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ABSTRACT camera motion compensation, and an error-eliminating step
In this paper, we give a probabilistic model for automaticFrom this point of view, itis similar to [5], where the autlsor
1ssume that errors mainly appear near sharp edges. There-

change detection on airborne images taken with moving ca t locati here th tude of th dient.
eras. To ensure robustness, we adopt an unsupervised coal%rf’ atlocations where the magnitude of In€ gradien gelar
n both images, they consider that the differences of the cor

matching instead of a precise image registration. The chal’

lenge of the proposed model is to eliminate the registratiorrle‘e’ponOling pixel-values are caused with higher probgiulit

errors, noise and the parallax artifacts caused by the stiai registration errors than l.)y o_bject displacements. Howgver
jects having considerable height (buildings, trees, wetits) this mgthod Is less effectlve_, if there are several smaat)

from the difference image. We describe the background men{_cont_amlng several edges) in the Scene, becaus_e the post pr
bership of a given image point through two different feasure cessing may also remove some real objects, but it leaveserro

and introduce a novel three-layer Markov Random Field (MRI frTOOthly textured ar:as (e.'g. group of tr:(iest). Kle the ab
model to ensure connected homogenous regions in the seg- IS paper, we use a bayesian approach 1o tackie the above
mented image. roblem. We derive features describing the background mem-

bership of a given image point in two independent ways, and
Index Terms— Change detection, aerial images, camerajevelop a three-layer Bayesian labeling model to integhate
motion, MRF effect of the different features. Our model structure isilsim
to [6], however the observation processing, the labelird) an
1. INTRODUCTION inter-layer connections are significantly different.

The present paper addresses the problem of extractingthe a
curate silhouettes of moving objects or object-groups in im QZ REGISTRATION AND FEATURE EXTRACTION

ages taken by moving airborne vehicles |n.consecut|ve m.oDenote byX, andX, the two consecutive frames of the im-
ments. The procedure needs camera motion compensation

Feature correspondence is widely used for this task, wher%?e sequence abovg the same plxgl Iaﬁicé’he gray va]ue
a given pixels € S is 1 (s) in the firstimage and2(s) in

we look for corresponding pixels or other primitives such as?he second one
edges, corners, contours, shape etc. in the images wh|ch V&?ur first step is to find the optimal similarity transform be-

compare [1]. However, these methods are only usable for |n}

age pairs with small differences, and they may fail at occlu-Ween the images. For that purpose, we will use the Fourier
ge p . s ' y may .~ "~ shift-theorem based method of [2], which yields the regeste
sion boundaries and within featureless regions. Accortting

T i T
a different approach, the images are matched via a simplgre?ond frame_XQ. The_ pixel values Of_XQ are denoted_by
4(s)}. Thefinal goalis to perform a binary segmentation of

transformation (similarity [2], affine [3]), for which, wean & \ :
find existing robust techniques. Although there are sophist € wpages mtol forggrqun(i](fg) and background (bg) classes
cated ways to enhance the accuracy of these mappings [4], thE€ feature selection is shown in Fig. 1 using an airborne

”) : o X
purely similarity or affine matching does not fit to the scene]E’hOtO pair: ‘I(;al;mg a pro_(kj)abllrl]stlcl applrosclh, f'r‘:’)t we edxtract
geometry, and causes significant errors, especially aidotsa eatures, and then consider the class labels to be random pro

of static scene objects with considerable height (thisoefée cesses generating the features according to differemituist

called parallax distortion). tions.

For the above reasons, we introduce a two stage algorithElr']heﬁrs;t feature is the gray level difference of the correspo

. . . . _ T
which consists of a coarse (but robust) image registration f N9 Pixels in the registered images(s) = w;(s) — 1(s).
We validate this feature through experiments (Fig. 1c):&f w
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Fig. 1. Feature selection. Notations are in the text of Section 2.

plot the histogram ofl(s) values corresponding to manually proves the results significantly (Fig. 1j). We note that this
marked background points, then we can observe that a Gaudassification is still quite noisy. Therefore, we introdua
sian approximationis reasonabl(d(s)|bg) = N(d(s), u, o). robust segmentation model in the following section.

On the other hand, any(s) value may occur in the fore-

ground, hence the foreground class is modeled by a uniform

density: P(d(s)|fg) = 1/(ba — aq), if d(s) € [aq, ba], O oth- 3. MULTI-LAYER SEGMENTATION MODEL

erwise. Next, we demonstrate the limitations of this featur
After supervised estimation of the distribution paranmstee
derive D image in Fig. 1d as the maximum likelihood esti-
mate: the label of is argmax ¢ ¢, ne1 F2(d(s)|¢)). We can
observe here that the registration and parallax errorsatdoen
filtered out using onlyi(.), since theird(s) values appear as
outliers with respect to the previously defined Gaussian di
tribution.

From another point of view, assuming the presence of e ) ; p . .
rors of a few pixels, we can usually find an = [0, 0, spondlfg_to_ pixek on the layerS®¢. We denotes¢ € S€ and
offset vector, for which the rectangular neighborhoodsof § € S similarly. _ _

in X, and the same shaped neighborhood af o, in XQT We mtr_oduce a labeling process, Wh,LCh assigns a lafjel

is strongly correlated. In Fig le/f, we plot the correlationt© @l sites ofg from the label-set:l. = {fg, bg}. The la-
values over the search window of the offsetaround two beling of S/S¢ corresponds to the segmentation based on

given pixels (marked with the beginning of the arrows in Figthe d(.)/c(.) feature, respectively; while the labels at thie

1d). The upper pixel corresponds to a parallax error in thd2Yer present the final change mask. A global labeling &f
={w(sY)|s € S,ie{d,c,*}}.

background, while the lower one is part of a real object dis¥ g . . )
placement. The correlation plot has high peak only in thdn our model, the labeling of an arbitrary site depends diyec

upper case. We uses), the maxima in the local correla- ©" the labels of its neighbors (MRF condition). For this rea-
tion function around pixet as second feature. By examining SON: We must define the neighborhoods (i.e. the edges) in

the histogram of(s) values in the background (Fig 1g), we (see Fig. 2). To ensure the smoothness of the segmentations,

find that it can be approximated with a beta density functionVe Put €dges within each layer between site pairs correspond

P(c(s)|bg) = B(c(s),a, B). As for the foreground class we ing to neigh_boring pixels of Fhe image lattice? Qn the other

will use a uniform probability?(c(s)|fg) with a. andb. pa- hand, the sites cor.respondlng to the same pixel mus_t |nt?rac
rameters. We see in Fig. 16"(mage) that the(.) descriptor to prqceed the fusion of the two dlfferent'_segmentatllons la
causes also poor result in itself. Even so, if we consider P€lS in thes™ layer. Hence, we introduce ‘inter-layer’ edges
andC as a Boolean lattice, where 'true’ corresponds to th?&tween sites’ ands’: Vs € S;4,j € {d,c,x}, i # j.
foreground label, the logical AND operation @handC' im-

In the proposed approach, we construct a Markov random
field (MRF) model on a grapf whose structure is shown in
Fig. 2. In the previous section, we segmented the images in
two independent ways, and derived the final result by a label
fusion using the two segmentations. Therefore, we arrange
Jhe sites ol into three layerss?, S¢ andS*, each layer has
the same size as the image lattiteWe assign to each pixel
8 € S aunique site in each layer: e.g? is the site corre-

2We use first order neighborhoodsShwhere each pixel has 4 neighbors.
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Stlayer| Y Y 9 9 99 As we concluded from the experiments in Section 2, a pixel
©99 99 909 . is likely generated by the background process, if and only
i :( v Intra-fayer Cllgues if in the S and S¢ layers, at least one corresponding site
® 0O o © @ o o X
000 0 9o o e 2 o o has the label 'bg’. We introduce the, indicator function:
¢ Tig(s') = 1if w(s’) = bg; Iye(s’) = 0 otherwise, for
Slayer| @ @ 9 @ 9 9 9 i € {d, ¢, x}. With this notation the potential of an inter-layer
J"J" | cliqueCs = {s?, s, s*} is with p > 0:
v e \ y ; —p if Ie(s*) = max (Ipe(s%), Ipg (¢
0o o JJ ° Inter IayerCh:ues VC:;(ﬂcg):{ +Z oth(l,)rgvgzisg. (bg( ) Tog ( ))
S layer o 00 o © 0 0 ./
© 0 9o 0 0 o e Therefore, the optimal MAP labeling, which maximizes
Qv e s 0 o P(@|F) (hence minimizes- log P(@|F)) can be calculated
Q QOO ® 0O VO as:

RS I N RS

_ G = argmin,cq— Y _ log P(d(s)|w(s"))— ) _ log P(c(s)|w(s°))
Fig. 2. Structure of the proposed three-layer MRF model ses ses

+ Y Ve (we,) + ) Ve (we,)- @
Ca€C2 C3€C3

Therefore, the graph has doubleton 'intra-layer’ cliqubsi¢  The final segmentation is taken as the labeling ofthéayer.
setisC,) which contain pairs of sites, and ’inter-layer’ cliques
(Cs) consisting of site-triples. We also use singleton 'intra- 4. EXPERIMENTS
layer’ cliques C1), which are one-element sets containing the
individual sites: they will link the model and the local obse The evaluations are done through manually generated ground
vations. Hence, the set of cliquegis= C; U Cy U Cs. truth masks using different aerial image pairs. The model pa
Denote the observation processBy= { f(s)|s € S}, where rameters are estimated over a set of training images and we
f(s) =[d(s), c(s)]. Ourgoalisto find the optimal labeling  examine the quality of the segmentation on different teisspa
which maximizes the a posteriori probabil®(w|F) thatisa  Here, we compute the maximum likelihood estimates of the
maximum a posteriori estimate [ = argmax . P(w|F),  distribution paramete® (., u, o), B(., o, 3), U(., a4, bg) and
where(2 denotes the set of all the possible global labelingst/(., a., b.). The correlation map for the..) feature is calcu-
Based on the Hammersley-Clifford Theorem [7] the a postated with an efficient algorithm using dynamic programming
terior probability of a given labeling follows Gibbs didit-  and multiscaling [8]. To find a good suboptimal labeling ac-
tion: P(w|F) = % exp (— Y pee Velwe)), WhereVe isthe  cording to eq. (1), we use the modified Metropolis [9] opti-
clique potentialof C' € C, which is low’ if w. (the label-  mization method. ProcessiBg0 x 240 images takes approx-
subconfiguration correspondingd is semantically correct, imately 20 seconds on a desktop computer.
high’, if not. Z is a normalizing constant, which does notWe have compared the results of the proposed three-layer
depend onw. model to the following solutions. The first reference method
In the following part of this section, we define the clique po-(Layer1) is constructed from our model by ignoring tfie
tentials. We refer to a given clique as the set of its sites (imnd S* layers: this comparison emphasizes the importance
fact, each clique is a subgraph@y, e.g. we denote the dou- of using the correlation-peak features. The second referen
bleton clique containing site andr? with {s?, r¢}. is the method of Farin and With [5]. In the third reference
The observations affect the model through the singleton pamethod, the optimal affine transform between the framesafwhi
tentials. As we stated previously, the labels in Sfeand  was estimated in [4] automatically) is determined with su-
S¢ layers are directly influenced by th&.) andc(.) val-  pervision, through manually marked matching points, and a
ues, respectively, while the labels &t have no direct links  simple MRF model (similar to [5]) decreases the registratio
with these measurements. For this readqns; (w(s?)) =  errors. Fig. 3 contains the image pairs, ground truth and the
—log P(d(s)|w(s%)), Visey (w(s%)) = —log P(c(s)lw(s%)),  segmented images with the different methods.
Visey (w(s*)) = 0: Vs € S, where the probabilities that the For numerical evaluation, denote the number of correctipid
given foreground or background classes generaté(theor  tified foreground pixels of the evaluation imageshb¥ (true
¢(s) observation, were already defined in Section 2. positive. Similarly, we introduce? P for misclassified back-
For presenting smooth segmentation in each layer, the poteground points, and’N for misclassified foreground points.
tial of an intra-layer cliqu&’, = {s®,r'} € Ca,i € {d,c,*x}  The evaluation metric consists of tRecall(R) rate:7 P/ (T P+
has the following formV¢, (we,) = —0° if w(s') = w(r’);  FN)and thePrecision(P) of the detection?’ P/(T' P+ F P).
+0% if w(s?) # w(r?) for a constant® > 0. The results are in Fig. 4. With respect(t8 + R)/2, the gain
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Image 1 (X,) Ground truth Layerl

Farin Affine Proposed

Fig. 3. Qualitative evaluation: First images of the test pairs, ground truth and segmentagigults with different methods.
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Fig. 4. Quantitative evaluation: Numerical comparison of
the proposed method and the three other ones: Layerl, §ariny;
method and Affine matchingP and R rates are defined in
Section 4.

(5]

of using our method i85% compared to the Layerl segmen-
tation and10% compared to Farin’s method. The results of
the frames’ global affine matching, even with manually deter
mined control points, i$% worse than what we got by the
proposed model.

(6]
(7]

(8]
5. CONCLUSION

This paper address the problem of exploiting accurate crhanég]
masks from image pairs taken by a moving camera. A novel
three-layer MRF model has been proposed, which integrates
the information from two different observations. The effi-
ciency of the method has been validated through real-world
aerial images, and its behavior versus three reference-meth
ods has been quantitatively and qualitatively evaluated.
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