# The number of inequivalent (2R+3,7)R optimal covering codes

Kéri, Gerzson and Östergard, PRJ
(2006)
*The number of inequivalent (2R+3,7)R optimal covering codes.*
Journal of Integer Sequences, 9 (4).
pp. 1-8.

Text
keri6.html - Published Version Restricted to Registered users only Download (2kB) |

Official URL: http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Keri/...

## Abstract

Let (n,M)R denote any binary code with length n, cardinality M and covering radius R. The classification of (2R+3,7)R codes is settled for any R=1,2,..., and a characterization of these (optimal) codes is obtained. It is shown that, for R=1,2,..., the numbers of inequivalent (2R+3,7)R codes form the sequence 1,3,8,17,33,... identified as A002625 in the Encyclopedia of Integer Sequences and given by the coefficients in the expansion of 1/((1-x)3(1-x2)2(1-x3)).

Item Type: | Article |
---|---|

Uncontrolled Keywords: | covering radius, classification of codes, integer sequence |

Subjects: | Q Science > QA Mathematics and Computer Science > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány |

Depositing User: | Eszter Nagy |

Date Deposited: | 11 Dec 2012 15:20 |

Last Modified: | 11 Dec 2012 15:20 |

URI: | https://eprints.sztaki.hu/id/eprint/4149 |

Update Item |