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Abstract. Easy access 1o the World Wide Web has raised concemns about
copyright issues and plagiarism. It is casy to copy someonc clse's work and
submit it as somedone’s own. This problem has been targeted by many sysiems,
which use very similar approaches. These approaches are compared in this
paper and suggestions are made when different strategics are more applicable
than others. Some alternative approaches are proposed that perform better than
previously presenied methods. These previous methods share two common
stages: chunking of documents and selection of representative chunks. We
siudy both stages and also propose altemnatives that are belter in terms of
accuracy and space requirement. The applications of these methods are no
limited 1o plagiarism detection but may target other copy-detection problems,
We also propose a third stage 1o be applied in the compurison thal uses suffix
trees and suffix vectors to identify the overlapping chunks.

1 Introduction

Digital libraries and semi-structured text collections provide vast amounts of
digitised information online. Preventing these documents from unauthorised copying
ﬂnd_mdistribulim is a hard and challenging task, which often results in avoiding
Puiting valuable documents online [5]. The problem may be targeted in two
fundamentally different ways: copy prevention tries to hinder the redistribution of
documents by distributing information on a separate disk, using special hardware or
dctive documents [6] while copy detection allows for free distribution of documents
and tries w find partial or full copies of documents.

One of the most current areas of copy detection applications is detecting
Plagiarism, With the enormous growth of the information available on the Internet,
Students have a handy ool for writing research papers. With the numerous search
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engines available, students can easily find relevant articles and papers for their
research. But this tool is a two-edged sword. These documents are available in
electronic form, which makes plagiarism leasible by cut-and-paste or drag-and-drop
Operations.

Academic crganisations as well as research institutions are looking for a powerful
tool for detecting plagiarism. There are well-known reported cases of plagiarised
assignment papers [1,2). Garcia-Molina [5] reports on a mysterious Mr. X who has
submitted papers to different conferences that were absolutely not his work. Such a
tool is also useful for bona fide researchers and students who want to be sure not 1o
be accused of plagiarism before submitting their papers.

Copy-detection mechanisms may be used in many other scenarios. Nowadays
books are published with companion CDs containing the full-text version of the
book, which is very useful for searching purposes but bears the risk that the book
may be posted on Web sites or newsgroups. A copy-detection tool could use the full-
text version of the book and try to locate near replicas of the document on the
Internet. Search-engines could also benefit from copy-detection methods: when
search results are presented to the user they could be used as a filter on documents,
thus preventing users from e.g. reading the same document from different mirror
sites. There are various other application areas where copy-detection mechanisms
could be used, but they are not listed here because of space limitations. We believe
that copy-prevention mechanisms are not the right solution because they impede
bona fide researchers while protecting against cheating and law infringement.

In this paper, we compare existing copy-detection mechanisms, which, we have
found, have a lot in common. We suggest different application areas for different
methods. The most common two-stage approach is discussed in the following
section, Section 3 discusses different alternative approaches to split the document
into chunks based on our test results. Section 4 presents alternative approaches to
select a representative set of chunks, and in Section 5 we summarize our results and
look at future work.

2 Overview of Copy-Detection Methods

There are commercial copy-detection systems on the market [10, 4], whose
algorithms are not published for obvious reasons. Research prototype systems include
the SCAM (Stanford Copy Analysis Method) system [5], the Koala system [7]. and
the “shingling approach” of [3].
The common approach of these prototype systems o the copy-detection problem
can be summarized in five steps:
1. Partition each file into contiguous chunks of tokens.
2. Retain a relatively small number of representative chunks.
3. Digest each retained chunk into a short byte string. We call the set of byte sirings
derived from a single file its signature or fingerprint.
4. Store the resulting byte strings in a hash wable along with identifying information.

Comparison of Overlap Detection Technigues 53

5. If two files share byte strings in their signatures, they are related. The closeness
of relation is the proportion of shared byte strings.
We defer the discussion of the first two stages to Sections 3 and 4, and we discuss
steps 3,4, and 5 in the following subsections.

21 Digesting

We could store the chunks themselves, but we choose not to do so for (wo reasons.
First, chunks may be quite large, and we wish to limil the amount of storage
required. Second, chunks contain the intellectual property of the author of the file
that we are processing. We prefer not to store such property in order 1o reduce fears
that our tools can themselves be used to promole plagiarism or that the database can
be used for breaches of confidentiality and privacy.

Instead of storing the chunks, we reduce them by applying a digesting tool. We
use the MD35 algorithm [11], which converis arbitrary byte streams (o 128-bat
numbers. Storing 128 bits would waste oo much storage without offering any
significant advantage over shorter representations. Of course, the more hex bits we
store, the more accurate our system will be. Storing fewer byles means that two
chunks may produce the same digest value even when they are different. These
undesired cases are called false positives. In Section 3 where we discuss different
chunking strategies, we analyse the effect of different digest sizes on the accuracy of
the system. Here we also note that in our system we use an extra stage when we
compare documents. This extra stage uses exact string matching techniques to find
the actual overlapping chunks. Thus some false positives are not of great concern,
because they are eliminated in this stage. We refer to this extra stage as the MDR
approach [8, 9].

Of course, other systems uvse other hashing schemes o create the digest
representation of a given chunk, and it would be interesting to compare the effect of
different hashing schemes on the number of false positives, but that comparison is
beyond the scope of this paper.

12  Stworing Hash Values

Hash values generated using the methods described above need to be stored in some
kind of a database. We may choose to store the hash values in a general-purpose
database management system, or we can develop a special-purpose system tailored 1o
store the hash values and their postings efficiently. In our system we have used Perl
[12] hash data structures 1o store hash values,

I?iﬁ'cmm similarity measures can be defined for different application areas. Here we
list the three most common measures. Let us denote the digest of file F by d(F).
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¢ Asymmetric similarity all o) = _..__,__! AF)Ne(G)|
[d(F)|
- 1) nd(@G))|
|d(F)|+|d(G)|
) 1) (U d(G))|
|d(F)|

* Symmetric similarity (F.G

= Global similarity e(F

Of course, the size of documents has a significant effect on the results. Fuor
example if document F is much smaller than document G, and document F is
enlirely contained in document G. then the a(F,G) value will be much higher than
the s(I,G) value. The global similarity measure is used for defining the similarity
between a given document and a set of documents.

3  Chunking

In this section we analyse different chunking methods proposed in different
prototype systems. Subsection 3.1 discusses existing techniques while subsection 3.2
analyses our test results and proposes a new technique.

3.1 Existing Chunking Methods

Before we compare chunking methods, we have to decide what is the smallest unit of
text that we consider overlap. One extreme is one letter, but in this case, almost all
English language documents would have 100% overlap with other documents,
because they share the same alphabet. The other extreme is considering the whole
document as one unit. This method could not identify partial overlap between
documents,

Frototype systems and our experiments show that the length of chunks should be
somewhere between 40 and 60 characters for plagiarism-detection purposes. The
Ku:_l]u system [7] uses 20 consonants, which translates inw 30-45 characters; the
“shingling approach” [3] considers 10 consecutive words, which is approximately
30-60 characters; the SCAM sysiem [6] analyses the effect af different chunk sizes:
one word, five vlm_rds. ten words, seatences. Our exaci-comparison algorithm (MDR
&pm} used in the extra stage of the comparison process uses 60 characters as a

The selection of chunking strategy has a significant effect on the accuracy of the
system. In the ideal case, we would index all possible a-length chunks of a
document. In a document of length | there are [-ge ) possible ce-length chunks |7]. A
suffix tree is a data structure that stores all possible suffixes of a given string, thus all
possible c-length chunks. Suffix trees are used in the MDR approach,
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We could consider non-overlapping chunks of a-length character sequences. The

lem with this approach is that adding an extra word or character to the

docurnent would shift all boundaries, so two documents ditfering only in a word
would produce two totally different sets of chunks.

The “shingling approach™ of Broder et al. [3] uses words as the building blocks of
chunks. Every ten-word chunk is considered. As an example, consider the following
gentence: “copy-detection methods use some kind of a hash-function 1o reduce space
requirements”,

Ten-word chunks generated from this “document™: “copy-detection methods use
gome kind of a hash-function 10 reduce”, *methods use some kind of a hash-function
to reduce space”, and “wse some kind of a hash-function o reduce space
requirements”,

They call these ten-word chunks shingles. To store every ten-word chunk requires
oo much space, 50 Broder et al. [3] also consider a stralegy (o select representalive
chunks of a document. Selection algorithms are discussed in the next section.

Garcia-Molina et al. [6] compare different chunking strategies. At the finest
granularity, word chunking is considered with some enhancements, such as
eliminating stopwords. Another possibility is to use sentences as chunks 1o be
indexed. The problem with sentences is that sentence boundaries are not always easy
to detect. They tested their algorithm on informal texis, such as discussion-group
documents, because of their informality they often lack punctuation. Sentence
chunking also suffers when identifying parual sentence overlap. We have run
sentence chunking on our document set of RFC documents and found that the
average chunk length using only the full stop as a termination symbol is about 13
words; If we consider other punctuations as chunk boundaries the average is 3.5
words. The problem with sentence chunking is that it does not allow for tuning. By
tuning we mean that different problem areas might require different chunk lengths.

To overcome the boundary-shifting problem of non-overlapping chunks, Garcia-
Molina et al. 6] introduced hashed-breakpoint chunking. Instead of strict positional
criteria o determine chunk boundaries, such as every 10th word is a chunk
boundary, they calculate a hash value on each word and whenever this hash value
modulo & is 0, it is taken as a chunk boundary. They studied the performance of their
prototype system with &=J0 and k=5, The expected length of a chunk with this
hashed-breakpoint chunking is & words. As discussed earlier, k=10 is closer to the
empirically defined threshold value of 40-60 characters. The problem with this
approach is that the chunk sizes may differ. We can easily have one-word chunks
and also 13-20 word chunks. See the next subsection about this problem.

3.2 Chunking Strategy Tests
The most promising chunking strategy is hashed-breakpoint chunking. It avoids the

shifting problem without the need o store overlapping chunks. In this subsection we
analyse the hashed-breakpoint strategy in details.
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It is true that the expected chunk length is & in case of k-hashed breakpoint
chunking, but if a common word happens to be a chunk boundary, the average chunk
length may be much smaller than the expected average. ¥

We have used two document sels for comparison. The first set is the set of REC
{Request for Comment) documents; the second set comprises different Hungarian
translations of the Bible. We have chosen these two sets because we expect some
overlap within these document sets for obvious reasons. 2

Figure I shows the average chunk length in the function of the  value. We can
see that the higher the k value, the higher the chance is of greater deviation from the
expected result. This behaviour can be explained by the uncertainty of this chunking
strategy. I
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Fig 1. Average chunk length

We have picked nine pairs of documents from the Bible translations and
compared them with different hash values. The results shown in Figure 2 reflect the
uncertainty of this chunking method.
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Fig 2. Overlap percentage

The chosen pairs are different translations of the same part of the Bible, The
correlation between Figures I and 2 is obvious. For example, the first pair has a peak
at k=16 following a low at k=14 and k=15. In Figure I, we can see that at k=14 and
k=15 the average chunk length is higher than expected; if we have longer chunks,
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chance erlap is smaller, On the contrary, at k=16 we have o !.uw_ul Figure
I:}:whi:h m::rn::hn \I:E have shorter chunks, 50 the chance l’nr_mn_:riup is higher.

: In Figure 2 we can also see that the chosen k value has a significam effect on ll_'le
amount of overlap detected. We propose 1o use more than one k value for
comparison, and we can either choose the average of the rq_nl_u:l w!aps or the
maximum/minimum values depending on the actual application. This m.leugi
eliminates the sensitivity of the algorithm o d;ffe.mnf k values. Figure 3 s.‘nm 0
results of this approach. We aggregated the number of chunks reported by ditferent
values and calculated the result based on the total number of chunks.

——n=7+8+9
—l—n=7+4

—H—n=5
—#—n=6
—B—n=7
e b
—

Fig 3. The effect of aggregate k values

Of course, in our applications fals¢ positives are more desirable than false
negatives, because false positives can be eliminated in our extra stage of exact
comparison, while we will never report documents missed by the first slage.
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Fig. 4. Overlapping chunks




58 Krisztidn Monoston el al.

We have also conducted a test on different chunk sizes. In this test we have used
overlapping chunks of different sizes because of their better predictability. The
results are shown in Figure 4. As we expected longer chunks result in less detected
overlap. Based on these experiences, we can conclude that for finding documents
similar in style, we can choose a & value of 2 or 3, which would find similar phrases.
For plagiarism detection, k=8 or k=9 seems 10 be a good parameter value, while for
detecting longer overlaps, we can choose values greater than 10.

False positives are a problem common to every approach. We use hashing 1o
identify chunkz, and we may have identical hash values when the original chunks do
not maich. Table ! contains the number of false positives for different chunking
methods and bit depths. These hash values have been generated by the MDS
algorithm by keeping only the left-most & bits.

Table 1. False positives

Method bit-depth false positives | false positive (%) |
hashed breakpoint (k=6) 24 5434 1.6868|
hashed breakpoint (k=9) 24 6790 1.3580
overlapping (k=6) 24 7118 1.4230)
sentence 24 13954 2.7908)
hashed breakpoint (k=6) 32 23 0.0046
hashed breakpoint (k=9) 32 21 0.0042]
overlapping (k=6) 32 26 0.0052]
senlence 32 15 0.0030y

The tests were carried out on 500,000 chunks. The results show a dramatic
decrease in the number of false positives when we move from 24 bits to 32 bits, We
suggest using 32 bits, not only because the number of false positives is less than
0.01%, but it is also an easier data width to handle in today's computers.

4 Fingerprint Selection

In the second stage of comparison we could siore all chunks, but long files lead 1o
many chunks. Dealing with them all uses space for storing them and time for
comparing them against other stored chunks.

However, it is not necessary to store all chunks. Other systems discussed in Section 2
are using some kind of a fingerprinting or culling strategy 1o select representative
chunks. The strategies used in those systems are mainly random. In the following
subsection, we propose a more sirategic approach and we support the applicability of
our strategy by test results in subsection 4.7,
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4.1 Selection strategies

A short chunk is not very representative of a text. The fact that two files share a
ghort chunk does not lead us to suspect that they share ancestry. In contrast, very
In::g chunks are very representative, bul unless a plagiariser is quite lazy, il is

i i  section of text.

ikely that a copy will retain a long section o | . o
MI‘:HE ::h:rarb_re discard the longest and the shortest chunks. We wish :u. retain
similar chunks for any file. We have experimented with two culling mcmuq:-.. Letn
be the number of chunks, m the median chunk size (measured in lokens), s the
standard devistion of chunk size, b a constant, and L the length of an arbitrary
chunk,

Sqrt. Retain ]-d":] chunks whose lengths L are closest to m,
Variance. Retain those chunks such that [L-m| <bs. Increase b, if necessary, until at

least q': chunks are selected. We start with b=0.1.

4.2 Test Results

We have tested our fingerprinting method on the RFC data set. W; huve found th;.n
the Sqrt method does not store enough chunks, thus the Variance mctlm}ci;
preferable, In Table 2 we show the results of these u:s:ls Pas;ad_m some .
documents with known overlap. The table shows asymmetric smulnnf}', rhat is RH;
1 compered to RFC 2 does not necessarily provides the same l'l'.'.‘?:l.ll.T as .RFL
compared to RFC 1. We consider the MDR method as aceurate hﬁ:_uuu: it is b.tml.m
exact matching. SE is our signature extraction method while OV is the overlapping
m‘;‘ﬂi;“;h’::;wﬁ that our SE method tends 10 underestimate large overlaps whﬂ:
overestimating small overlaps (overlap is given as percentage). 'It'he pmlﬂPplng;
chunks method seems 1o provide more accurate results but al a much Ju.ghu- mr:)gﬂ
cost. Owerestimation s not a problem in our sysiem hug;ms«: we uac. the M
approach as a final filter, which correctly identifies overlapping chunks.

Table 2, Asymmetric similarities

RFC1 RFC2 | MDR1 MDR2 SE1 SE2 oV 1 0V 2

1596 1604 99 99 a1 ) 04 04
2264 2274 99 L] 96 95 04 94
1138 1148 96 95 93 92 91 89
1065 1155 96 9] 71 68 84 79
1084 1395 86 84 S8 el 'E'} 75
1600 1410 72 Ti 52 48 58 6l
2497 2304 19 17 33 7 ll:r 1ﬁ5
2422 2276 18 3 23 [ 15 2

2352 2541 16 12 27 17 13 10
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5 Conclusion and Future Work

l.r- this paper we have analysed different chunking strategies used in copy-detectio
systems. We know of no other studies that have analysed these systems from Ih‘“
aspect. We have made suggestions on how 1o select chunking strategies and als::
touched on the problem of fingerprint selection. which is also erucial because of
mmﬂfﬁmmc}n_ Our Slli algorithm provides very close results to the exact
comparison &!Ild 1t overestimates small overlaps, which is a more desirable behaviour
than underestimating, because false positives can be found by applying an extra filter
?“n the mu]_ls. Of course, 1o many false positives are not desirable, either. In the
ture we will also study the effects of different hash functions on false positives, We
plun 10 run our tesis on more document sets and we are also developing an ar;li
system where these methods are available fir copy-detection applicatio o
specifically plagiarism detection). R Vi
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Abstract. Previous works in Information Retrieval show that using pieces of
text obtain better results than using the whole document as the basic unit to
compare with the user’s query. This kind of IR systems is usually called Fas-
sage Retvieval (PR). This paper discusses the use of our PR system in the ques-
tion answering process (QA). Our main objective is 1o examine if a PR system
provide a bener suppont for QA than Information Retrieval systems based in

the whole decument..

1 Introduction

Given a user's guery, Information Retnieval (IR) systems retum a set of documents,
which are sorted by the probability of containing the required information. Since IR
systems return whole documents, there is an additional work for the user, who has to
read the whole document 1o search for the required information. However, when
searching for specific information, this last user's task can be carried out by Question
Answering systems (QA), which are tools that usually work on the oulput of an IR
system, and try to return the precise answer to the user's query.

IR systems work on measuring the similanty between each document and the query
by means of several formulas that typically use the frequency of query terms in the
documents. This way of measuring means that larger documents could have a greater
chiance at being considered relevant, because of the higher number of terms that could

coincide with that of the query.

In order 1o solve this problem, some IR systems measure the similarity in accordance
with the relevance of the pieces of adjoining text that form the documents, where thesc
Picces of text are called passages. These kinds of IR systems, which are usually called

' This peper has been pantially supported by the Spanish Government (CICYT) project number
TIC2000-0664-C02-02
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