMIZATION

vancy of the data contained. NP hard [44]. On the other hand, stochastic optimizers using
o The actual size of) is around MAX in case of cluttered simulated annealing (SA) [20][45] and graph cut techniques
scenarios. [44][46] have proved to be practically efficient offering a

o In the case of few or no motion in the scene, thground to validate different energy models.
size of Q decreases until MIN. This fact increases th&he results shown in Section VIl have been generated by a SA
influence of the forthcoming elements, and causes quickagorithm which uses the Metropolis criteria [47] for actieg
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new state§ while the cooling strategy changes the temperature1l) Comparison of shadow modeldResults of different
after a fixed number of iterations. The relaxation paranseteshadow detectors are demonstrated in Fig. 11. For the sake of
are set by trial and error taking aim at the maximal qualitgomparison we have implemented in the same framework an
Comparing the proposed model to reference MRF methodslismination invariant (‘'lIlI') method based on [29], and arco
done using the same parameter settings. stant ratio model (‘CR’), similarly to [21]. We have obsetive
After verifying our model with the above stochastic optiariz that the results of the previous and the proposed methods are
we have also tested some quicker techniques for practis@hilar in simple environments, but our improvements beeom
purposes. We have found the deterministic Modified Metropsignificant in the surveillance scenes:

lis (MMD) [36] relaxation algorithm similarly efficient but
significantly faster for this task: processifg0 x 240 images
runs with 1 fps. We note that a coarse but quick MRF
optimization method is the ICM algorithm [48]. If we use
ICM with our model, the running speed 3sfps, in exchange
for some degradation in the segmentation results.

o In the ‘Laboratory’ sequence, the ‘II' approach is rea-
sonable, while the ‘CR’ and the proposed method are
similarly accurate.

o Regarding the'Highway’ video, although the ‘II' and
‘CR’ find the objects without shadows approximately, the
results are much noisier than it is with our model.

« On the'Entrance am’surveillance video, the ‘I’ method
VII. RESULTS fails completely: shadows are not removed, while the
foreground component is also noisy due to the lack of
luminance features in the model. The ‘CR’ model also
produces poor results: due to the long shadows and
various field objects the constant ratio model becomes
inaccurate. Our model handles these artifacts robustly.

The goal of this section is to demonstrate the benefit of
using the introduced contributions of the paper: the novel
foreground calculus, the shadow model and the benefit of the
textural features. The demonstration is done in two ways:
in Fig. 10-15 we show segmented images by the proposed
and previous methods, while regarding three sequences W improvements of the proposed method versus the ‘CR’
perform numerical evaluation. model can be also observed in Fig. 244 and5'" row).

2) Comparison of foreground modeldn this paper we
have proposed a basically new approach regarding foregroun
modeling, which needs neither high frame rate, in contrast

A. Test sequences to [3][11][12], nor high level object descriptors [15]. @th

We have validated our method on several test sequenga®vious models [21][22] that have used the uniform calsulu

Here, we show results regarding the following 7 videos: expressing foreground may generate any colors in a given

. ‘Laboratory’ test sequence from the benchmark set [351_omain with the same probabilit_y. Asitis shqwn in Fig. 12, 13
This shot contains a simple environment where previo@§d 14_6rd "?‘nd5th rows), the uniform model is often a coarse
methods [12] have already produced accurate results, @PProximation, and our method is able to improve the resul_ts

« ‘Highway’ video [35]. This sequence contains dark Shads_lgnlflcar_1tly. Moreover,_we have ob_served that our model is
ows, but homogenous background without iIIuminatioFPbU_St with respect to fine changes in the thresr_\old paramete
artifacts. In contrast with [21] our method reaches the (Fig. 15,3 row). On the other hand, the uniform model
appropriate results without post processing, which [§ highly sensitive to set appropriately, even in scenarios
strongly environment-dependent. which can be segmented properly with an adequate uniform

. ‘Corridor indoor surveillance video. Although, it is onValue (Fig. 1527 row).
the face of a simple office environment the bright objects 3) Microstructural featuresComplementing the pixel-level
and background elements often saturate the image senéegsure vector with the microstructural component enhance
and it is hard to accurately separate the white shirts #fe segmentation result if the background or the foregrasind
the people from the white walls in the background. textured. To demonstrate the additional information, Hig.

« 4 surveillance video sequences captured by the ‘Entrané8ows a synthetic example. Consider Fig. 10a as a frame of a
(outdoor) camera of our university campus in differeri@équence where the bright rectangle in the middle corretgpon
lightning conditions. (Fig 6). These sequences contai the foreground (image v. shows an enlarged part of it). The
difficult illumination and reflection effects and sufferbackground consists of four equal rectangular regionsh eac
from sensor saturation (dark objects and shadows). He@& them has a particular texture, which are enlarged in i-iv.
the presented model improves the segmentation resufeages. Similarly to the real-world case, the observed|pixe
significantly versus previous methods. values are affected by Gaussian noise. Below, we can see

results of background subtraction. First (image b), théuiea
) ) ) ~vector only consists of the gray value of the pixel. Secondly
B. Demonstration of the improvements via segmented imaggsage c), we complete it with horizontal and vertical edge

In the introduction we gave an overview on the state-ofletectors similarly to [12]. Finally (image d), we use the
the art methods (Table 1) indicating their way of (i) shadowernel set of Fig. 3, with the proposed kernel selectiorteta

detection (ii) foreground modeling (iii) textural analysi providing the best results.
In Fig 14, the4'" and5t" rows show the segmentation results
2A state is a candidate for the optimal segmentation. with and without the textural components, improvements are
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observable in the fine details, especially near the legs ef “-
people in the magnified regions.

C. Numerical evaluation

The quantitative evaluations are done through manu
generated ground truth sequences. Since the goal is fanedr
detection, the crossover between shadow and backgrousd
not count for errors.

Denote the number of correctly identified foreground pix
of the evaluation sequence WyP (true positivg. Similarly,
we introduceF’ P for misclassified non-foreground points, ai
F'N for misclassified foreground points.
The evaluation metrics consists of tliecall rate and the
Precisionof the detection.

TP TP

Recall = ——— Precision = —————
eca. TP n N recision TP n P

0

ii)

For numerical validation, we used 100 frames from the ‘I
trance pm’ sequence and 50-50 frames from the ‘Highw
and ‘Entrance am’ video shots.

Advantages of using Markov Random Fields versus morph@ig. 10. Synthetic example to demonstrate the benefits afibeostructural
ogy based approaches were examined previously [12][1gﬁtures. a) input frame, i-v) enlarged parts of the input]) bresult of

eground detection based on: (b) gray levels (c) grayldewath vertical
therefore, we focus on the state-of-the-art MRF models. TB&g horizontal edge features [12] (d) proposed model witiptaee kernel

evaluation of the improvements is done by exchanging our new
model elements one by one for the latest similar solutions in

the literature, and we compare the segmentation results.
Regarding shadow detection, the ‘CR’ model is the reference ..
and we compare the foreground model to the ‘uniform !
calculus again. [ 3
In Table Ill, we compare the shadow and foreground mod '
to the reference methods. The results confirm that our shadt 1
calculus improves the precision rate, since it decreases t 3
number of false negatively detected shadow pixels signi :
icantly. Due to the proposed foreground model, the rece ('_
rate increases through detecting several backgroundshag ;
colored foreground parts. If we ignore both improvementt bo
evaluation parameters decrease (#1 in Table 1lI).

VIIl. CONCLUSION

The present paper has introduced a general model
foreground segmentation without any restrictions on afpri
probabilities, image quality, objects’ shapes and spede: T
frame rate of the source videos might also be low or unstab
and the method is able to adapt to the changes in lighti
conditions. We have contributed to the state-of-the-athire
areas: (1) we have introduced a more accurate, adapt|
shadow model; (2) we have developed a novel description fi =«
the foreground based on spatial statistics of the neighgoriE\;}<
pixel values; (3) We have shown how different microstruetur e
responses can be used in the proposed framework as adbiti@Ra 11, shadow model validatiorComparison of different shadow models
feature components improving the results. in 3 video sequences (From above: ‘Laboratory’,' Highwdgritrance am’) .
We have compared each contribution of our model to previoG@'- 1 \{ideo image, Col. E’l{JgCg space based illumination invariants [29].

. . . . . Col. 3: ‘constant ratio model’ by [21] (without object-baspostprocessing)
solutions in the literature, and observed its superiofifye o 4: proposed model
proposed method now works in a real-life surveillance syste
(see Fig. 6) and its efficiency has been validated.
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Fig. 12. Foreground model validationSegmentation results on the ‘Highway' sequence. Row l:ovideage; Row 2: results by uniform foreground model;
Row 3: Results by the proposed model

TABLE Il
VALIDATION OF THE MODEL ELEMENTS. RESULTS WITH (#1) ‘CONSTANT RATIO' SHADOW MODEL WITH THE ‘UNIFORM’ FOREGROUND MODEL(#2)
‘CONSTANT RATIO' SHADOW MODEL WITH THE PROPOSED FOREGROUND MODE(#3) ‘UNIFORM’ FOREGROUND MODEL WITH THE PROPOSED SHADOW
MODEL, (#4)RESULTS WITH OUR PROPOSED SHADOW AND FOREGROUND MODEL

Video Recall Precision
#1 #2 #3 #4 #1 #2 #3 #4
Entrance pm 0.89 0.97 0.85 0.96 0.66 0.62 0.85 0.83
Entrance am 0.85 0.92 0.86 0.93 0.62 0.63 0.82 0.81
Highway 0.82 0.84 0.86 0.90 0.73 0.72 0.80 0.80
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