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Abstract

The rapid advancement of genomic technologies has significantly transformed biomedical
research and clinical applications, particularly in oncology. Identifying patient-specific
genetic mutations has become a crucial tool for early cancer detection and personalized
treatment strategies. Detecting tumors at the earliest possible stage provides critical insights
beyond traditional tissue analysis. This paper presents a novel cyber-physical system that
combines high-resolution tissue scanning, laser microdissection, next-generation sequenc-
ing, and genomic analysis to offer a comprehensive solution for early cancer detection. We
describe the methodologies for scanning tissue samples, image processing of the morphol-
ogy of single cells, quantifying morphometric parameters, and generating and analyzing
real-time genomic metadata. Additionally, the intelligent system integrates data from
open-access genomic databases for gene-specific molecular pathways and drug targets. The
developed platform also includes powerful visualization tools, such as colon-specific gene
filtering and heatmap generation, to provide detailed insights into genomic heterogene-
ity and tumor foci. The integration and visualization of multimodal single-cell genomic
metadata alongside tissue morphology and morphometry offer a promising approach to
precision oncology.

Keywords: applied robotics; image processing of morphology and morphometry; single
cell; laser microdissection; DNA sequencing; genomic mutations; database integration;
fused analysis; visualization; digital pathology

1. Introduction

The human genome consists of approximately 25,000 genes, and about 600 of them
are related to tumors. These genes and their combinations can mutate up to 3.5 million
ways. Within a tumor, an average of four to five different gene defects are collectively
responsible for abnormal cell division. Tumor heterogeneity, which is the existence of
diverse cellular populations within a single tumor, has emerged as a pivotal concept in
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oncology, influencing both our understanding of cancer biology and the development of
treatment strategies.

The initial understanding of tumor heterogeneity dates back to the early 20th century,
when pathologists first documented the variability in tumor cell morphology [1]. However,
it was not until the 1970s and 1980s that more systematic studies began to explore the genetic
and phenotypic diversity within tumors. Early work by researchers such as Folkman on an-
giogenesis [2] and Kinzler and Vogelstein on genetic mutations [3] highlighted that tumors
are not monolithic entities but dynamic ecosystems with heterogeneous characteristics. The
turn of the millennium brought significant advances, with the advent of high-throughput
genomic technologies. The work of Garber et al. [4] and Perou et al. [5] established that
tumors can be classified into distinct subtypes based on their gene expression profiles,
underscoring the complexity of tumor heterogeneity at the molecular level. Subsequent
studies, including those by Yachida et al. [6] and Jones et al. [7], used next-generation
sequencing (NGS) to uncover extensive genetic diversity within tumors, demonstrating
that tumor heterogeneity encompasses not only genetic variation but also epigenetic and
phenotypic diversity. Current knowledge of tumor heterogeneity [8] reveals that it can be
categorized into inter-tumor heterogeneity, which refers to differences between tumors
of the same type across individuals, and intra-tumor heterogeneity, which pertains to the
variability within a single tumor [9].

Tumor variability has profound implications in its interactions with the immune
system, leading to variable immune responses as a consequence of heterogeneity [10]. It
significantly affects interactions between immune cells and tumor cells, which are critical
for disease progression and treatment outcomes. The tumor microenvironment (TME),
including variations in cytokine /chemokine or cytotoxic activity, also plays a key role in
shaping these immune responses that can suppress or promote tumor growth. A study
by Germana et al. (2024) highlighted that tumors often evade immune detection through
immune checkpoint molecules, particularly the PD-1/PD-L1 axis, which are critical in
tumor progression and response to immunotherapy [11]. High expression of PD-L1 in
cancer correlates with a worse prognosis but also indicates potential therapeutic targets,
with inhibitors of PD-1/PD-L1 showing promising results. These findings underscore the
need for personalized immunotherapy approaches targeting specific immune cells and
pathways to overcome the challenges of resistance to therapy, disease progression, and the
emergence of aggressive tumor subclones [12] posed by tumor heterogeneity.

Rapid advancement of genomic technologies has significantly transformed the land-
scape of biomedical research and clinical applications. In recent decades, mapping and
patient-specific identification of mutated genes have been utilized in clinical practice. Their
purpose is to detect a tumor in its earliest possible stage based on genomics, in addition
to preliminary tissue morphology. To provide more effective personalized treatment for
patients, it is necessary first to understand the different types of genetic indications that
cancer possesses in the patient, as well as its formation and spreading mechanisms. Without
these insights, we cannot measure or intervene in cancer effectively. Hence, only drastic
methods such as chemotherapy can be applied with shared success, which does not factor
in the individual characteristics of a patient.

The internationally prominent leading companies in the field, such as 10X Genomics,
Bruker Corporation (formerly NanoString Technologies), Oncopass, and TurbineAl, have
started to explore both the macro and micro genomic research fields but from slightly
different perspectives. This section provides an overview of each company by comparing
its technologies, advantages, and limitations.
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1.1. 10X Genomics

10X Genomics has emerged as a leader in single-cell genomics and spatial transcrip-
tomics [13]. Their flagship product, the Xenium In Situ platform [14], enables researchers to
perform high-throughput subcellular mapping of hundreds of RNA targets, revealing new
insights into cellular structure and function. By utilizing fluorescent probe hybridization,
imaging, and probe removal [15], 10X Genomics captures and processes thousands of
single cells simultaneously, generating comprehensive genomic data that reveals intricate
cellular landscapes. This capability allows for in-depth analysis of individual cells, which
is essential in studying complex tissues and identifying rare cell populations. Furthermore,
advancements in spatial analysis enable researchers to map gene expression within the
tissue architecture, providing valuable insights into cellular interactions and microenviron-
ments. However, the complexity and cost of the technology can be an obstacle for some
researchers, and the vast amounts of generated data necessitate advanced computational
tools and expertise, posing challenges for data interpretation and integration.

1.2. Bruker Corporation

The Bruker Corporation (formerly NanoString Technologies) specializes in spatial
transcriptomics [16] technology. It defines an array of equipment, enabling researchers to
locate transcripts, often down to the subcellular level, providing an unbiased map of RNA
molecules throughout tissue sections. It employs differing combinations of microscopy,
gene detection and counting, RNA sequencing, and in situ hybridization. Bruker has
achievedmolecular multiplexed profiling through its nCounter, GeoMx, and CosMXx [17]
platforms, which, together, provide array quantification of up to 1000 RNAs or up to
100 proteins utilizing smart cyclic in situ hybridization chemistry at single-cell and sub-
cellular resolution. This technology employs unique barcoded probes to perform in situ
hybridization with RNA molecules, enabling direct quantification without the need for
amplification. Bruker’s approach is particularly valuable for studies in gene expression, on-
cology, and immune profiling. Their products offer high specificity and sensitivity, making
them suitable for low-abundance transcripts. Additionally, the straightforward workflow
facilitates rapid assay development and implementation, making it accessible to a wide
range of researchers. However, while nCounter allows for multiple target measurements,
it is constrained by the number of probes that can be included in a single assay, which
may limit comprehensive genomic profiling. The cost associated with each assay can also
accumulate, particularly in large-scale studies requiring extensive multiplexing.

1.3. Oncompass

Oncompass Medicine, a Future Unicorn Company, has created a diagnostic platform
focused on personalized oncology [18]. The platform integrates genomic data from tumor
samples to generate comprehensive reports that guide clinicians in selecting targeted
therapies for cancer patients. Oncompass emphasizes the clinical relevance of genomic
alterations, providing actionable insights that can influence treatment decisions. This
platform offers personalized recommendations based on the specific genomic profiles
of tumors, enhancing the potential for effective treatment strategies. The integration of
genomic information with clinical databases helps ensure that the insights apply to current
treatment paradigms. However, the accuracy and relevance of recommendations are
contingent on the comprehensiveness of the underlying genomic databases, which may lag
behind the rapid advancements in genomics. Moreover, clinicians may require additional
training to fully understand and utilize the provided genomic information.
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1.4. TurbineAl

TurbineAl is pioneering a simulated cell model [19], using artificial intelligence to
facilitate drug discovery and development processes. By analyzing vast datasets, the
platform of TurbineAl predicts patient responses to therapies, identifies potential drug
targets, and enhances clinical trial designs. This data-driven approach aims to streamline
the drug development pipeline and improve therapeutic outcomes. The use of machine
learning allows for the analysis of complex biological data, facilitating the identification of
novel therapeutic targets and patient stratification. By optimizing clinical trial designs and
predicting outcomes, the platform can reduce the time and cost associated with bringing
new therapies to market. Nevertheless, the efficacy of machine learning models relies
heavily on the quality and representativeness of the input data, which can introduce biases
if not properly managed. Additionally, the complexity of Al models may pose challenges
in validating predictions and translating them into clinical practice, necessitating rigorous
testing and collaboration with clinical experts.

To consolidate the technological and strategic distinctions introduced above, Table 1
provides a comparative benchmarking of the core platforms developed by the industry’s
most prominent players. It highlights their main products, intended functions, and key
features, offering a synthesized overview of their contributions to both basic research and
clinical applications.

Table 1. Comparative benchmarking of spatial transcriptomics and precision oncology platforms
developed by leading companies. The table summarizes the main technologies, core functions,
and key technical features of the products offered by 10X Genomics, Bruker Corporation (formerly
NanoString Technologies), Oncompass, and Turbine Al

Vendor Product Intended Purpose Key Features
. Multiomic options in fresh, frozen, and
10X Genomics (Pleasanton, CA, Chromium Single Cell Gene expression profiling formalin-fixed and paraffin-embedded

USA)

(FFPE) tissue

10X Genomics

In fresh, frozen, or FFPE tissue;
subcellular profiling; and
gene expression

Targeting 100s to 1000s of RNAs

Xenium In Situ platform in individual cells

10X Genomics

Performing unbiased
spatial discovery

Probe-based: HD spatial gene expression

Visium Spacial Poly-A-based: spatial gene expression

10X Genomics

For single-cell transcriptomic data,
aligning gene expression spots to
histology images, marking, annotating
populations, and clustering

Loupe Browser Visualization of gene expression

Bruker Corporation (Billerica,
MA, USA) (NanoString

Tissue object detection, readout

Technologies (Seattle, WA, nCounter creation Analysis system, panels, and assays
USA))

Bruker Corporation . . - Digital spatial profiler,

(NanoString Technologies) GeoMx Highly multiplexed profiling panels, and assays
Smart cyclic in situ hybridization

Bruker Corporation CosMx Quantification of up to 1000 chemistry, single-cell and subcellular

(NanoString Technologies) RNAs or up to 100 proteins resolution, spatial molecular imager,
panels, and assays
Bruker Corporation AtoMx Analysis and visualization of Cloud-based spatial

(NanoString Technologies)

spatial multiomics data

informatics platform

Oncompass (Schindellegi,
Schwyz, Switzerland)

Precision oncology service

Personalized targeted
treatment planning

Al-based determination of both the
molecular targets and their associated
targeted compounds

Turbine Al
(Budapest, Hungary)

Cell model

Drug-—cell response simulation

Al-driven predictive modeling for drug
discovery and optimization of clinical
trial designs




Sensors 2025, 25, 4465

50f 33

In conclusion, each of the leading companies is continuously developing genomic diag-
nostic tools and services that could provide previously uncharted information on biological
connections. As the field continues to advance, the integration of these innovative approaches
will be crucial in enhancing our understanding of biology and improving patient care in the
era of precision medicine. Our research aims to integrate the aforementioned morphological,
spatial, and genomic aspects into a unified system that enables an automated, patient-specific
tumor diagnostic workflow. To the best of our knowledge, existing market products that
attempt to combine morphology and genomics typically analyze a smaller subset of genes
(one to three disease-specific genes) across all cells within tissue layers, usually identified
using gene-specific fluorescent staining techniques. In contrast, our approach challenges this
model by analyzing all genes in fewer cells and visualizing them alongside morphometric
data on morphology in real time. As part of this innovation, we aim to manage the resulting
increased big data volume on a cell-by-cell basis, ensuring that it is accessible in a single
location for more efficient analysis and interpretation. Additionally, we specifically aim to
answer several key questions: Is it possible to aggregate the different types of metadata
from independent pathological devices into a single system? Can we analyze and visualize
morphological, morphometric, and genomic metadata together at the single-cell level? If so,
what chromosomal distribution do gene mutations follow? How many genes are affected?
What proportion of affected genes represent each chromosome? How do genomic muta-
tions correlate with morphology? By addressing these questions, we aim to improve our
understanding of colorectal cancer, identifying critical chromosomes as hotspots impacted
during tumorigenesis.

The remaining part of the paper is organized as follows. Section 2 describes the applied
methodologies of the created cyber-physical workflow, such as for scanning tissue samples,
selecting morphology, calculating morphometric parameters, laser microdissection of cells,
DNA sequencing of the cut cells, and analyzing the generated genomic metadata fused
with open-source database information. Section 3 demonstrates the use of the implemented
NGS Viewer application through a case study of a patient with colorectal cancer. The
obtained results include tissue, cell, chromosome, and gene levels, as well as an aggregated
evaluation of samples belonging to native and carcinoma tumor stages. Furthermore, the
integration possibilities of the workflow are discussed across distinct phases, detailing the
required instrumentation and reagents, estimated costs, critical configuration parameters,
resulting outputs, the required technical expertise, and the associated time requirements.
In Section 4, the conclusions are summarized and potential future research directions
are discussed.

2. Materials and Methods

We aimed to streamline the extensive pathological workflow involving many commer-
cialized pieces of equipment, from tissue preparation through gene mutation detection of
single cells, ending in the collection of gene-specific drug targets. Until now, this process
has been carried out step by step, requiring the expertise and manual efforts of multiple
individuals to perform the tool-specific evaluation tasks separately. We provide a solu-
tion that involves the automation of processes, with the system design plan illustrated in
Figure 1. The implementation of a digital and automated pathology workflow starts with
the preparation of anonymized (written informed consent S1) tissue samples on membrane
slides, their robotic high-throughput and high-resolution digital scanning [20], and the
subsequent determination of their tissue abnormalities [21]. Then, it continues with the
automated laser microdissection of these micrometer-sized tumor-suspicious cells and cell
clusters, followed by the amplification of the excised cells and DNA sequencing. Previously,
metadata from each step of the workflow could only be handled and examined separately.
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To smooth the workflow, we set the goal to integrate them into a common platform named
Next Generation Sequencing (NGS) Viewer, which saves the created morphological, cal-
culated morphometrical, and extracted genomic metadata from NGS with the collected
open-source genomic data through the whole workflow. The workflow then analyzes
them together and links the extracted information to cell coordinates. This tool provides
physicians with a compact visual and fused analytical framework for tumor diagnostics as a
decision-support framework. To ensure reproducibility, each primary step of the workflow
is described in a dedicated subsection.

2.1. Tissue Preparation on Membrane Slides

Biopsy samples were collected from three types of colon tissue: normal, native, and
tumor tissue. The normal samples were obtained from healthy individuals and served
as true non-pathological controls. The native samples (also referred to as “nat” in the
literature) refer to tumor-associated normal tissue, i.e., histologically non-malignant tissue
that is untreated. These regions are tumor-adjacent and considered part of the tumor
microenvironment. They do not show overt malignancy but may exhibit early molecular
or morphological alterations indicative of a pre-neoplastic state. Finally, the tumor sam-
ples correspond to histologically confirmed cancerous tissues in the carcinoma state used
throughout the study. The distinction between “normal”, “native”, and “carcinoma” tissues
is based on standard histopathological criteria, including cellular morphology, architec-
tural organization, and the presence of dysplasia, as assessed by experienced pathologists.
Furthermore, we acknowledge the potential influence of field cancerization effects, where
molecular changes may extend beyond visible tumor boundaries.

The samples from the first group target the tissue layers of the tunica mucosa, tunica
submucosa, and tunica muscularis, while the tumor samples were taken with the goal of
capturing consecutive sections from the center of the tumor, without focusing on a specific
region of interest.

The biopsied tissues were FFPE. The paraffin blocks were sectioned into 16 um thin
slices using a microtome. Instead of the classical glass slides, slices were attached to
membrane slides (membrane stretched on a metal frame), since they can also be used for
DNA sequencing. Depending on the diameter of the section, 2-3 adjacent slices were placed
on individual membrane slides (see Figure 3). This approach ensures that if one section
experiences issues such as smearing due to cutting or staining/scanning noise, the adjacent
sections can still provide reliable morphological tracking.

Tissue staining was carried out in a Gemini automated stainer [22] manufactured
by Thermo Fisher Scientific. During the staining process, the tissue sections were de-
paraffinized using >98% xylene, with xylene removal and fixation carried out by sequen-
tial immersion in 100%, 95%, and 75% anhydrous ethanol. Tissue rehydration was per-
formed using RNase-free deionized water (ddH,O). For staining purposes, the classical
Hematoxylin—-Eosin (H&E) [23] procedure was applied with modified Harris hematoxylin
(7 g/L, mercury-free) to stain the nuclei. Hematoxylin residues were thoroughly rinsed with
warm (30 °C) ddH,O, while a 2% water-soluble eosin stain was used to enhance contrast.
The eosin was rinsed with cold ddH;O. The stained tissue sections were cover-slipped
using the ClearVue system [24] produced by the Epredia company, which was integrated
into a closed-loop setup with the staining apparatus.
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Figure 1. Diagram illustrating the NGS Viewer workflow, which automates the pathology process from tissue sample preparation to high-resolution scanning,
followed by the identification of tissue abnormalities and automated laser microdissection of tumor-suspicious cells. These cells are amplified and sequenced for
genomic analysis. The system integrates morphological, morphometrical, and genomic data, linking them with spatial coordinates to provide clinicians with a
unified decision-support tool for tumor diagnostics.
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2.2. Slide Detection and Manipulation

The preparation of stained and covered slides was autonomously examined using
a URb5 robotic arm (Universal Robots USA, Novi, MI, USA) [25]. For this task, a custom
gripper was developed, which included a complementary metal oxide semiconductor
(CMOS) camera. The detection was implemented with computer vision and image process-
ing in real time in a dynamic environment. During the process, the robot detected black
magazines storing the stained and covered slides through the darkened Plexiglas door of
the ClearVue device at regular intervals. If a completed batch was found, the robot opened
the door, removed the magazine using its gripper, and placed it in its temporary storage
for identification of the slides within the magazine. Furthermore, the robot also closed
the ClearVue door to ensure that the contamination-free staining process could continue.
When the software of the tissue scanner indicated idle time to the robotic control system,
the robot immediately retrieved the next detected transparent slide from the magazine
in its storage and fed it into the scanner. Through a designated entry on the side of the
scanner, the robot moved into the scanner while holding the given slide, placing it in the
required position and at the orientation demanded by the device. Thus, the slide was
forwarded to the next robotic arm within the scanner for further processing. Once the
scanning of a slide was completed, the robot retrieved it from the scanner via the same
channel and replaced it in its original location within the magazine. Upon completion of all
samples in a magazine, the robot placed the entire magazine into the local archive. These
laboratory tasks were performed asynchronously relative to the tissue staining, covering,
and scanning operations, thereby achieving optimal time utilization. Further details about
the functionalities, architecture, and parameters of the robotic arm working as a laboratory
technician can be found in our previous works [26-28].

2.3. Scanning Slides

During the selection of the digital tissue scanner, it was only possible to choose equip-
ment that does not damage the membrane during its scanning, which can be accomplished
with the 3DHistech Panoramic P1000 scanner used in this project [29]. The P1000 also has
Diagnosis (DX) and Research (RX) subtypes. Since the parameters of the membrane slide
are different from those of the glass slide, most of the adjustable options, such as focus, color
balancing, scanning mode, magnification, immersion type, multilayer mode, and stitching,
had to be individually adjusted. Since RX is the only machine capable of these adjustments,
it was chosen for this research. The experimental scanning protocol was exported. This
collection of settings can be found in scanning profile 52 in the Supplementary Files and can
be imported into the P1000 during the next scan. It is noted that profiles may differ between
different P1000 scanners, as the hardware of the machines may differ, e.g., different cameras
and different filters installed depending on the type. Additionally, the slides can be uneven;
for example, the frame may be bent, and the membrane may be stretched during tissue
preparation, or it might sink under the weight of the tissue. For these reasons, the attached
profile is a guideline for which further manual fine-tuning per slide is advisable.

2.4. Image Processing of Scanned Morphology

For morphological analysis of the scanned tissue samples, algorithmic and manual
choices are available in NGS Viewer. The algorithmic analysis offers a choice of classical
segmentation algorithms that can detect nuclei, glands, and surface epitheliabased on
morphology, as demonstrated in our previous work [21]. These yield robust results, mainly
on healthy tissue samples. Specifically, the K-means algorithm was employed for cell
detection, the Density-based Hysteresis Snail (DBHS) algorithm for gland detection, and
the Surface Nucleus Chain-based Algorithm (SNCA) for identification of surface epithe-
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lia. The empirically optimized parameters for these algorithms are provided in Table 2.
These parameters can be individually adjusted using sliders on the NGS Viewer graphical
interface, allowing for fine-tuning of the segmentation.

Table 2. Empirically optimized parameters for each morphological detection algorithm

Nucleus Segmentation

Gland Segmentation

Surface Epithelium Segmentation

K-means algorithm

Density-based Hysteresis Snail
(DBHS) algorithm

Surface Nucleus Chain-based
Algorithm (SNCA)

Gauss filter = true

Use own cell map = true

Minimum sample size = 6000 tm?

Wallis filter = false

Maximum distance = 18 um

Maximum sample
size = 50,000,000 pm?

Cell centralization = true

Maximum connection = 14

Full image threshold open mask
size = 5 um?

Neighborhood = true

Maximum hysteresis
distance = 25 pm

Full image threshold open
iteration =5

Mask X size = 5.76 um

Hysteresis threshold = 80

Maximum hole size = 15,000 pm?

Mask Y size = 5.76 um
Zoom level = 2 (Postcalculation)

Maximum pixel count = 10,000
Get mask = true

Dilate mask size =5

Minimum gland area = 1900 pm?

Dilate iteration = 1

Maximum gland area = 16,000 pm?

Minimum nucleus pixel count = 250

Check compactness = true

Close iteration 3

Compactness factor = 1.71

Full slide zoom level = 6

Brightness average delta = 15

Global threshold = 240

Use rectangular density mask = true

Surface dilate mask size = 21

Minimum density = 15

Surface dilate iteration = 1

Density mask size = 20 um

Density map minimum gland
area = 5 um?

Density map maximum gland
area = 10,000 um?

Close mask size = 3 um

Close iteration = 0

For the morphological analysis of native and carcinoma tissue samples, manual anal-

ysis was used, involving laboratory physicians and pathologists from the field. Selected

areas to be examined were sampled using standard geometric shapes (e.g., rectangles,

squares, circles, ellipses, and lines) that are compatible with the microdissector system.

These selected regions of interest (ROIs) were then automatically saved to the underlying

database for downstream processing.

It should be emphasized that before the ROIs determined by algorithmic or manual

selection can be saved, reference points must be recorded on the slide. The reason for

this is that the ROI coordinates to be selected can be automatically transformed into the

mm-based coordinate system of the microdissector for laser cuts. One can find the steps of

reference selection in our previous work [30].
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2.5. Morphometry Calculation

During morphometry calculations, it is integral to note that the pixel-based digital
image taken with the P1000 scanner does not have the same resolution on the x- and y-axes,
even though it is at the same magnification. In other words, the width and height of a
pixel in the image refer to different micrometer measurements in reality. This is due to
the way the digital image is produced because the scanner uses different mechanisms to
move the slide-holding stage in both directions (stepper motor and chain), which means
different step sizes and precision. For this reason, it was necessary to look for formulas for
calculating the area and perimeter of the selected shapes, where the two axes can be handled
separately. Although this does not cause problems for lines and rectangles/squares, the
classic perimeter and area formulas cannot be used for circular shapes. To resolve this, a
circle is treated as a special ellipse. Nevertheless, an ellipse does not have closed perimeter
and area formulas by default, so it was important to use an approximation where the
conversions of the two axes can be separated. Otherwise, handling the two axes together
could generate substantial value discrepancies at such small dimensions. The implemented
specific formulas can be seen in our previous work [31].

2.6. Laser Microdissection

Following the selection of ROIs from tissue samples based on morphological analysis,
their laser separation and extraction from the tissue sample were performed using a CellCut
(Molecular Machines & Industries (MMI), Eching, Germany) [32] laser microdissector
device manufactured by Molecular Machines & Industries Ltd. (MMI). During this process,
a procedure developed in the previous phase of the research was applied to automatically
laser cut um-sized areas based on a pre-evaluated, high-resolution, static image instead of
manually selecting and cutting them out of a small live image. The process and execution of
the method are described in detail in [30]. The dissection parameters for the procedure were
empirically set with the following values: cut velocity = 30 um/s, laser focus = 533 pum,
laser power = 80% of 10 mW, cutting repeats = 2, Z drill = 0.1 um, and focus check =1 s.

2.7. DNA Sequencing

The laser microdissection and the whole-exome/genome sequencing of the tissue
cells were connected through a decoding database to precisely identify the morphological
positions of the corresponding mutation data in later steps. After the laser excision of cells,
genomic sequencing was performed by a NextSeq 500 (Illumina, Inc., San Diego, CA, USA)
[33] instrument manufactured by Illumina, which is suitable for sequencing DNA exomes,
and by a PromethION Nanopore [34] machine manufactured by Oxford, which is capable
of sequencing the whole genome of DNA and RNA as well.

DNA extraction and whole-genome amplification were carried out using a REPLI-g
Single Cell Kit (Qiagen GmbH, San Diego, CA, USA), while whole-exome capture was
completed using a QIASeq Human Exome Kit (Qiagen GmbH) according to the manufac-
turer’s protocol. For variant calling, the BaseSpace platform was utilized, which employs
the DRAGEN pipeline [35] with the following small-variant hard-filtering thresholds [36]:

e  DRAGENSnpHardQUAL: For SNP variants, if the QUAL score is below 10.41, the
variant is filtered out.

¢ DRAGENIndelHardQUAL: For INDEL variants, if the QUAL score is below 7.83, the
variant is filtered out.

*  LowDepth: Variants with a depth (DP) less than or equal to 1 (DP < 1) are filtered out.

¢ PloidyConflict: Variants whose genotypic calls are inconsistent with the chromosome
ploidy are filtered out.
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Whole genome

sequencing * Per single cells

Number of detected gene
mutations per cell

Genome

* Compared to Hg38
Human Reference

*  base_quality: Variants are filtered if the median base quality of alternative reads at the
locus falls below a threshold.

*  lod_fstar: For mitochondrial contigs, if the LOD (log-likelihood) score does not exceed
the threshold of 6.3, the variant is filtered out.

QUAL represents the Phred-scaled probability that the site is not a variant, com-
puted as follows: QUAL = —10 - log10 (posterior genotype probability for GT = 0/0).
These filtering thresholds ensure that only high-confidence variants are considered for
further analysis.

The genomic metadata per ROI obtained from the sequencing equipment were con-
verted to .txt extension files containing around 150 different parameters of the mutations of
the ROl in the form of rows, such as the HUGO symbol of the mutated gene, the location of
the mutation, or the type of the variant relative to the Hg38 Human Reference Genome.

2.8. Genomic Analysis

DNA sequencing was followed by the fitting of contigs, data cleaning, and automatic
insertion of the raw genomic metadata into the fused PostgreSQL database (DB) [37]. The
imported genomic metadata of a sequenced ROI was joined with the genomic data available
from KEGG open databases [38] and queried from the database [39]. From this merge, the
genomic information shown in Figure 2 was determined per single cell.

Number of affected gene types by
mutations

List of the top 5 most mutated gene

types

* Gene types on diploid,
somatic chromosomes
have 2 copies (alleles).

* Gene types on haploid

Gene features:

Hugo symbol

Types of the
mutations

(X, Y) chromosomes are
unique.

Number of

; Occurance
mutations

of types of
mutations

appeared:

per gene « SNP
type *INS
* DEL

On which chromosome it is loc.

Gene-specific drug target(s)
k Known molecular pathway(s)

Figure 2. Merged genomic metadata from sequenced ROIs and the KEGG database, providing

gene-level analysis for individual cells.

For an aggregated analysis of single-cell data, Table 3 was constructed, containing
the genomic evaluation of each ROI at the chromosome level and collectively for tumor
stage levels.
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Table 3. Aggregated analysis of single-cell genomic data at the chromosome level, showing the number of gene mutations and affected genes per chromosome,
along with the proportion of mutated genes and mutation frequency. Data is further aggregated at the tumor stage level (normal, native, and carcinoma) to assess
damage across chromosomes, with adjustments for chromosome size variability and tumor stage classification.

Tumor Class: NORM/NAT/CRC ROI ID, ROI ID,,...,ID, All Cells in Given Tumor Class
Approximate Total Affected Proportion of Approximate Median of Median of
(lj\lllrom. Gene Number Gene Distinct Mutated Mean of MeasfuéetlilData Mutated Gene Mutations per
ame of Chromosome Mutations Genes Genes [%] Mutations/Gene o f-ells Proportions Affected Gene
1-2 3000 -2 mi gi p% = (gi -2)/(3000-2) di = m%/(gi -2) med%an (pi, cer P med%an (di, oo dy)
2.2 2500 -2 m% g% p% = (g% -2)/(2500-2) d% = m%/(g% -2) .. med%an (p%,. P med¥an (dl, )
32 1900 -2 ms g3 ps = (83-2)/(1900-2) dy =m3/(85-2) median (p3,...,p5)  median (ds,...,d5)
further chromosomes. . . . e e

212 400 -2 mh, g ph = (8% -2)/(400-2)  dY, =ml /(g3 2) median (pl, ..., p4) median(d},...,d%)
X1 1400 -1 mk gt pL = (g}cl- 1)/(1400- 1) d}f = m%/(g% 1) median (p%,...,p;’) median (dl’l‘ o, dl
Y1 200 -1 m; g; p; = (gy-1)/(200-1) dy =my/(gy 1) median (p,,...,py)  median (dy,...,dy)
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Under the unique identifier (ROI ID) of a given cell, the number of gene mutations
detected for that cell per chromosome type is listed in the “Total Gene Mutations” column.
Since a gene can be damaged several times, the number of different types of genes affected
by these gene mutations is stored in the “Affected Distinct Genes” column. Although a gene
is found on only one chromosome (type), there are two copies of the 1-21 chromosomes
per cell, so different types of genes also occur twice per cell. The exception to this is the
sex-linked genes on chromosomes X and Y in males because there is only one of each of
these chromosomes per cell. Thus, the mutations detected in them and the genes they
affect can be confidently linked to a single chromosome. However, sequencing equipment
is currently not able to determine which of the given diploid, somatic chromosome pairs
has the particular type of damaged gene. It can only determine the chromosome type in
which the damaged gene is located. Thus, the above column can only determine distinct
types of genes, not the true number of genes actually affected. Here, we can use an
approximation, for example, by multiplying the number of genes by two (or dividing the
number of mutations by two), assuming that diploid pairs have the same probability of
being damaged by mutations.

In order to compare the amount of damaged genes calculated as described above per
chromosome, it is necessary to normalize them, since chromosome sizes also vary [40].
While the size of a given chromosome cannot be fixed due to variability in human races
and alleles, the gene quantities of chromosomes measured by UNCN [41] for the average
human reference genome can be used as an approximation. This information is collected in
the “Approximate Gene Number of Chromosome” column. If twice the number of genes is
detected, different types of damaged genes (assumed) are divided by twice the gene size
of the approximate chromosome (since two identical chromosomes are present), and we
obtain the proportion of damaged genes in chromosomes in the “Proportion of Mutated
Genes” column. This allows us to compare which chromosomes are the most damaged.
Furthermore, the “Approximate Mean of Mutations/Gene” column shows how many
times the genes were mutated, on average, in the damaged proportion of the chromosomes,
where the total detected mutations (as they are distributed on two identical chromosomes)
are divided by twice the number of affected distinct genes (assumed). Hence, the degree of
gene damage can also be examined.

After the cell-by-cell evaluation, the single-cell results were aggregated for the normal,
native, and carcinoma tumor phases. During this process, the proportion of mutated genes
per chromosome and their degree of damage were determined for each tumor state. The
tumor-stage labeling of cell samples cannot be validated, as it is based on the pathologist’s
experience and subjective opinion. Along these lines, median operators were used instead
of average ones for the aggregation because the mean would be heavily biased by the
parameters of mislabeled cells from other classes, whereas the median avoids this.

2.9. Visualization of Fused Data

Tissue Cell NGS Viewer was developed by us to unite the morphological, morpho-
metric, and genomic information extracted in the manner described above, as well as to
jointly visualize this information for cells originating from different regions of the tumor.
After storing this metadata in a common PostgreSQL database, the goal was to display
it together within a shared graphical user interface (GUI) of NGS Viewer. Since a large
amount of data needed to be placed in a relatively small area, two main display tools were
used for its design, annotation, and heat mapping.
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2.9.1. Annotation

Due to the connection of genetic metadata and morphological coordinates in the
database, the annotations could be placed directly above the ROI shapes. In order to
minimize the obscuring of the morphological environment of the ROI, the annotations
were formulated as drop-down and scrollable lists. They contain the evaluation results
of a given ROI described in Section 2.8 that are retrieved in real time from the database
with NpgSQL [42] and listed in batches. This allows for a more detailed observation of
tumor heterogeneity.

2.9.2. Heatmap

Meanwhile, a heatmap is introduced in the annotated areas as well, showing how
much the sequenced cell (cluster) of the given annotation has mutated, thereby representing
the severity of the analyzed gene mutations. Initially, all ROI annotations are transparently
“colored”, since we have no information about the mutation status before sequencing the
DNA. When the genomic metadata is imported into the DB, the genomic evaluation values
are used to generate the following quotient to calculate a relative mutation value:

ro_ 2?21 m; — Zln:l i

rel n .
i=1 M

C , 1)

where C; o1 is the relative cell mutation, i is the type of chromosome, n = [1,2,3,...,21, X, Y],
m; is the total number of gene mutations on the i-th chromosome of the cell, and g; is the
number of genes affected by the mutations on the i-th chromosome of the cell. In all cases,
this derived value can take a value in the range of [0-1]. It takes a value of zero if all the
registered gene mutations belong to different genes. At the other extreme, it takes a value
of one if all of its gene mutations occur on one gene (in a tumor that can also be detected by
morphology, usually 4-5 genes are mutated in higher amounts).

The calculated relative mutation value is mapped on the color scale, starting from
green (0), through yellow (~0.5), and extending to red (1). Therefore, the more gene-
specifically (fewer genes with more mutations) an area has mutated, the more red it
becomes. This relative mutation value makes it possible to compare annotations within a
tissue sample with each other, as well as with other tissue samples, as it provides normalized
values. Thus, the heatmap serves as a visual aide in identifying tumor foci.

3. Results

The result of our research is the Tissue Cell NGS Viewer, which fuses all the corre-
sponding metadata of the pathological steps presented in Section 2 into a single platform.
It integrates morphology, morphometry, and genomics at the cellular level, which is of
immense value to diagnosticians, allowing them to focus solely on making treatment deci-
sions. Throughout the Results section, we present the utilization of the built workflow and
the developed Tissue Cell NGS Viewer application with a patient sample. We include a
more in-depth explanation of different features in Supplementary Material S3.

3.1. System Feasibility

Insight into the operation of the integrated hardware system, which was also auto-
mated by us, as presented in previous works [26,27] during its robotic functioning can be
gained from the 54 video provided in the Supplementary Files. The operation of the NGS
Viewer platform, developed for the integration and processing of metadata extracted dur-
ing the workflow steps, and its use by the end-user are presented in the Sections 2.3-3.11.
Screenshots of the NGS graphical interface provide original visual data and proof of use.
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Furthermore, the computational resources and requirements necessary for the real-time
analysis and visualization as part of the system operation are detailed in Table 4.

Table 4. Minimal system requirements to use NGS Tissue Cell Viewer.

PC Component Details
Operating system Microsoft Windows 10 (64-bit recommended)
Execution environment Microsoft .Net Framework, >version 4.8.04084
Disk space 300 MB free space for program and 10 GB for local slide storage
(1 digital slide size is 0.5-8 GB, depending on resolution)
RAM >2 GB, 1.6 GHz (4 GB recommended)
CPU >Intel(R) Core(TM) i5 or equivalent AMD processor
Graphics card memory 512 MB (1 GB recommended)
Screen resolution 19”,1280 x 1024 resolution, 141 DPI

3.2. Scanned Membrane Slides

Biopsied tissue samples were digitized with a Pannoramic 1000 scanner (3DHISTECH,
Budapest, Hungary), which provides a high-resolution digital image stored as data in its
own Mirax Digital Slide (MRXS) format. An image is not a single large file but a directory
containing several files with a DataXXXX.dat extension and one file with an Index.dat
extension. The whole-slide MRXS-type digital images converted to TIFF format (55-57) are
available in the Supplementary Files. The scanned normal, native, and carcinoma digital
tissue previews are presented in Figure 3a—c. Once a slide is loaded into NGS Viewer,
several processing options become active. In the Viewer, one can click and zoom anywhere
on the preview images above to navigate to the desired part of the tissue that they wish
to examine.

2%

29

(a) Normal stage (b) Native stage (c) Carcinoma stage

Figure 3. Digital slide previews of normal, native, and carcinoma biopsies digitized using a high-
resolution tissue scanner. The previews, displayed in the NGS Viewer, include a thumbnail of the full
slide and a high-resolution subpart for detailed examination.

3.3. Algorithmic Selection

In case of algorithmic analysis, the segmentation algorithms for nuclei, cells, glands,
and surface epithelia—along with their parameters—can be configured and fine-tuned as
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described in Section 2.4. The processing and evaluation steps of this pipeline are illustrated
with a representative sample region in Figure 4.

(®) (h)

Figure 4. Steps of the algorithmic segmentation and classification pipeline. (a) Original region

of interest selected for morphology analysis (Sample “G”); (b) detected nuclei marked in white,
overlaid on the original tissue region; (c) binary representation of the detected nuclei, shown without
background to visualize density and spatial distribution; (d) boundary delineation of full cell areas
based on detected nuclei; (e) quality assessment of the delineated cells, with cells falling within the
normal morphological parameter range marked in green, whereas those deviating from it are marked
in red; (f) tissue-level classification of cells based on their associated tissue region, with stromal
cells marked in yellow, gland-associated cells in red, and cells aligned along the epithelium in blue;
(g) identification of the adjacent surface epithelial region based on the classified cells, aiding in the
localization of the tissue sample’s boundary and outer edge; (h) detection and masking of glands
inferred from the spatial clustering of cells classified as glandular.

Panel (a) shows a selected region of interest extracted from the scanned digital tissue.
In (b), the detected nuclei are overlaid in white on the original image to retain spatial
context. The corresponding binary mask of these nuclei, shown in (c), highlights their
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density and spatial distribution, independent of tissue background. Full-cell regions
are delineated in (d) by expanding from the nucleus boundaries using morphological
constraints. Panel (e) presents a quality assessment of the segmented cells based on
morphological criteria: cells within normal ranges are marked in green, while abnormal
ones are marked in red. The classified cells in (f) are color-coded by tissue association:
stromal (yellow), glandular (red), and epithelium-aligned (blue). Based on this classification,
(g) shows the inferred surface epithelium region, while (h) displays the detected and
masked gland areas derived from the clustering of gland-associated cells.

To quantitatively evaluate segmentation performance, additional testing regions con-
taining a mixture of healthy, malignant, and carcinoma tissue samples were analyzed. The
histological regions were manually annotated by expert pathologists and served as the
ground-truth reference. Furthermore, a separate training set of 78 labeled tissue samples
containing a heterogeneous mix of tissue types was used for parameter optimization of the
detection algorithms. Segmentation accuracy was assessed by comparing the automated
results with the manual results using the Dice Similarity Coefficient (DSC), both calculated
per region and across the entire dataset. These results are summarized in Table 5.

As shown in the table, the average achieved segmentation accuracy was DSC = 0.891
for the automatic segmentation. The DSC value was negatively affected by the presence of
challenging cellular structures, while well-preserved healthy regions contributed positively.
Difficult cases included densely clustered, dividing, overlapping, or partially sectioned
cells, such as those located at the image borders or affected by microtome-induced artifacts
(e.g., smearing or tearing). In such instances, only partial cell structures may be visible
within a given layer (e.g., faint outlines due to the nucleus of the cell being present in
an adjacent section), resulting in morphological features such as the area, perimeter, and
pixel intensity falling outside the expected distribution for the respective cell class. These
atypical feature values lead to low confidence scores; thus, the detection algorithms tended
to discard these ambiguous objects rather than risk false-positive identifications. It is
important to note that such cells would also typically be excluded from manual selection
for downstream genomic analyses; therefore, this behavior is considered an acceptable
trade-off in the scope of our application. Nevertheless, ill-classified objects could still be
present in the segmented regions, which have to be accounted for in later stages of the
workflow (cell cutting or genomic analysis) or removed by hand once the segmentation
is complete.

Table 5. Performance of the automatic segmentation across a heterogeneous set of tissue samples. For
each sample, the table lists the number of cells detected by the algorithm, the number of manually
annotated cells (control), and the number of cells that were missed (false negatives) after confidence-
based filtering. The Dice similarity coefficient (DSC) is reported per sample as a quantitative measure
of segmentation accuracy. The average DSC across all samples was 0.891.

Tissue Number of Manual Number of Numl_)er of Filtered,
. Missed Cells DSC
Sample Detected Cells Cell Annotations .
(False Negative)
Sample A 160 207 47 0.872
Sample B 261 269 8 0.985
Sample C 176 197 21 0.944
Sample D 367 444 77 0.905
Sample E 545 706 161 0.871

Sample F 716 872 156 0.902
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Table 5. Cont.

Tissue Number of Manual Number of Numt.)er of Filtered,

. Missed Cells DSC
Sample Detected Cells Cell Annotations .
(False Negative)

Sample G 285 410 125 0.820
Sample H 431 484 53 0.890
Sample I 256 288 32 0.889
Sample J 89 117 28 0.864
Total 3286 3994 708 0.891

3.4. Manual Selection

Once the reference points are marked on the slide presented in Figure 5a, one can start
the morphological examination of the tissue sample and select suspicious areas, as shown
in Figure 5b for further genomic analysis—even single-cell areas. Figure 6 displays the
morphology of the selected regions from normal, native, and carcinoma tissue samples,
with 12-12 samples per tumor state.
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Figure 5. ROI selection process. (a) Reference points on the tissue slide are marked and saved to
begin the morphological examination. (b) Optional shapes (circle, line, square, or ellipse) are selected
to define regions of interest (ROIs) to be analyzed further, with the selected shape visible in the
image viewer.
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3.5. Calculated Morphometry

Once the user is satisfied with a selected region, the morphometric parameters of the
ROI are also calculated in the background and saved automatically to the fused database
when saving an annotation (ROI) in NGS Viewer. Upon exiting a pop-up window and
returning to the image viewer shown in Figure 7, the saved ROI selection is fixed, and
an additional list window is added above the shape, including the unique identifier of
the generated ROIL By scrolling down the list of calculated parameters, one can find
morphometric data such as its perimeter and area in micrometers, among other features,
which are also displayed in Figure 7.

At this point, while navigating through the image viewer or changing the image
resolution, the saved ROI continues to be displayed on the tissue such that one can return
to the annotation at any time. To save additional ROlISs, the ROI selection (Section 3.4) and
saving operations are repeated.

3.6. Exporting Single-Cell Morphology and Morphometry to LMD

The parameters of the created ROIs can be saved in an XML file, which serves the
purpose of importing those selections into the user interface of the CellCut microdissector.
In this way, the selections made on a digital image can be automatically laser-cut from
the physical slide using the forward reference points. An exported XML S8 sample file is
included in the Supplementary Material. Importing and applying an XML file to the LMD
is described in the User Guide of CellCut LMD [32].

3.7. Importing Genomic Metadata

The genomic metadata obtained from DNA sequencing of ROI samples can be im-
ported into NGS Viewer for both genomic analysis and visualization. After loading, a
confirmation window pops up about the successful import of all the genomic metadata
records, line by line. The genomic analysis described in detail in Section 2.8 is automatically
executed on the imported genomic metadata.

3.8. Loading Archived ROIs

After finishing DNA sequencing, it is possible to restore the ROIs that were previously
created on the slides in NGS Viewer. This also means that it is not necessary to fully
evaluate a given slide at the same time or to start the analysis of the slide from scratch if it
has already been started. After importing the ROISs, the program returns to the main screen
and jumps to the location of each selected annotation in the image viewer in a row at the
current magnification level, as shown in Figure 8.

It also loads the already calculated and analyzed data about the saved ROls in their
annotation lists. In addition, the preview image in the sidebar shows both the current
and the loaded annotations marked with blue frames. This way, the user will be aware
of where the sample has already been examined and evaluated rather than having to
search through the whole image. Once loading is complete, the old annotations can be
re-examined, genomic metadata can be added to them, and new ROIs can also be created.

3.9. Visualization of Genomic Analysis, Together with Morphology and Morphometry

After real-time automatic processing of the imported metadata, the genomic evaluation
results can be examined for the high-resolution image at each ROI accordingly. The
selected annotations are refreshed; hence, the morphology is now visualized together with
its morphometry, as well as its evaluated genomic information in the image viewer, as
demonstrated in Figure 9.
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Figure 6. Morphology of the selected regions from normal, native, and carcinoma tissue cells, with
12 samples per tumor state.
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4 NGS Tissue Cell Viewer 1.0
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Figure 7. After saving a region of interest (ROI), the image viewer displays the selected ROI, along
with calculated morphometric data, such as the perimeter and area, in the annotation list. The saved
ROI remains visible across different image resolutions for easy reference and further analysis.

Upon opening and scrolling through the annotation list window for the ROI, the
genomic information is displayed below the morphometric data, including the total number
of mutations detected during DNA sequencing, the number of affected genes, the five most
critically mutated genes among the filtered colon-specific genes, their mutation types and
occurrences, their known molecular pathways, and the drug targets developed to date,
as identified by merging data from international open-source databases. This enables the
pathologist to observe the relationships between the mutated genes through their shared
molecular pathways—for example, identifying which affected genes participate in the same
biological processes, regulatory cycles, or molecular balances. Such correlations support
the identification of deeper causal mechanisms and contribute to the establishment of a
more precise and robust diagnosis.

Nevertheless, when a digital tissue sample is reopened in the next NGS Viewer usage,
the already imported genomic metadata does not need to be imported again; subsequently,
the genomic information for the evaluated ROIs will be automatically displayed when the
archived ROlIs are reloaded.
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Figure 8. After DNA sequencing, previously saved ROIs can be reloaded in NGS Viewer. The
image viewer displays both current and saved annotations, marked with blue frames, to help users
efficiently navigate and update the slide without starting from scratch.
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Figure 9. After processing the genomic metadata, NGS Viewer displays the morphology, morphometric
measurements, and genomic information for each ROI. This includes mutation details, affected genes,
molecular pathways, and drug targets, providing a comprehensive visualization of the tissue sample.
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3.10. Visualization of Tumor Foci

To compare the sequenced ROIs (cells) with each other, any list element corresponding
to the current examination can be selected from the drop-down annotation lists. When a
list item is clicked, the item gets to the top of the list, and the list also closes, as presented
in Figure 10. With a closed annotation list and zooming further into the high-resolution
image, the heatmap can be viewed in the area of the ROIs, which represent the overall
severity of the analyzed gene mutations at a given location.
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Figure 10. Heatmap overlays on ROI areas based on the severity of detected gene mutations across
the sequenced regions. Each ROI is colored according to its aggregated mutation load, with warmer
colors (e.g., red/orange) indicating regions with higher mutational intensity and cooler colors
(e.g., blue/green) representing regions with lower mutation severity. This visual representation
enables comparison of tumor heterogeneity and the identification of tumor foci by highlighting areas
with higher mutation intensity, which may be relevant for the delineation of resection margins and
understanding localized progression patterns.

The heatmap facilitates the comparison of ROI-level heterogeneity within the tu-
mor, supporting the identification of tumor foci by visually progressing along the tumor
roughness gradient. Additionally, it assists the pathologist in selecting drugs associated
with patient-specific mutations located in the most critically affected, highlighted regions,
thereby supporting their consideration during personalized therapy planning. Further-
more, it also supports the oncologist in delineating intervention sites and defining surgical
resection margins.
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Besides the individual genomic analysis and comparison of single-cell samples, the
NGS Viewer enables aggregated analysis of grouped ROIs. The resulting data can be
exported in .txt format for further evaluation. The aggregated analysis, as described in
detail in Section 2.8, includes the combined or cell-wise genomic evaluation of all sequenced
cells associated with a given tissue sample on a chromosome-by-chromosome basis. The
analysis determines the total number of gene mutations, the number of affected genes, the
proportion of mutated genes relative to the total number of genes per chromosome, and the
average number of mutations per gene. Furthermore, for each chromosome, it computes
group-level metrics, including the median proportion of mutated genes and the median
number of mutations per affected gene. These results can support user-specific research
queries and are suitable for visualization through custom-generated plots. A sample of
the exportable data format derived from the single-cell samples presented in the above
sections is provided in Supplementary Material S9.

3.11. NGS Viewer System Testing

During the system’s endurance testing, we observed that the analysis time is primarily
influenced by the number of genomic metadata records associated with a given cell. Even
the largest sample, containing approximately 56,797 mutation records, was processed in
77 ms, which is within the acceptable delay range of 10-100 ms, demonstrating the system’s
classification as a soft real-time system. On average, sequenced cells contain 8422 mutation
records, with an average response time of 22.33 ms for their evaluation [39].

In case the system needs to be scaled to handle even larger datasets, based on the
identified bottleneck, the system could experience increased memory consumption and/or
slower processing times due to the added complexity of managing and analyzing vast
amounts of genomic metadata. In particular, the most resource-intensive tasks include
data indexing; mutation matching; and database operations such as insert, query, and
update, which may lead to delays that exceed the soft real-time constraints. To address
these challenges, transitioning from CPU-based to GPU-based genetic analysis, imple-
menting efficient parallel processing, re-optimizing queries, and ensuring robust memory
management will be critical in maintaining performance at scale.

4. Discussion

Our platform uniquely integrates morphological, morphometrical, and genomic data
into a unified analytical space, transforming the way pathologists approach diagnosis
and disease understanding. This integrated approach allows for a seamless transition
from purely descriptive morphology to a more mechanistic understanding, directly linking
specific genetic variations to quantitative phenotypic changes at the cellular and tissue
levels. In this discussion, we detail how our platform could be implemented in practice,
and we also discuss the potential benefits in clinical applications.

4.1. Workflow Integration in Laboratories

The entire workflow, summarized comprehensively in Table 6, seamlessly blends
conventional histopathological techniques with high-throughput molecular profiling and
advanced robotic handling. Each phase, from the initial biopsy to final therapy planning,
is meticulously defined, specifying the necessary specialized equipment—ranging from
standard surgical tools to automated slide stainers, laser microdissection systems, and next-
generation sequencing (NGS) platforms—with the estimated equipment cost exceeding
USD 1.15 million. Key settings such as tissue section thickness, laser parameters, and
sequencing coverage depth are highlighted to ensure reproducibility and data quality.
Outputs are systematically recorded at each stage, including tissue sections, scanned digital
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slides, ROI segmentations, extracted cells, raw reads, and annotated gene mutations. The
pipeline emphasizes the crucial role of a multidisciplinary team—comprising histologists,
immunologists, robotics engineers, bioinformaticians, and oncologists—requiring a staff
of at least ten professionals and an estimated processing time of 15 days per sample.
This detailed overview aims to provide a transparent and reproducible reference for the
implementation and adaptation of similar integrative workflows in precision oncology.

A central tenet of this pipeline is the systematic integration of morphology, mor-
phometry, and genomic data through sequential yet interoperable modules. For instance,
high-resolution scanned slides are annotated based on morphological features, which,
in turn, guide the precise selection of regions of interest (ROIs) for subsequent laser mi-
crodissection and genomic sequencing. This meticulous process ensures a direct and
traceable link between cell morphology, its spatial location, and genetic variants, allowing
for their correlation through integrated software platforms. The resulting fused data
output—encompassing annotated images, morphometric features, and mutation pro-
files—enables a more holistic understanding of tumor heterogeneity, which is paramount
for accurate diagnosis and personalized treatment planning.

The workflow is designed to be compatible with widely used clinical practices embed-
ding cutting-edge digital automation and precision genomic diagnostics. Early stages, such
as tissue biopsy, preservation, sectioning, and slide mounting, rely on standard pathology
laboratory equipment, requiring minimal infrastructural adaptation. The introduction of
robotic slide handling (e.g., UR5 arm) and automated staining (e.g., Gemini stainer) signifi-
cantly enhances throughput and reproducibility; the initial investment in these systems is
justified by potential labor savings and standardized performance. The imaging and data
analysis pipeline leverages high-resolution scanning (e.g., Pannoramic P1000 (3DHISTECH,
Budapest, Hungary)) and custom image analysis through the NGS Viewer, supporting
both segmentation and ROI-based classification with adjustable parameters tailored to
specific tissue characteristics. Cell extraction via laser microdissection (LMD) and down-
stream DNA sequencing (Illumina/Nanopore) enables genomic profiling at single-cell
resolution. Critically, the workflow integrates cloud-based or local variant-calling plat-
forms (e.g., BaseSpace or Epi2Me), ensuring interoperability through standardized output
formats like .vcf. Subsequent phases of diagnostic reporting and therapy planning are fully
integrated in the NGS Viewer environment, allowing for a comprehensive interpretation
that fuses visual and molecular data. This framework supports expert-driven interpretation
and remains modular enough to accommodate evolving biomarker panels or drug libraries,
ensuring reproducibility and personalization for adoption in diverse institutional contexts,
including pathology labs with existing molecular diagnostic capabilities. Overall, the
workflow offers a high degree of modularity, making partial or full integration feasible,
depending on local resources, expertise, and diagnostic focus.

While this platform offers substantial diagnostic potential, its implementation in
clinical settings poses notable challenges. The workflow necessitates a series of special-
ized and high-cost instruments, including slide scanners ($350,000), laser microdissectors
(USD 150,000-350,000), and high-throughput sequencers (Illumina: approx. USD 275,000;
Nanopore: approx. USD 450,000), in addition to robust server infrastructure for data storage
and processing. Furthermore, operating such a sophisticated system demands a multidis-
ciplinary team with specialized expertise in pathology, immunohistochemistry, robotics,
sequencing, and bioinformatics. In terms of scalability, the primary bottlenecks are the
3-day tissue preparation phase and the several-hour-long sequencing and variant-calling
steps. However, computational data analysis can run in parallel, and the modular nature of
the setup enables partial automation and parallelization of tasks. Physically, the system
does not strictly require a single integrated laboratory space; equipment components can
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be distributed across rooms and linked via a local network, provided a contamination-free
preparatory environment is ensured for tissue handling. Additionally, strict cooling and
climate control are essential, especially for high-load systems like sequencers and servers,
which are maintained at 20 °C in the current setup. While the initial setup is resource-
intensive, the architecture allows for flexible deployment and gradual integration into
existing pathology departments.

4.2. Clinical Relevance of the Proposed Framework

Morphological data derived from H&E-stained slides provide foundational pheno-
typic information, enabling the identification of malignant transformations and other
pathological alterations. Complementing this, morphometrical data provide objective,
quantifiable measurements of cellular and architectural features, providing a precise assess-
ment of disease progression and statistically significant differences between healthy and
diseased cell populations. The fusion of genomic data, such as whole-exome sequencing
from specific cellular populations within the slide, introduces a crucial molecular layer.
This allows pathologists to identify common mutation patterns, facilitating the recommen-
dation of targeted therapies based on a comprehensive molecular profile. For example,
a pathologist can simultaneously view a dysplastic gland, its quantified morphometric
parameters (e.g., area and perimeter), and the specific titin (TTN) mutation detected within
those very cells.

Although each of these data modalities is present in various forms within current
pathology workflows, their integration is often disjoint, leading to inefficiencies and poten-
tial inaccuracies.

In current pathological workflows, numerous steps are manual, leading to a lack of
automation. Slide digitalization, if performed, is often a time-consuming manual slide-
loading and unloading process, especially for larger workloads. Reviewing slides is also
a slow process, with results often dependent on the individual pathologist’s expertise,
introducing inter-observer variability. Manual morphometry calculations involve repetitive
and error-prone steps with a (digital) ruler or a caliper, as each cell must be uniquely labeled
and calculated. Furthermore, genetic data, when available, is often disconnected from
pathological slides and analyzed using different software. This requires practitioners to
cross-reference separate reports manually and switch context frequently, which is both
time-consuming and makes the process prone to human error in data transcription or
interpretation.

Our integrated platform offers substantial advances in efficiency and accuracy com-
pared to traditional pathologist workflows. By automating the aggregation and direct
linkage of morphological, morphometrical, and genomic data, our platform significantly
reduces diagnostic response time. Pathologists can rapidly identify key features and receive
quantitative support for their observations, which they can immediately correlate with
genomic findings from the same regions of interest, eliminating the need to wait for further
molecular reports or manually reconcile diverse data sources.

The automated extraction of morphometrical data provides objective, reproducible
measurements that would be exceedingly time-consuming or impossible to perform man-
ually. This quantitative layer empowers pathologists with precise metrics that support
diagnostic decisions and disease monitoring. By providing quantifiable morphometrical
data alongside high-resolution morphology, our system introduces an objective layer that
reduces variability in diagnosis and grading across different pathologists, promoting more
standardized and reproducible interpretations.
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Table 6. Integration details across the cyber-physical tumor diagnostic workflow.

. 1 . Approx. Mean i
Workflow Phase Specialized Equipment, Price [USD] (in Important Settings Output Technical Time Requirement
Chemistry 2025) Expertise
. . Standard biopsy protocol, resection margins . Surgeon, nurse,
Biopsy Clinical setup, scalpel N/A . . : . Raw tissue sample 1-2h
including native region staff
. Ultra-low-temperature (ULT) . .
Tissue : . Snap-frozen tissue stored at —80 °C, while Snap-frozen/FFPE ..
preservation freezer, cryogir;;cfftil;be/formahn, ~15,000/~850 paraffin block stored at —4 °C in a freezer. tissue block Lab technician 3 days
Preventing tissue thawing during handling.
Tissue sectioning Automatic microtome ~30,000 Section thickness proport{onallty to examlr}mg Tissue sections Histologist 0.5h
cell type (Snap-frozen: 10-20 um, FFPE: supervision
4-6 pm) and uniformity of sections.
Warm water bath for surface Membrane slides (MMI) used instead of classic
Section mounting stretching of tissue sections, ~1000 + 1600 glass shdes for LMD compatibility. To ensure Sections fixed on Lab technician 15h
- . that no air bubbles are trapped, a brush is used slides
slide-drying hot plate to flatten
URS robotic arm (Universal
. . Robots USA, Novi, MI, USA) Accurate, damage-free membrane slide . Robotics engineer .
Slide transferring with custom magazine and slide ~50,000 placement into downstream modules. Loaded slides supervision 10 min
manipulator
Gemini automated stainer Contrast- h |
: . (Thermo Fisher Scientific, ~60,000 + .. . Immunologist 3 h (protocol-
Slide staining Waltham, MA, USA), H&E ~150-5000 Staining and IHC protocols enharslg(e:tciié)rsli;amed supervision dependent)
stainer kit/IHC panel kit
. Use of obtained . file £ High-resolution .. 5-30 min
Slide scanning Pannoramic P1000 scanner ~350.000 se of obtained custom settings profile for digital slide images Lab technician (resolution-
(3DHistech, Budapest, Hungary) ’ membrane slides. (MRXS) supervision dependent)
Selected ROIs (e.g.,
cells), their
morphology,
Image analysis: . . . calculated .. ..
segmentation and NGS Viewer N/A Fine-tuning of 'algorl.thm parameters for morphometry Bioinformatician 10-20 min
cpe . examined tissue type. . supervision
classification saved mb[l)B a(r)1d
exportable ROI

parameters for
excision (.xml)
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Table 6. Cont.

Approx. Mean

Workflow Phase Specialciflicllnlgigtg}ilpment, Pricez[(I)JZ?_’l))] (in Important Settings Output Eig;:fsa; Time Requirement
Cell extraction
(step required Laser velocity, focus, and power adjustment Isolated cells in
only for CellCut LMD (MMI) ~150,000-200,000 based on tissue type and section thickness. 2x Eppendorf Lab technician 0.5h
single-cell-level cutting repeat. capsules
analysis)
. NextSeq 500 (Illumina, Inc., San Raw signal reads
DNA sequencing: ) LT &
. . Diego, CA, USA)+kit for exome  ~275,000+3000/run/ . . (.POD5) and
riedcit;mzfcllgl; asle of single cells/PromethION ~450,000+1000/run e ngnzgdig: stt}?iigj'u%ﬁca)lrlrtnyi tC hf)(lezlél‘;geizr o nucleotide Lab technician 5-10 days
cagllin (Nanopore, Oxford, UK)+kit for +10000 q & dep y ge. sequences
& whole genome of bulk + server (.-FASTQ)
Variant calling;: Exportable
contig alignment BaseSpace (Illumina)/Epi2Me Usage-based co_ri(}))z};?b?eaIiSEZIiaEsee.FCI?):VnC;eﬂi:(frﬁli\r/?tl}S\tge ge;l?gﬁ\n/; itigls ta Bioinformatician 0.5 day
and variant (Nanopore) (0.085/GB)/free latest human reference genome. annotated gene supervision
calling mutations (.vcf)
Fused genomic metadata analysis and
visualization by reopening saved ROI Support of
Diagnosis : morphology and morphometry data and diagnostic . . :
reporting NGS Viewer N/A importing .vcf variants. Correlation conclusion Pathologists 3040 min
examination via the listed molecular pathways establishment
of the mutated genes.
i i _specifi Personalized Oncologist board
Therapy planning NGS Viewer N/A Selection of listed gene specific drugs that treatment plan and attending 20-30 min
target the most critically mutated genes. su .
pport physician
Total >1.15M Staff of >10 people ~10-15 days
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Our unified framework eliminates the need for pathologists to manually reconcile
disparate data sources, minimizing the risk of human error in data transcription or interpre-
tation across different modalities. This integrated view enhances the overall accuracy of the
diagnosis by providing a comprehensive, cross-referenced understanding of the disease.

The accelerated analysis and standardized workflow lead to more rapid diagnoses and
potentially increase the volume of patients who can be effectively managed. Furthermore,
this consistent approach promotes uniformity in pathological analysis across different
institutions, potentially fostering improved collaboration and inter-institutional diagnostic
agreement. This comprehensive and integrated approach represents a significant advance-
ment in diagnostic pathology, facilitating a deeper understanding of disease biology and
ultimately enhancing clinical efficiency and patient outcomes.

In addition to aiding pathologists” work, our approach could also provide additional
benefits in precision oncology. While genomics identifies actionable mutations, a fused view
can reveal specific morphological or microenvironmental contexts that predict a stronger
response to a targeted drug. For example, a TTN-mutated tumor might respond more
favorably to treatment if it also exhibits a particular cellular growth pattern or immune
cell infiltration. Conversely, the fused data can highlight morphological or architectural
features that correlate with resistance to a genome-driven therapy, allowing for an earlier
pivot to alternative treatments and sparing patients from ineffective and toxic regimens.

5. Conclusions

Our research presents an innovative workflow integration for digital pathology, enabling
the aggregation of diverse metadata from independent pathological devices into a unified
platform. The NGS Tissue Cell Viewer is a key development, successfully fusing data from
tissue sectioning, staining, scanning, segmentation, microdissection, and NGS sequencing,
functioning as a tumor-diagnostic decision support system. This integration significantly
enhances the efficiency and accuracy of tumor analysis, overcoming the limitations of existing
digital pathology solutions that typically analyze this data independently. Unlike traditional
methods that treat morphological and genomic data separately, NGS Viewer enables a more
holistic and nuanced approach to tumor diagnostics, offering a more seamless diagnostic
process and reducing the time and effort required for individual evaluations.

The NGS Viewer empowers simultaneous analysis and visualization of morphological,
morphometric, and genomic data, even at the single-cell level. This approach enhances
the ability to detect and assess genetic mutations in the context of cellular morphology.
It supports precision oncology by enabling patient-specific tumor mutation profiling,
displaying essential genomic information, such as the total number of mutations, affected
genes, and mutation types, and providing a more comprehensive understanding of the
tumor microenvironment. In addition, the identification of associated molecular pathways
is also elaborated, which can serve as actionable intervention points. Furthermore, by
linking detected gene mutations to known gene-specific drug targets, the platform may
assist in assembling personalized treatment strategies. These main functionalities aim to
clarify the system’s potential role not only in early cancer detection but also in informing
individualized therapeutic decisions and improving clinical outcomes.

Following the first implementation and the integration successes, the current phase
of research focuses on scaling up the tissue samples. We have gained server access to
colorectal tumor patient samples arriving at the clinic. Additionally, we secured funding
for the sequencing of these samples and for the storage of several terabytes of metadata on
a dedicated server. As a result, we are currently expanding the sample size and processing
it through the established system, scaling up the workflow.
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A further limitation is that the evaluation of sequencing metadata involves compar-
isons with the Hg38 human reference genome, which is, itself, incomplete and continually
evolving. We aim to monitor the relevance of these updates, and while this process is
currently performed manually, we plan to automate it in the future to ensure that the data
remains up-to-date.

In future research, we aim to refine our approach to sequencing data by not only
focusing on the quantitative changes in the nucleotides of specific genes but also placing
greater emphasis on the locations and qualities of gene mutations. Currently, no complete
or standardized collection exists in the literature to clearly associate specific mutations in
particular genes with colorectal tumors. Moving forward, we intend to replace this broad
approach with an Al-based model trained on large-scale sequencing data, allowing us to
search for patterns and provide predictions regarding the severity of mutations based on
their locations. Additionally, going down one more genomic level, we plan to identify the
type of mutated nucleotides at these filtered locations and provide automated statistical
analysis on them. This multi-level approach could significantly improve our understanding
of how specific nucleotide mutations contribute to colorectal tumor development and
progression, offering deeper insights into the distribution of mutations and their role in
the disease.

In addition, using the completed software, we intend to perform automated mea-
surements with an increased sample size, focusing on the native areas to advance our
understanding of tumor mechanisms and identify and grasp earlier stages, allowing for
easier and more effective strategies to combat cancer and improve patient outcomes.
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CRC samples; S10: Disclosure of potential conflicts of interest signed by the authors.

Author Contributions: Conceptualization, methodology, software, data curation, investigation,
visualization, validation, and writing—original draft preparation, M.D.K.; data curation and writing—
review and editing, N.S.; resources, supervision, and funding acquisition, B.M.; resources, project
administration, formal analysis, writing—review and editing, and funding acquisition, M.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was Supported by the 2024-2.1.1 University Research Scholarship Program of
the Ministry for Culture and Innovation from the source of the National Research, Development, and
Innovation Fund. The authors also gratefully acknowledge the support of the 2019-1.3.1-KK-2019-
00007 “Establishment of an innovation service base for the development of cyber-medical systems for
diagnostics, therapeutics and research” project financed by the National Research, Development, and
Innovation (NRDI) Office of Hungary.

Institutional Review Board Statement: The study was conducted according to the Declaration of
Helsinki and approved by the local ethics committee and government authorities (Regional and
Institutional Committee of Science and Research Ethics (ETT TUKEB) No. 14383-2/2017/EKU
Semmelweis University, Budapest, Hungary) for studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in this study.

Data Availability Statement: Due to privacy issues, we have not made the full dataset available,
including the digital images of medical tissue sections and the single-cell sequencing part of this


https://www.mdpi.com/article/10.3390/s25144465/s1
https://www.mdpi.com/article/10.3390/s25144465/s1

Sensors 2025, 25, 4465

310f33

References

publication. The data were used according to the written consent provided by participants, without
compromising their anonymity. Upon request, we can provide access to the data with permission for

peer review.

Acknowledgments: The authors would like to thank the Molecular Gastroenterology Laboratory (2nd
Department of Internal Medicine) of Semmelweis University for the technical support in this research,
especially I1diké Felletar for tissue preparation and staining and William Jayasekara Kothalawala and
Barbara Molnér for DNA sequencing. Thanks to Ferenc Francia (3DHistech Ltd.) for calibrating the
P1000 RX tissue scanners in order to scan membrane slides. The authors also wish to express their
gratitude to the Applied Informatics and Applied Mathematics Doctoral School of Obuda University
and thank Abdallah Benhamida (Obuda University) for testing the NGS Viewer release and creating
an installer.

Conflicts of Interest: Authors Marianna Dimitrova Kucarov, Nikolett Szakallas, and Béla Molnar were
employed by 3DHistech Ltd. Author Miklos Kozlovszky declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

A Adenine

API Application programming interface

C Cytosine

CRC Carcinoma (cancerous tissue)

DB Database

DEL Deletion of nucleotide sequence

DNA Deoxyribonucleic acid

DSC Dice similarity coefficient

FFPE Formalin-fixed and paraffin-embedded
G Guanine

GUI Graphical user interface

HG38 Human reference genome 38

IHC Immunohistochemical

INS Insertion of nucleotide sequence
LMD Laser microdissection machine

MMI Molecular Machines & Industries Ltd.
NAT Native tissue (the nearest intact tissue sample to cancer)
NGS Next-generation sequencing

NORM  Normal tissue (healthy)

ROI Region of interest

SNP Single-nucleotide polymorphism

T Thymine

TME Tumor microenvironment

TTN Titin protein

ULT Ultra-low temperature

U Uracil

1. Fischer, E. Nuclear Morphology and the Biology of Cancer Cells. Acta Cytol. 2020, 64, 511-516. [CrossRef] [PubMed]
2. Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1181-1186. [CrossRef]
3. Kinzler, K,; Vogelstein, B. Lessons from Hereditary Colorectal Cancer. Cell 1996, 87, 159-170. [CrossRef] [PubMed]


http://doi.org/10.1159/000508780
http://www.ncbi.nlm.nih.gov/pubmed/32570234
http://dx.doi.org/10.1056/NEJM197111182852108
http://dx.doi.org/10.1016/S0092-8674(00)81333-1
http://www.ncbi.nlm.nih.gov/pubmed/8861899

Sensors 2025, 25, 4465 32 of 33

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Garber, M.E.; Troyanskaya, O.G.; Schluens, K.; Petersen, S.; Thaesler, Z.; Pacyna-Gengelbach, M.; van de Rijn, M.; Rosen, G.D.;
Perou, C.M.; Whyte, R.I; et al. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA 2001,
98, 13784-13789. [CrossRef] [PubMed]

Perou, C.; Serlie, T.; Eisen, M.; van de Rijn, M.; Jeffrey, S.; Rees, C.; Pollack, ].; Ross, D.; Johnsen, H.; Aksle, N.L.; et al. Molecular
portraits of human breast tumours. Nature 2000, 406, 747-752. [CrossRef] [PubMed]

Yachida, S.; Jones, S.; Bozic, I.; Antal, T.; Leary, R.; Fu, B.; Kamiyama, M.; Hruban, R.; Eshleman, J.; Nowak, M.; et al. Distant
Metastasis Occurs Late during the Genetic Evolution of Pancreatic Cancer. Nature 2010, 467, 1114-1117. [CrossRef] [PubMed]
Jones, S.; Zhang, X.; Parsons, D.; Lin, J.; Leary, R.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; et al.
Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science 2008, 321, 1081-1086.
[CrossRef] [PubMed]

Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The Causes and Consequences of Genetic Heterogeneity in Cancer
Evolution. Nature 2013, 501, 338-345. [CrossRef] [PubMed]

Gerlinger, M.; Horswell, S.; Larkin, J.; Rowan, A.; Salm, M.; Varela, I; Fisher, R.; McGranahan, N.; Matthews, N.; Santos, C.; et al.
Genomic Architecture and Evolution of Clear Cell Renal Cell Carcinomas Defined by Multiregion Sequencing. Nat. Genet. 2014,
46, 225-233. [CrossRef] [PubMed]

Knoche, S.M; Larson, A.C.; Sliker, B.H.; Poelaert, B.J.; Solheim, ].C. The role of tumor heterogeneity in immune-tumor interactions.
Cancer Metastasis Rev. 2021, 40, 377-389. [CrossRef] [PubMed]

Germana, E.; Ludovica, P; Pizzimenti, C.; Ballato, M.; Pierconti, F.; Tuccari, G.; Ieni, A.; Giuffre, G.; Fadda, G.; Fiorentino, V.; et al.
Programmed Cell Death Ligand 1 (PD-L1) Immunohistochemical Expression in Advanced Urothelial Bladder Carcinoma: An
Updated Review with Clinical and Pathological Implications. Int. ]. Mol. Sci. 2024, 25, 6750. [CrossRef] [PubMed]

Beca, F,; Polyak, K., Intratumor Heterogeneity in Breast Cancer. In Novel Biomarkers in the Continuum of Breast Cancer; Springer
International Publishing: Cham, Switzerland , 2016; pp. 169-189. [CrossRef]

10X Genomics. Compare Products. Available online: https://www.10xgenomics.com/products (accessed on 11 May 2024).
10X Genomics. In Situ Gene Experssion. Available online: https://www.10xgenomics.com/support/in-situ-gene-expression
(accessed on 11 May 2024).

10X Genomics. Find Product User Guide for In Situ Gene Expression. Available online: https://www.10xgenomics.com/
support/user-guides/in-situ-gene-expression?menu%5bproductNames%5d=In%20Situ%20Gene%20Expression (accessed on
11 May 2024).

NanoString, A Bruker Company. What is Spatial Biology? 2022. Available online: https://nanostring.com/blog/how-do-i-
choose-the-right-spatial-biology-technology/ (accessed on 11 May 2024).

NanoString, A Bruker Company. What is Spatial Transcriptomics? Available online: https://nanostring.com/research-focus/
spatial-transcriptomics/ (accessed on 11 May 2024).

Oncompass Gmbh.. Precision Oncology Program. Available online: https://oncompassmedicine.com/about-the-process#
(accessed on 11 May 2024).

Papp, O.; Jordan, V.; Hetey, S.; Baldzs, R.; Kaszés, V.; Bartha, A.; Ordasi, N.N.; Kamp, S.; Farkas, B.; Mettetal, J.; et al. Network-
driven cancer cell avatars for combination discovery and biomarker identification for DNA damage response inhibitors. NPJ Syst.
Biol. Appl. 2024, 10, 68 . [CrossRef]

Marecek-Kolibisky, M.; Janik, S.; Mikva, M.; Szabé, P; Czifra, G. Human-Machine Co-Working for Socially Sustainable
Manufacturing in Industry 4.0. Acta Polytech. Hung. 2024, 21, 33-53. [CrossRef]

Kozlovszky, M.; Heged{s, K.; Szenasi, S.; Kiszler, G.; Wichmann, B.; Bandi, I.; Eigner, G.; Sas, P.; Kovdcs, L.; Garaguly, Z.; et al.
Parameter assisted HE colored tissue image classification. In Proceedings of the 2013 IEEE 17th International Conference on
Intelligent Engineering Systems (INES), San Jose, Costa Rica, 19-21 June 2013. [CrossRef]

Thermo Scientific. Thermo Scientific Gemini AS Operator Guide Issue 10. Available online: https://www.medwrench.com/
documents/view /15154 /thermo-scientific-gemini-as-operator-guide-issue-10 (accessed on 28 April 2025).

Cardiff, R.D.; Miller, C.H.; Munn, R.J. Manual Hematoxylin and Eosin Staining of Mouse Tissue Sections. Cold Spring Harb.
Protoc. 2014, 6, 654-658. [CrossRef] [PubMed]

Epredia. ClearVue Coverslipper. Available online: https:/ /www.epredia.com/products/histology-instruments/staining-and-
coverslipping/clearvue (accessed on 28 April 2025).

Universal Robots A/S. URbe. Available online: https://www.universal-robots.com/products/ur5e/ (accessed on 28 April 2025).
Kucarov, M.D.; Molndr, B.; Kozlovszky, M. Robot Instead of Laboratory Technicians - Slide Holder Detection and 3D Position
Determination by Robotic Arm. In Proceedings of the 2022 IEEE 26th International Conference on Intelligent Engineering Systems
(INES), Georgioupolis Chania, Greece, 12-15 August 2022; pp. 97-102. [CrossRef]


http://dx.doi.org/10.1073/pnas.241500798
http://www.ncbi.nlm.nih.gov/pubmed/11707590
http://dx.doi.org/10.1038/35021093
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://dx.doi.org/10.1038/nature09515
http://www.ncbi.nlm.nih.gov/pubmed/20981102
http://dx.doi.org/10.1126/science.1164368
http://www.ncbi.nlm.nih.gov/pubmed/18772397
http://dx.doi.org/10.1038/nature12625
http://www.ncbi.nlm.nih.gov/pubmed/24048066
http://dx.doi.org/10.1038/ng.2891
http://www.ncbi.nlm.nih.gov/pubmed/24487277
http://dx.doi.org/10.1007/s10555-021-09957-3
http://www.ncbi.nlm.nih.gov/pubmed/33682030
http://dx.doi.org/10.3390/ijms25126750
http://www.ncbi.nlm.nih.gov/pubmed/38928456
http://dx.doi.org/10.1007/978-3-319-22909-6_7
https://www.10xgenomics.com/products
https://www.10xgenomics.com/support/in-situ-gene-expression
https://www.10xgenomics.com/support/user-guides/in-situ-gene-expression?menu%5bproductNames%5d=In%20Situ%20Gene%20Expression
https://www.10xgenomics.com/support/user-guides/in-situ-gene-expression?menu%5bproductNames%5d=In%20Situ%20Gene%20Expression
https://nanostring.com/blog/how-do-i-choose-the-right-spatial-biology-technology/
https://nanostring.com/blog/how-do-i-choose-the-right-spatial-biology-technology/
https://nanostring.com/research-focus/spatial-transcriptomics/
https://nanostring.com/research-focus/spatial-transcriptomics/
https://oncompassmedicine.com/about-the-process#
http://dx.doi.org/10.1038/s41540-024-00394-w
http://dx.doi.org/10.12700/APH.21.2.2024.2.2
http://dx.doi.org/10.1109/ines.2013.6632811
https://www.medwrench.com/documents/view/15154/thermo-scientific-gemini-as-operator-guide-issue-10
https://www.medwrench.com/documents/view/15154/thermo-scientific-gemini-as-operator-guide-issue-10
http://dx.doi.org/10.1101/pdb.prot073411
http://www.ncbi.nlm.nih.gov/pubmed/24890205
https://www.epredia.com/products/histology-instruments/staining-and-coverslipping/clearvue
https://www.epredia.com/products/histology-instruments/staining-and-coverslipping/clearvue
https://www.universal-robots.com/products/ur5e/
http://dx.doi.org/10.1109/INES56734.2022.9922607

Sensors 2025, 25, 4465 33 of 33

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Kucarov, M.D.; Takdcs, M.; Molnar, B.; Kozlovszky, M. Transparent Slide Detection and Gripper Design for Slide Transport by
Robotic Arm. In Proceedings of the 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics
and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics
(CINTI-MACROo), Budapest, Hungary, 21-22 November 2022; pp. 31-36. [CrossRef]

Kucarov, M.D.; Molnar, B.; Kozlovszky, M. Calibration of Robotic Arm for Workstation Installation in Changing Environment—
Comparison of Manual, Mechanic, and Automatic Calibration. In Proceedings of the 2023 IEEE 17th International Symposium on
Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 23-26 May 2023; pp. 593-598. [CrossRef]
3DHISTECH. Pannoramic 1000 User’s Guide. 2018. Available online: https://assets.thermofisher.com/TFS-Assets/APD/
Product-Guides/US-Only-P1000-BF-Users-Guide-EN-2018-04.pdf (accessed on 11 May 2024).

Kucarov, M.D.; Molndr, B.; Kozlovszky, M. Localization and Conversion of Single Cell Positions from Static High-Resolution
Digital Images to Lasermicrodissector Coordinate System through Utilization of References and 2D Transformation Techniques.
Acta Polytech. Hung. 2024, 20, 257-279. [CrossRef]

Kucarov, M.D.; Molnér, B.; Kozlovszky, M. Single Cell Position Determination and Transformation From Static High-resolution
Digital Image To Laser-microdissector Coordinate System Using Image Processing Techniques. In Proceedings of the 2023 IEEE
17th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 23-26 May
2023; pp. 195-201. [CrossRef]

Molecular Machines; Industries GmbH. mmi CellCut User Manual. 2020. Available online:

https:/ /scopem.ethz.ch/center/instruments-alphabetical /nikon-mm1-md.html (accessed on 11 May 2024).

Ilumina, Incorporation. MiniSeq Sequencing System Applications and Methods. Available online: https://www.illumina.com/
systems/sequencing-platforms/miniseq/applications.html (accessed on 11 May 2024).

Oxford Nanopore Technologies plc. PromethION 24/48. Available online: https://nanoporetech.com/products/sequence/
promethion-24-48 (accessed on 11 May 2024).

Ilumina, Incorporation. Illumina DRAGEN Bio-IT Platform v3.6 User Guide. Available online: https://support.illumina.
com/content/dam/illumina-support/documents/documentation/software_documentation/dragen-bio-it/dragen-bio-it-
platform-v3.6-user-guide-1000000128306-00.pdf (accessed on 5 March 2025 ).

Mlumina, Incorporation. Germline Variant Small Hard Filtering. Available online: https:/ /jp.support.illumina.com/content/
dam/illumina-support/help/Illumina DRAGEN_Bio_IT_Platform_v3_7_1000000141465/Content/SW /Informatics/Dragen/
GPipelineVarCalFilt_fDG.htm (accessed on 5 March 2025).

Kucarov, M.D.; Molndr, B.; Kozlovszky, M. Patho-Genomics Fusioned Database Schema and Optimisation for Automatic
Pathology Workflow. In Proceedings of the 2023 IEEE 21st World Symposium on Applied Machine Intelligence and Informatics
(SAMI), Herl’any, Slovakia, 19-21 January 2023; pp. 317-323. [CrossRef]

Kanehisa Laboratories. KEGG: Kyoto Encyclopedia of Genes and Genomes. Available online: https://www.genome.jp/kegg/
(accessed on 25 June 2024).

Kucarov, M.D.; Molnér, B.; Kozlovszky, M. Integration of NGS Genomic Metadata Analysis with Open-source Genomic Databases
for Single Cell Tissue Samples. In Proceedings of the 2025 IEEE 12th International Conference on Computational Cybernetics and
Cyber-Medical Systems (ICCC), Beau Vallon, Seychelles, 9-11 April 2025.

DocCheck Community GmbH. Chromosom. 2024. Available online: https:/ /flexikon.doccheck.com/de/Chromosom (accessed
on 8 August 2024).

National Center for Biotechnology Information (NCBI). Chromosome Map. 2016. Available online: https://www.ncbi.nlm.nih.
gov/books/NBK22266/ (accessed on 8 August 2024).

The Npgsql Development Team. Npgsql Getting Started. Available online: https:/ /www.npgsql.org/doc/index.html (accessed
on 25 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1109/CINTI-MACRo57952.2022.10029444
http://dx.doi.org/10.1109/SACI58269.2023.10158581
https://assets.thermofisher.com/TFS-Assets/APD/Product-Guides/US-Only-P1000-BF-Users-Guide-EN-2018-04.pdf
https://assets.thermofisher.com/TFS-Assets/APD/Product-Guides/US-Only-P1000-BF-Users-Guide-EN-2018-04.pdf
http://dx.doi.org/10.12700/APH.20.8.2023.8.14
http://dx.doi.org/10.1109/SACI58269.2023.10158647
https://scopem.ethz.ch/center/instruments-alphabetical/nikon-mm1-md.html
https://www.illumina.com/systems/sequencing-platforms/miniseq/applications.html
https://www.illumina.com/systems/sequencing-platforms/miniseq/applications.html
https://nanoporetech.com/products/sequence/promethion-24-48
https://nanoporetech.com/products/sequence/promethion-24-48
https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/dragen-bio-it/dragen-bio-it-platform-v3.6-user-guide-1000000128306-00.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/dragen-bio-it/dragen-bio-it-platform-v3.6-user-guide-1000000128306-00.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/dragen-bio-it/dragen-bio-it-platform-v3.6-user-guide-1000000128306-00.pdf
https://jp.support.illumina.com/content/dam/illumina-support/help/Illumina_DRAGEN_Bio_IT_Platform_v3_7_1000000141465/Content/SW/Informatics/Dragen/GPipelineVarCalFilt_fDG.htm
https://jp.support.illumina.com/content/dam/illumina-support/help/Illumina_DRAGEN_Bio_IT_Platform_v3_7_1000000141465/Content/SW/Informatics/Dragen/GPipelineVarCalFilt_fDG.htm
https://jp.support.illumina.com/content/dam/illumina-support/help/Illumina_DRAGEN_Bio_IT_Platform_v3_7_1000000141465/Content/SW/Informatics/Dragen/GPipelineVarCalFilt_fDG.htm
http://dx.doi.org/10.1109/SAMI58000.2023.10044541
https://www.genome.jp/kegg/
https://flexikon.doccheck.com/de/Chromosom
https://www.ncbi.nlm.nih.gov/books/NBK22266/
https://www.ncbi.nlm.nih.gov/books/NBK22266/
https://www.npgsql.org/doc/index.html

	Introduction
	10X Genomics
	Bruker Corporation
	Oncompass
	TurbineAI

	Materials and Methods
	Tissue Preparation on Membrane Slides
	Slide Detection and Manipulation
	Scanning Slides
	Image Processing of Scanned Morphology
	Morphometry Calculation
	Laser Microdissection
	DNA Sequencing
	Genomic Analysis
	Visualization of Fused Data
	Annotation
	Heatmap


	Results
	System Feasibility
	Scanned Membrane Slides
	Algorithmic Selection
	Manual Selection
	Calculated Morphometry
	Exporting Single-Cell Morphology and Morphometry to LMD
	Importing Genomic Metadata
	Loading Archived ROIs
	Visualization of Genomic Analysis, Together with Morphology and Morphometry
	Visualization of Tumor Foci
	NGS Viewer System Testing

	Discussion
	Workflow Integration in Laboratories
	Clinical Relevance of the Proposed Framework

	Conclusions
	References

