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Abstract. In this paper we give a new model for foreground-back-
ground-shadow separation. Our method extracts the faithful silhouettes
of foreground objects even if they have partly background like colors
and shadows are observable on the image. It does not need any a priori
information about the shapes of the objects, it assumes only they are
not point-wise. The method exploits temporal statistics to characterize
the background and shadow, and spatial statistics for the foreground.
A Markov Random Field model is used to enhance the accuracy of the
separation. We validated our method on outdoor and indoor video se-
quences captured by the surveillance system of the university campus,
and we also tested it on well-known benchmark videos.

1 Introduction

Detection of foreground objects is a crucial task in visual surveillance systems.
If we can retrieve the accurate shapes of the objects, their high-level description
becomes much easier, so it is favorable e.g. in detection of people or activity
analysis.
In the present paper, we exploit information from pixel-level estimation and
neighborhood connection, while motion and structure are not considered. Based
on the present results, more sophisticated segmentation methods can be devel-
oped by using tracking [12], object model matching [13], or edge information
[4] [14]. However, all these developments can be preceded by an exact model on
generating still background and reasonable shadow/foreground classes.
For foreground separation based on pixel intensity, Stauffer and Grimson [10]
proposed an adaptive, real time algorithm, but it cannot handle some impor-
tant problems. Shadows become part of moving objects, and since some parts of
the objects may have similar color to the background, holes appear often in the
silhouettes. The above mentioned problems can be observed on the silhouette
images of Figure 1.
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Fig. 1. Results of foreground detection with Stauffer-Grimson algorithm. Left: School
Entrance in the afternoon (’SE pm’) video, right: ’Highway’ test sequence

Usually shadows have to be handled separately, because they do not belong to
moving objects but their color properties are different from the background. [8]
gives an overview on the state-of-the-art methods.
Classification of background, shadow and foreground areas is basically a Bayesian
approach [1]. For this reason we must have statistical information about the a
priori and conditional probabilities of the different clusters and the observable
pixel values. The spatial interaction constraint of the neighbouring pixels can be
modelled by Markov Random Fields (MRF) [5].
Previously published Bayesian models are lack of some information. They skipped
shadow modelling [7][15], or the conditional probabilities of the shadow and fore-
ground processes were oversimplified functions [9][14]. Therefore these methods
are less effective on complex lighting conditions. Our goal was to develop a model
with correct estimation of shadow in different lightning and coloring effects, and
to detect foreground pixels of different colored and textured objects. Namely, the
present paper is based on the former results, introducing more adequate models
for conditional probabilities.
For validation we used real surveillance videos and also the benchmark sequences
from [8]. Our model was successful in experiments with non-ideal conditions, like
motley background and low contrast.

2 Markov model

Since the work of Geman and Geman [5] there are several examples where MRFs
are used for solving image-labeling problems. We used a similar model to that
in [2] to classify the pixels of the video images into the following three classes:
foreground (fg), background (bg) and shadow (sh). The definitions are the fol-
lowing:

S - set of pixels (or sites)
X = {xs | s ∈ S}, - set of image data (xs is the value of pixel s)
L={bg,sh,fg} - labels or classes.
Ω = {ωs | s ∈ S} - global labeling (ωs ∈ L is the label of pixel s).
pk(s) = P (xs|ωs = k), k ∈ L - conditional probability density function. E.g.

pbg(s) is the probability of that the background process generates the color value
xs at pixel s.
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According to the model the optimal labeling is the following:

Ω̂ = argminΩ

∑
s∈S

− log pk(s) +
∑

r,s∈S

V (ωr, ωs) (1)

where V (ωr, ωs) = 0 if s and r are not neighboring pixels, otherwise:

V (ωr, ωs) =
{−β if ωr = ωs

+β if ωr �= ωs

Our task is to define the pk(s) density functions, set the constant β > 0, and
choose the energy optimization technique which finds the best or at least a good
suboptimal labeling according to 1. We describe exactly how to get the pk(s)
probability terms in Sections 3.1, 3.2 and 3.3. In Section 6, we show the applied
MRF-optimization methods. In the following color images are considered, so the
pixel value is a three dimensional vector: xs = [xr(s), xg(s), xb(s)].

3 Probability model elements

3.1 Background probabilities

The distribution of the color values for a given background pixel is modeled by
Gaussian density function with mean value µbg(s) and covariance matrix Σbg(s).
[10] proposed an effective algorithm to determine the model parameters from the
color video-flow. In [14] a similar method has already been successfully used in
the MRF model. The covariance matrix is in the form of Σbg = σ2

bg · I, where I
is the 3 × 3 identity matrix. With this simplification we avoid matrix inversion
and determinant recovering during the calculation of the probabilities:

pbg(s) =
1√

(2π)3 · σ3
bg(s)

exp

(
−‖xs − µbg(s)‖2

2σ2
bg(s)

)
(2)

3.2 Shadow probabilities

[6] appointed since a shadowed pixel represents the background surface under
different illumination, the effect of illumination on pixel appearance is typical
for a situation. The effect was approximated by a diagonal A matrix as a multi-
plicative term in the RGB color space, and the shadow probabilities were directly
derived from the background model:

psh(s) = η
(
xs, A · µbg(s), A2 · Σbg(s)

)
where η(., ., .) marks Gaussian density function.
In case of motley background each surface may have different reflection proper-
ties, therefore the approximation of the darkening factor with a global constant
causes considerable model error. In [14] a heuristic additional shadow noise pa-
rameter was used to correct the deviation term, but in practical surveillance
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Fig. 2. Histograms for rr, rg, rb, R1, R2 and R3 values of shadowed and foreground
points from ’SE pm’ sequence.

videos, a more sophisticated method is needed.
Instead of modelling the probability density functions of the shadowed values
independently at each pixel location s, we modelled the density of the darkening
ratios globally in the image. We considered one global transformation, however
in case of images with multiple lighting and separated scene areas, the trans-
formation parameters should be estimated in each subregion separately. With
notation µbg(s) = [br(s), bg(s), bb(s)] we introduce vector containing ratios of
the color values in the background and in the shadow for each pixel and for each
color channel: r(s) = [rr(s), rg(s), rb(s)], where

rr =
xr

br
, rg =

xg

bg
, rb =

xb

bb
.

In Figure 2 the first and second columns show the histogram of the occurring
rr,rg, and rb values for manually marked shadowed and foreground points of
the School entrance in the afternoon (SE pm) sequence. We also executed this
experiment on other videos with similar results. We can observe, if we neglect the
small second peaks, the 1 dimensional ratio values in shadow have approximately
Gaussian distribution. However, Table 3.2 shows that the correlation between the
elements of vector r is high, so if we model the shadowed r ratios with Gaussian
distribution, the covariance matrix cannot be considered diagonal. Therefore
we have searched for further quantities, and found the following ones: R =
[R1, R2, R3]

R1 =
rr + rg + rb

3
, R2 =

rr

rb
, R3 =

rg

rb
,

In Figure 2 and Table 3.2 we can observe R1, R2, and R3 values are generated
also approximately by Gaussian distribution, but their correlation is definitely
smaller. Therefore we characterize shadow via R values. The resulting shadow
probability term for pixel s, and parameters of our shadow model are the fol-
lowing:

psh(s) = η (R(s), µsh, Σsh) (3)
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Table 1. Average of the absolute values of nondiagonal elements in the autocorrelation
matrix for r and R values of shadowed points

Corr(r) Corr(R)

SE pm: 0.967 0.374

Highw: 0.987 0.360

Fig. 3. Results of using MRF model with uniform foreground distribution

µsh = [µsh,1, µsh,2, µsh,3], Σsh = diag{σ2
sh,1, σ

2
sh,2, σ

2
sh,3}. (4)

3.3 Foreground probabilities

The description of background and shadow characterizes the scene and lighting
properties so it is possible to collect statistical information about them in time.
Unfortunately, the color distribution of foreground areas is unpredictable in the
same way. However it is often inappropriate to model the foreground by uniform
distribution, like in [9][14]. Figure 3 shows some resulting segmented images after
applying MRF optimization for our background and shadow model but using
uniform foreground distribution. Since the objects may have large background
or shadow-like connected parts, big holes appear in the silhouettes, and the
suggested Markovian model cannot remove these errors.
Instead of temporal statistics we used spatial color information to overcome

this problem. First we assume that a pre-processing step is able to locate most
of the foreground pixels. That process, which we introduce in Section 4, gives
a preliminary foreground mask to the algorithm. Denote F the set of pixels
marked as foreground elements in that mask. We have two assumptions for a
given foreground pixel:

– In the neighborhood there are some foreground pixels
– The color of the pixel matches to the color distribution of set of the neigh-

bouring foreground pixels.

In the following Vs denotes the set of the neighbouring pixels around s, consider-
ing rectangular neighborhood with window size v. Fs is the set of neighbouring
pixels determined as ’foreground’ by the preprocessing step: Fs = F ∩Vs. To deal
with textured or multi level foreground components, the estimated probability
density function of the color channels for Fs is in the following form:

fFs,xs(x) = ws · η(x, µfg(s), Σfg(s))) + (1 − ws) · f(x)
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Namely, we divide the neighborhood pixels in two clusters: the ones, whose color-
distance from xs is smaller than a threshold, are characterized by one Gaussian
term, while f(x) is the residual density function with constraint: f(x) = 0, if
‖xs − x‖ < τ , 0 < ws < 1. Accordingly, the color values of the site s are
statistically characterized by the distribution of its neighborhood in the color
domain:

pfg(s) = fFs,xs(xs) = ws · η(xs, µfg(s), Σfg(s)). (5)

To approximate the foreground model parameters we compose a subset of Fs by

FD
s = {r | r ∈ Fs, ‖xs − xr‖ < τ}.

Empirical mean value and deviation of the pixel values in FD
s estimate the

parameters [µfg(s), Σfg(s)]. Weight ws is calculated as a ratio of the cardinality
of sets FD

s and Fs. We also used an extra term to keep the probability low, if
there are any or only a few pre-classified foreground pixels in the neighborhood.

4 Preliminary foreground-shadow-background classifier

The foreground model introduced in Section 3.3 needs a pre-processing step,
which is able to find most of the foreground pixels. To achieve this task we used
a deterministic classifier which uses the existing background and shadow model
parameters from Section 3. The background matching step is the same as it was
used in [10]. Pixel s is classified as background, if:

‖xs − µbg(s)‖2 < 2c · σ2
bg(s)

Non-background the pixels are matched to the shadow constraints and labeled
as shadow, if

(Ri(s) − µsh,i)2 < 2c/3 · σ2
sh,i, i ∈ {1, 2, 3}

Other way the pixel gets foreground label.

5 Parameter settings

Our method has scene dependent and condition dependent parameters. Scene
dependent parameters can be considered constant in a specific field, and are
influenced by e.g. camera settings, expected size and shape of the objects or
reflection properties. We give strategies how to set these parameters given a ter-
ritory of a surveillance camera. Condition dependent parameters vary in time in
a scene, we used adaptive algorithms to follow them.
The background parameter estimation and update procedure is automated, based
on the work of [10]. It has a parameter (α in [10]), which controls the speed of
model update. In our experiences it was set uniformly to 0.02.
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5.1 Foreground model parameters

The foreground parameters are scene dependent constants. Window size s de-
pends on the expected size of the objects in the scene. If TB is the approximate
average territory of the objects bounding boxes, we used v = 1/3

√
TB.

The threshold parameter τ defines the maximum distance in the RGB color space
between pixels generated by one Gaussian process. We used outdoors τ = 50,
indoors τ = 20.

5.2 Shadow parameters

The parameters are defined by Eq. 4. Except of window-less rooms with constant
lightning, µsh,1, the average background luminance darkening factor in shadow is
strongly condition dependent. Outdoors, it can vary from 0.4 in sunburst to 0.9
in overcast weather. We observed the other shadow parameters (5 scalar values
more) being approximately constant in time, letting us to estimate them once
in a scene.
We built an adaptive algorithm to follow the changes of µsh,1. For a given image
we collected histogram from the R1 values of those pixels, which are marked as
non background point by the Stauffer-Grimson algorithm. If the image contains
considerable shadowed parts, a peak appears in the histogram near the desired
µsh,1 value. Figure 4 shows 3 typical situations from the video ’SE pm’, where the
optimal µsh,1 was definitely 0.68. On the first image, a large shadow is observable,
and the peak in the histogram is very significant. On the second one, the peak
is still in the right place, however it is smaller. On the third image there is small
shadow and the histogram is flat. Denote h[k] the location of the peak in the
histogram of the k-th image, v[k] is the maximum value, v[k] is the average value.
h[k] can be a good estimation for µsh,1, if peak-value v[k] is high and significant:
v[k]
v[k] is high. We define the update process by the following:

µsh,1[k + 1] = ρ · h[k] + (1 − ρ) · µsh,1[k], ρ = α · v[k] · v[k]
v[k]

where α = 0.001 is a constant factor, and we perform the parameter update
only, if there are enough non-background points in the image.
We tested this method on videos recorded by the ’School entrance’ camera in case
of ten different lightning conditions, and appointed it can follow the lightning
changes caused by clouds well, or in case of randomly chosen µsh,1 it finds the
correct value quite fast. However the performance of the adaption was lower
round noon, when the shadows are smaller, and the corresponding darkening
ratio is not so dominant in the statistics.

6 MRF optimization and speed of the algorithm

The presented algorithm segments the video images via MRF optimization. First,
the probability terms pbg(s), psh(s), pfg(s) are calculated for each pixel s, ac-
cording to (2)(3)(5). The second level is to find a good labeling considering the
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Fig. 4. Three images from sequence ’SE pm’ and the corresponding histograms for the
R1 values of the non-background pixels

energy term of (1). The results showed on Figure 5 were made using the Modi-
fied Metropolis method [2], which is not real time on a sequential architecture,
however [11] have already suggested a fast parallel implementation for a special
array processor.
A well-known quick deterministic optimization method for MRF is the ICM al-
gorithm, which gives a good sub-optimal solution in a few (2-5) iteration of steps
with linear complexity. Although the quality of the segmentation produced by
ICM is significantly worse than the we got by MMD, it is still enough for con-
nected component based object detection.
We have tested out method on color videos with the resolution 320 × 240. The
running speed was 2 fps using Intel Pentium 4 2400 MHz Processor.

7 Results

Model verification was made through manually generated ground truth sequences.
Since the goal is foreground detection, the crossover between shadow and back-
ground does not count for errors.
Denote with TP (true positive) the number of correctly identified foreground
pixels of the evaluation sequence. Similarly we introduce TN for well classified
non-foreground points, FP for misclassified non-foreground points, and FN for
misclassified foreground points.
Evaluation metrics: D is the foreground detection rate, A is the accuracy of the
detection.

D =
TP

TP + FN
A =

TP

TP + FP

The results in Table 2 are valid without postprocessing. The applied MRF model
increased significantly the foreground detection and accuracy rate, compared
to the deterministic step. We tried to reach homogenous regions by applying
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Fig. 5. Segmentation results. 1st column: video image, 2nd: result of the preliminary
classifier, 3rd: pre. classifier result enhanced by morphology, 4th: MRF result. Images
are from the following videos: a) Sequence ’SE pm’, b) ’Highway’, c) ’Laboratory’

morphology on the output of the deterministic classifier but at the same time
the D and A ratios became much worse. The improvement is remarkable in
the difficult scenes, while on the ’Laboratory’ benchmark sequence the simpler
methods gave also very good results. Some examples for segmented images are
in Figure 5.

8 Conclusion and future work

We introduced a realistic model of shadow effects and a new foreground proba-
bility calculus for segmenting videos by MRF model optimization. We measured
significant improvements versus previous methods in real world videos, where
the background and foreground is textured, and the color ranges of the different
clusters are strongly overlapping. Our future work is to improve the automated
parameter estimation process, and to speed up energy calculation of the fore-
ground model. We want to complete our method with texture analysis, and
exploit the advantages using more adequate color spaces (CIE-L*a*b* or CIE-
L*u*v*). We will try to deal with difficult situations like shadow in the shadow
and reflection from glass doors.
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