
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

Morphology in the Age of Pre-trained

Language Models

Ph.D. Dissertation

Judit Ács

Advisor:
András Kornai D.Sc.

Budapest
2025

Judit Ács
January 2025

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar
Automatizálási és Alkalmazott Informatikai Tanszék

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Automation and Applied Informatics

H-1117 Budapest, Magyar tudósok körútja 2. (Bldg. Q.)

Declaration of own work and references

I, Judit Ács, hereby declare that this dissertation, and all results claimed therein are my own
work, and rely solely on the references given. All segments taken word-by-word, or in the
same meaning from others have been clearly marked as citations and included in the refer-
ences.

Nyilatkozat önálló munkáról, hivatkozások átvételéről

Alulírott Ács Judit kijelentem, hogy ezt a doktori értekezést magam készítettem és abban csak
a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint, vagy azonos
tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.

Budapest, 2025. 01. 20.

Ács Judit

iii

Acknowledgements

First and foremost I thankmy advisor, András Kornai for his continuous support throughout my years
as a PhD student. I would not have started this journey without the opportunity to join his team in
2012 at SZTAKI. He introduced me to the world of NLP and his research attitude and integrity helped
me form my identity as a researcher and a professional.

I want to thank the members of my first research group at SZTAKI including Gábor Recski and
Attila Zséder, who were my first guides in my professional career. I thank the rest of the team, Katalin
Pajkossy, Márton Makrai, Dávid Nemeskey and Eszter Simon for their professional and personal sup-
port.

I am eternally grateful to Noah Smith who accepted me as a visiting student through the Fulbright
Scholarship. My year in his group is an experience I will cherish for my life.

I want to thank my numerous coauthors and friends. The list is too long to name everyone but I
remember every piece of encouragement and I am glad that we had a chance to work together.

Finally I want to thank my family. My husband, Gábor, who put up with my late hours, my hectic
schedule and my professional and personal struggles. I also thank him for joining me on my Fulbright
program in Seattle. I thank my son, Nándor and his soon-to-be-born little brother who continue to
be the light of my day. I want to thank my parents, siblings, grandparents and other family members
who were always proud of me despite my inability to explain my research to them. I want to thank
my mother for her support and I am devastated that she is no longer here to witness my graduation.
I dedicate this work to her.

v

Summary

The field of natural language processing (NLP) has adopted deep learningmethods in the past 15 years.
Nowadays the state-of-the-art in most NLP tasks is some kind of neural model, often the fine-tuned
version of a pre-trained language model. The efficacy of these models is demonstrated on various
English benchmarks and increasingly, other monolingual and multimultilingual benchmarks. In this
dissertation I explore the application of deep learning models on low level tasks, particularly mor-
phosyntactic tasks in multiple languages.

The first part of this dissertation (Chapters 3 and 4) explores the application of deep learning
models for classical morphosyntactic tasks such as morphological analysis and generation in dozens
of languages with special focus on Hungarian.

The second part of this dissertation (Chapters 5 to 8) deals with pre-trained language models,
mostly models from the BERT family. I include some experiments on GPT-4o and GPT-4o-mini. These
models show excellent performance on various tasks in English and some high density languages.
However, their evaluation in medium and low density languages is lacking. I present a methodology
for generating morphosyntactic benchmarks in arbitrary languages and I analyze multiple BERT-
like models in detail. My main tool for analysis is the probing methodology which I extend the with
perturbations, the systematic removal of certain information from the sentence. I use Shapley values
to further refine my analysis.

vi

Összefoglaló

A természetes nyelvfeldolgozás (NLP) területe az elmúlt 15 évben átvette a mélytanulási módszere-
ket. Manapság a legtöbb NLP feladatban valamilyen neurális modell adja a legjobbmegoldást, gyakran
egy előre betanított nyelvi modell finomhangolt változata. E modellek hatékonyságát különféle an-
gol nyelvű benchmarkokon, valamint egyre inkább más egynyelvű és többnyelvű benchmarkokon is
igazolják. Ebben a disszertációban a mélytanulási modellek alkalmazását vizsgálom alacsony szintű,
elsősorban morfoszintaktikai feladatokra több nyelven.

A disszertáció első része (3. és 4 fejezet) a mélytanulási modellek alkalmazását tárgyalja klasszikus
morfoszintaktikai feladatokhoz, például morfológiai elemzéshez és inflexióhoz több tucat nyelven,
különös tekintettel a magyar nyelvre.

A disszertáció második része (5–8. fejezet) az előre betanított nyelvi modellekkel foglalkozik, el-
sősorban a BERT-család modelljeivel. Néhány kísérletet bemutatok a GPT-4o és a GPT-4o-mini mo-
dellekkel is. Ezek a modellek kiváló teljesítményt nyújtanak különböző angol és más sok erőforrással
ellátott feladatokban. Ugyanakkor a közepes és kevés erőforrással rendelkező nyelveken történő érté-
kelésük hiányos. Bemutatok egy módszertant a morfoszintaktikai benchmarkok generálására tetsző-
leges nyelven, valamint részletesen elemzek több BERT modellt. Elemzéseim fő eszköze a szondázó
(probing) módszertan, melyet kiterjesztek pertubációkkal, vagyis bizonyos információk szisztemati-
kus eltávolításával amondatokból. Az elemzésem további finomításához Shapley-értékeket használok.

vii

Contents

1 Introduction 1

2 Background 7

2.1 Natural language processing . 7
2.1.1 High-level NLP applications . 8
2.1.2 Sentence level NLP tasks . 8
2.1.3 Word level NLP tasks . 9

2.2 Neural networks . 9
2.2.1 Feed-forward neural networks . 10
2.2.2 Training neural networks . 11
2.2.3 Sequence modeling . 12

2.3 Introduction to morphology . 19
2.3.1 Morphological typology . 19
2.3.2 Hungarian morphology . 20

I Deep Learning for Morphology 21

3 Morphological Inflection and Analysis 23

3.1 Hungarian morphological analysis . 23
3.1.1 Data . 24
3.1.2 Models . 24
3.1.3 Results . 24
3.1.4 Analyzing out-of-vocabulary words . 25

3.2 The Universal Morphological Reinflection Shared Task 26
3.2.1 Task formulation . 26
3.2.2 Task1 model: two-headed attention . 27
3.2.3 Task2: Inflection in Context . 32
3.2.4 Conclusion . 35

4 Neural Pattern Matching 37

4.1 SoPa: A Weighted Finite-State Automaton RNN . 38
4.2 Data . 40

ix

4.3 Tasks . 41
4.4 Models . 41
4.5 Model similarity . 42
4.6 Results and analysis . 42
4.7 Conclusion . 44

II Evaluating Pre-trained Language Models 47

5 Background 49

5.1 History of meaning representation . 49
5.1.1 Word embeddings . 49
5.1.2 Pre-trained contextual embeddings . 50
5.1.3 Terminology . 51

5.2 BERT . 51
5.2.1 Multilingual models . 53
5.2.2 Multilingual BERT . 53
5.2.3 XLM-RoBERTa . 53
5.2.4 Other multilingual models . 55
5.2.5 Monolingual models . 55

5.3 Subword tokenization . 55
5.3.1 Multilingual subword tokenization . 56
5.3.2 Cased and uncased models . 56
5.3.3 The tokenizers of mBERT and XLM-RoBERTa 57

5.4 Evaluating PLMs . 57
5.4.1 Intrinsic measures . 58
5.4.2 Downstream performance . 59
5.4.3 Benchmarks . 59
5.4.4 Part of speech tagging . 61
5.4.5 Named entity recognition . 61

5.5 Large language models . 62

6 Probing 63

6.1 Related work . 63
6.2 Morphosyntactic probing . 64

6.2.1 Formulation . 65
6.2.2 Data sampling . 66
6.2.3 Training details . 67

6.3 Multilingual probing dataset . 68
6.3.1 Choice of languages and tags . 68
6.3.2 Dataset statistics . 70

6.4 Subword pooling . 73
6.4.1 Pooling methods . 75
6.4.2 Layer pooling effects . 77
6.4.3 Experimental setup . 78
6.4.4 Results . 78
6.4.5 Discussion . 85

x

6.5 Morphology in pre-trained language models . 87
6.5.1 Baselines . 87
6.5.2 Results . 89
6.5.3 mBERT and XLM-RoBERTa against chLSTM 92
6.5.4 Comparison between mBERT and XLM-RoBERTa 93
6.5.5 Difficult tasks . 96
6.5.6 GPT-4o . 96

6.6 Ablations . 99
6.6.1 Linear probing and MLP variations . 99
6.6.2 Layer pooling . 100
6.6.3 Fine-tuning . 100
6.6.4 Randomly initialized PLMs . 103
6.6.5 Training data size . 104
6.6.6 Model ablations . 105

7 Language-specific Models 107

7.1 Pre-trained models for Hungarian . 107
7.1.1 Evaluation tasks and data . 107
7.1.2 The models evaluated . 109
7.1.3 Subword tokenization . 109
7.1.4 Results . 110
7.1.5 Conclusion . 114

7.2 Pre-trained models for Uralic languages . 114
7.2.1 Data . 115
7.2.2 The models evaluated . 115
7.2.3 Subword tokenization . 116
7.2.4 Results . 118
7.2.5 Conclusion . 120

8 Perturbations and Shapley values 123

8.1 Perturbations . 123
8.1.1 Results . 124
8.1.2 Typology . 127

8.2 Shapley values . 129
8.2.1 Implementation . 131
8.2.2 General results . 132
8.2.3 Outliers . 134
8.2.4 The difficulties of generalization . 135

8.3 Conclusion . 137

Conclusion and Future Outlook 139

Publications related to this dissertation 143

Other publications 145

Bibliography 147

xi

Chapter1

Introduction

The study of morphology, the internal structure of words, dates back to ancient times. The Sanskrit
grammarian, Pān. ini formulated 3,959 rules for Sanskrit morphology sometime between the 7th and
4th century BCE. The Greco-Roman grammatical tradition included morphological analysis, and Ara-
bic morphology dates back to at least 1200 CE. These early foundational works continue to influence
linguistics today.

The rise of computational linguistics has had a profound impact on morphology. With the advent
of natural language processing (NLP), researchers have developed algorithms to analyze and gener-
ate morphological structures in diverse languages. These technologies underpin applications such as
machine translation, speech recognition, and text analysis.

However, the introduction of deep neural networks and the end-to-end training of models led to
a decline in the need for separate morphological analysis. This is evident from the disappearance of
morphology-related workshops and the ever decreasing number of papers about computational mor-
phology at major conferences. The main question of this thesis is whether we still need to concern
ourselves about morphology or is the knowledge simply learned by language models trained on suf-
ficiently large raw data. We try to answer this question in two parts. First, we examine small neural
networks on specific morphological tasks, then we turn to pre-trained language models and assess
how well they acquire morphology during training. Remarkably, the end-to-end trained models per-
form much better than the traditional morphology modules, which suggests that not just a separate
morphology, but the entire ‘modular’ view may be a thing of the past.

This thesis is organized as follows. Chapter 2 gives a general background for the deep learning
models we use throughout the thesis (Section 2.2). The thesis’s main research area is computational
morphology, so we provide a short introduction to morphology and morphosyntax here as well (Sec-
tion 2.3).

In Chapter 3 we demonstrate the effectiveness of attention-based models on morphosyntactic
tasks first in Hungarian, then in over 100 languages as a submission to the SIGMORPHON18 Shared
Tasks.

In Chapter 4 we explore SoPa, a differentiable restricted finite state automaton capable of learning
which spans of the input is important to the output. We apply this model to morphology and compare
the learned spans to morphemes.

Chapter 5 gives an introduction to the second part of this thesis which deals with pre-trained
language models (PLMs) including some large language models (LLMs).

Chapter 6 describes our extensive probing experiments. We first introduce morphosyntactic prob-
ing as an evaluation method (Section 6.2). We created a large-scale multilingual dataset (Section 6.3)

1

1. Introduction

whichwe applied formultiple pre-trainedmodels.We perform in-depth analysis onmBERT and XLM-
RoBERTa, two massively multilingual models (Section 6.5). These models use subword tokenizers
which require a way of pooling multiple subword representations that correspond to a single token.
We explore these options in Section 6.4. The probing methodology has its fair share of criticism which
we address with various ablation methods (Section 6.6).

The previous chapters focused on multilingual models. Chapter 7 dives into language specific
models, particularly models for Hungarian (Section 7.1) and other Uralic languages (Section 7.2).

Finally, in Chapter 8, we further refine our analysis with perturbations, methods for the system-
atic removal of some information from the probing data (Section 8.1). We use the results as inputs to
clustering algorithms over languages and we show that related languages tend to form clusters (Sec-
tion 8.1.2). We also apply a game theoretic approach, Shapley values, which allows for fine-grained
analysis of morphosyntactic phenomena, while retaining the scope of this multilingual work (Sec-
tion 8.2).

The dissertation’s main contributions are summarized in Theses 1 to 5.

Thesis 1

I demonstrated that encoder-decoder (a.k.a. sequence-to-sequence or seq2seq) models are well-suited for
morphological inflection and generation. This holds for type-level and sentence-level tasks in multiple
languages.

Subtheses:

1.1 I collected and prepared a silver standard Hungarian dataset for morphological inflection and
analysis using a high quality rule-based analyzer.

1.2 I implemented two types of sequence-to-sequence or encoder-decoder models with attention:
LSTM with soft attention and LSTM with hard attention.

1.3 I trained and evaluated the models on the Hungarian dataset.

1.4 I developed two new types of encoder-decoder models for morphological inflection. The first
model is a double encoder-single decoder model for type-level inflection. The second model
is complex multi-encoder model for sentence-level inflection. I participated in the CoNLL-
SIGMORPHON 2018 Shared Taskwith thesemodels as an individual team. Task 1was type-level
inflection in over 100 languages, Task 2 was inflection in context (sentence) in 7 languages. I
placed 3rd and 2nd in the two tasks respectively with multi-encoder and single-decoder seq2seq
neural networks.

These contributions were published in Ács (2018) and they are my sole contribution (Chapter 3).

Thesis 2

I adapted a differentiable weighted finite state RNN to sequence-to-sequence tasks and showed that neural
pattern matching can extract morphosyntactic patterns in multiple languages when used as an encoder
for morphological inflection and analysis.

Subtheses:

2

2.1 I reimplemented the Soft Patterns or SoPa neural model (Schwartz et al., 2018), a restricted
and differentiable finite state automaton model originally used for text classification tasks. I
added an LSTM decoder and used SoPa as an encoder-decoder model. This model uses pattern
matching on the encoder side.

2.2 I applied the model to type-level morphological analysis and inflection in 12 typologically di-
verse languages.

2.3 I extracted patterns (character sequences) from trained SoPa models and manually examined
their linguistic plausibility.

2.4 I introduced a model similarity metric defined for a pair of SoPa models. This metric allows
comparing different tasks that use the same input data. The higher the similarity between two
tasks, the more likely they are to rely on the same patterns.

These contributions were published in Ács and Kornai (2020). The paper was awarded the best
paper award at the Hungarian Computational Linguistics Conference in 2020. The implementation is
entirely my contribution (Chapter 4).

Thesis 3

I developed a new methodology for morphosyntactic probing. It relies on CoNLL-U formatted data which
is widely available in the Universal Dependencies Treebanks, therefore my methodology is applicable to a
large number of languages and morphosyntactic tags. Using my probing methodology I showed that pre-
trained language models (PLMs) trained on unannotated text learn morphology. PLMs’ representations
retain morphosyntactic information across a large set of typologically diverse languages and multiple
tasks.

Subtheses:

3.1 I introduced the largest multilingual morphosyntactic probing dataset with 247 tasks in 42 fam-
ilies from 10 language families. I define a probing sample as a triplet of a sentence, a particular
token called target token in the sentence and a morphosyntactic tag corresponding to the tar-
get token. I used the Universal Dependencies Treebank (Nivre et al., 2018) to generate probing
samples according to this definition.

3.2 I evaluated 6 multilingual PLMs and analyze two, mBERT and XLM-RoBERTa in detail. I com-
pared them to various baselines and show that PLMs indeed learnmorphosyntactic information.

3.3 I evaluated GPT-4o and GPT-4o-mini on the test set of the probing dataset via prompting.

3.4 I examined the tokenizer of PLMs and showed that although multilingual models support over
100 languages, the tokenizer works better on languages that use the Latin script, particularly
English. (Ács, 2019)

3.5 Probing as an analysis tool for blackbox models has been criticized for various reasons (Be-
linkov, 2021). I introduced more than 10 ablation methods and showed that the conclusions
drawn from morphosyntactic probing are robust.

3

1. Introduction

3.6 The token-level usage of PLMs requires a way of handling tokens split into multiple subwords
represented by multiple vectors. A pooling function (parametric on non-parametric) may be
used to infer a single vectors by token. I showed that the choice of pooling function matters, es-
pecially for feature extraction (when the PLM is not fine-tuned). I compared 9 pooling functions
in 7 languages and 3 tasks (Ács et al., 2021a).

These contributions were published in (Ács, 2019; Ács et al., 2021a; Ács et al., 2023). The ex-
periment design was done in collaboration with my coauthors and the implementation is my sole
contribution (Chapter 6).

Thesis 4

I used my morphosynactic probing dataset and methodology to demonstrate that monolingual PLMs are
better in their respective languages than multilingual PLMs but the difference is small and often not sta-
tistically significant. Moreover both monolingual and multilingual PLMs can be successfully transferred
to new languages as long as the new language uses the same writing system.

Subtheses:

4.1 I analyzed 5 PLMs with Hungarian support and I found that HuBERT (Nemeskey, 2021), a
Hungarian-only model is better at morphological, POS and NER tagging than the multilingual
models, especially distilBERT, but the margin is small. (Ács et al., 2021)

4.2 I extended this study to the languages of the Uralic family (Ács et al., 2021b). I drew similar
conclusions in Estonian and Finnish, the only Uralic languages with dedicated monolingual
PLMs, as in Hungarian.

4.3 I trained POS andNER taggingmodels inminority Uralic languages by transferringmultilingual
and monolingual models. The cross-language models are surprisingly successful despite the
extremely small training data available in some languages. The new models appear to be state-
of-the-art without any language-specific effort.

These contributions were published in (Ács et al., 2021; Ács et al., 2021b). The experiment design
and the result analysis was done in collaboration with my coauthors. The implementation is my
contribution (Chapter 7).

Thesis 5

I refined my probing analysis with perturbations that aim to find the exact location of morphosyntactic
information in a sentence. The systematic removal of certain information (perturbations) reveals where
the information is stored. I used Shapley values to quantify the role of context in morphosyntax and the
results often agree with linguistic intuitions.

Subtheses:

5.1 I introduced a set of perturbation methods that remove some source of information from a sen-
tence. I retrained the morphosyntactic probes (cf. Thesis 3) on the 247 probing tasks. The results
offer insight on where the information is stored in the sentence. We can often find linguistic
explanations for them.

4

5.2 I used the results of perturbations as features for clustering the languages. Such clustering tends
to group languages from the same family in the same cluster with some notable exceptions. It
also tends to cluster typologically similar but unrelated languages in the same cluster.

5.3 I defined a sentence as a 9-player coalition game where the players are tokens or groups of to-
kens relative to the target token in the morphosyntactic probe. I applied the Shapley framework
on each probing task.

5.4 I analyzed the Shapley values from mBERT, XLM-RoBERTa and an LSTM baseline and found
that the inter-model correlation is high which demonstrates that the Shapley values are more
descriptive of linguistic structure than of the models. I identified the outlier tasks and I found
that the Shapley values often confirm the linguistic properties of the particular language and
task.

These contributions were published in (Ács et al., 2023). The experiment design and the result
analysis was done in collaboration with my coauthors. The implementation is my contribution (Chap-
ter 8).

5

Chapter2

Background

This chapter provides an overview of the three principal areas relevant to this thesis. First, we in-
troduce the field of Natural Language Processing (see Section 2.1). Next, we present a concise intro-
duction to the evolving domain of deep learning in Section 2.2. Given that Part I addresses models
for low-level morphological tasks without the use of pre-trained models, we defer the discussion of
language models to Part II. Finally, Section 2.3 offers a brief overview of natural language morphol-
ogy, with particular emphasis on Hungarian morphology, as Hungarian serves as a key focus of this
research.

2.1 Natural language processing

Natural Language Processing (NLP) is a field of artificial intelligence that enables computers to under-
stand, interpret, and generate human language. It combines concepts from computer science, linguis-
tics, mathematics, and machine learning to create systems that can interact with natural language.
Its goal is to bridge the gap between human communication and machine understanding, allowing
computers to process large volumes of text data and extract valuable insights.

A foundational challenge inNLP is dealingwith the complexity and variability of human language.
Language is inherently ambiguous, with words and sentences often carrying multiple meanings de-
pending on context. For instance, the word bank can refer to a financial institution or the side of a
river, and determining the intended meaning requires context.

NLP research dates back to the 1950s when machine translation was highly desired by political
actors. The 1954 Georgetown-IBM experiment demonstrated the automatic translation of 60 Rus-
sian sentences to English and fueling further funding for the project but it unfortunately did not live
up to the expectations. The development of NLP continued with similar rule-based systems but real
breakthroughs waited until the spread of statistical methods in the 1990s. Statistical methods require
training corpora which became available with the spread of the world wide web. Machine learn-
ing methods such as Naive Bayes, Support Vector Machines, Logistic Regression and Decision Trees
showed promising results in both research and industrial applications.

The 2010s welcomed the next breakthroughwith the development of word embeddings and the ef-
ficient usage of neural networks. We give an overview of neural networks in Section 2.2 and introduce
embeddings in more detail in Section 5.1.1.

NLP research defines many tasks at different levels of application. High-level tasks are the ones
that the end user is familiar with. Mid and low-level tasks are usually building blocks of complex

7

2. Background

systems implementing high-level tasks. In the rest of this section we give an overview of the most
common tasks in NLP with special emphasis on the ones related to this thesis.

2.1.1 High-level NLP applications

Natural language generation. NLG is an umbrella term for any task where the output is free-
form natural language. This output is generally conditioned on the input which can be another piece
of natural text, a database, or their combination.

Summarization. Automatic summarization produces a summary of a chunk of text, typically a
news article. There are two types of summarization: extractive summarization highlights the impor-
tant parts of the input text, while abstractive summarization generates a new summary. Abstractive
summarization is a prominent example of NLG.

Machine translation. Machine translation is the automatic translation from one human language
to another. It is one of the oldest NLP tasks dating back to the 1950s. Early rule-based methods were
first replaced with statistical machine translation and later with neural machine translation.

Question answering. QA systems answer questions posed in natural language. Similarly to sum-
marizationwe distinguish between extractive and abstractive QA. Another categorization is open book
vs. closed book QA depending on the model’s ability to use external data sources (open book).

Sentiment analysis. Sentiment analysis classifies the emotional intent of a text making it an exam-
ple of text classification in general. The simplest case is the binary classification of positive vs. negative
(or ternary with the inclusion of neutral) of single sentences.

2.1.2 Sentence level NLP tasks

We loosely equatemid-level taskswith sentence-level tasks.Mid-level tasks are usually components of
high-level applications or used as evaluations of novel models. Along with low-level tasks, these cor-
respond to the traditional fields of linguistics and they are often parts of NLP preprocessing pipelines.
Here we describe some of the most commonly used mid-level tasks.

Tokenization. Tokenization breaks down text into smaller parts. It is an important step of most
if not all NLP pipelines. Tokenization can be word-level, morpheme-level, subword or character tok-
enization.

Part-of-speech tagging. POS tagging marks every word with a part of speech or grammatical cat-
egory. POS generally describes a word’s syntactic function and in some languages, morphological
behavior. Some of the most common POS categories are noun, verb, adjective, adverb, and pronoun.
Many words, particularly in English, are ambiguous without context (e.g. divorce can be a noun or
a verb). POS tagging is generally done at the sentence level as the sentential context is enough for
disambiguating most words.

Named entity recognition. NER or NER tagging labels words or multiword expressions that refer
to proper names. Additionally NER models categorize proper names as persons, locations, organiza-
tions, and more.

8

2.2. Neural networks

Word sense disambiguation. Many words have more than one related or unrelated meaning and
WSD selects one of them based on context.

Parsing. Parsings maps a sentence to a tree-like structure based on its grammatical structure and
the relationship of the tokens. Two main types of parsing are used: dependency parsing and con-
stituency parsing. Dependency parsing focuses on the relationship of the words to one another, while
constituency parsing builds a parse tree that may involve abstract parts of the sentence such as VP
(verb phrase).

Mid-level NLP tasks used to be important components of high-level systems, but with the advent
of efficient representation learning with neural networks, many of them play a smaller role nowadays.
We use POS and NER tagging as evaluation tasks in Chapter 6 and Chapter 7 extensively.

2.1.3 Word level NLP tasks

Word level or low-level tasks are performed on single word forms rather than full sentences or para-
graphs.

Lemmatization. Lemmatizers remove inflection (cf. Section 2.3) from words and return the base
dictionary form or lemma. Their main purpose is to reduce the number of different word forms par-
ticularly in agglutinative languages. Stemming is a similar process but it relies on simple rules rather
than a lexicon.

Morphological segmentation. Morphological segmentation is the process of identifying mor-
pheme boundaries within a word.

Morphological analysis. Morphological analysis describes the internal structure of a word includ-
ing derivational and inflectional suffixes. Analyzers usually identify a lemma as well. An analysis may
or may not contain the morpheme boundaries (segmentation).

Morphological reinflection. Reinflection is the opposite task of morphological analysis. Given a
lemma and an inflectional paradigm, the desired output is the inflected form. This task used to play
an important role in cross-lingual applications.

This thesis focuses on morphology and we dive into morphological reinflection and analysis, par-
ticularly Part I.

2.2 Neural networks

Neural networks date back to the early 20th century with theories on how the brain might work.
In 1943 Warren McCulloch and Walter Pitts proposed the artificial neuron model inspired by neu-
ropsychology (McCulloch and Pitts, 1943). Based on their work, Rosenblatt (1957) implemented as
the perceptron algorithm for supervised binary classification. Rosenblatt built the first hardware im-
plementation of the perceptron which became the first single layer neural network formulated as:

9

2. Background

f(x) = h(w · x+ b), (2.1)

where x is the input, w is the weight, both are real-valued vectors, w · x is their dot product and b
is a scalar bias. h is the unit step function. f is a learned threshold function and its output for x is a
single binary value.

Unfortunately the original perceptron could only solve linearly separable problems. This issue
was highlighted in the influential 1969 book Perceptrons byMarvinMinsky (Minsky and Papert, 1969),
particularly perceptron’s inability to solve the XOR problem, which led to the so-called AI Winter, a
widespread withdrawal of research funds in the field.

The field was revitalized in the 1980s with the development of the backpropagation algorithm, a
training algorithm that allowed multilayer neural networks or deep neural networks to learn complex
patterns with the introduction of non-linear activation functions.

In the 2000s and 2010s, the combination of advances in hardware, GPUs in particular, the avail-
ability of large datasets and new techniques like dropout and rectified linear units (ReLU) fueled the
rise of deep learning. Pioneers such as Geoffrey Hinton, Yann LeCun and Yoshua Bengio helped bring
neural networks to the forefront of AI research, leading to breakthroughs in image recognition, nat-
ural language processing and game-playing AI (reinforcement learning).

2.2.1 Feed-forward neural networks

A Feedforward Neural Network (FNN) is the simplest type of artificial neural network where informa-
tion flows in one direction. There are no cycles or loops, meaning data moves forward only, without
feedback. This type of neural network is called multilayer perceptron or MLP and it is illustrated in
Figure 2.1.

x1

x2

x3

x4

y

Figure 2.1: Multi-layer perceptron with four inputs in green, a hidden layer with five neurons in blue
and one output in brown.

An MLP consists of three types of layers: (i) and input layer which receives the raw data or fea-
tures, (ii) one or more hidden layers and (iii) an output layer which produces the final result or pre-
diction. In this example in Figure 2.1 there is a single neuron in the output layer, typical of binary
classification problems. For multiclass problems MLP’s generally have as many output neurons as the
number of classes.

Each neuron in a layer is connected to neurons in the next layer, and each connection has a weight,
which is adjusted during training. Neurons apply activation functions to the weighted sum of their

10

2.2. Neural networks

inputs to introduce non-linearity, allowing the network to model more complex patterns. Common
activation functions include the sigmoid function:

σ(x) =
1

1 + e−x
, (2.2)

which squashes output between 0 and 1, frequently used in the past but prone to issues like vanishing
gradients. A similar squashing function with outputs between -1 and 1 is the hyperbolic tangent:

tanhx =
ex − e−x

ex + e−x
. (2.3)

ReLU or Rectified Linear Unit is a piecewise linear activation function defined as:

ReLU(x) = max(0, x). (2.4)

ReLU outputs the input directly if positive, and 0 otherwise. Although ReLU is non-differentiable at
0, it is differentiable everywhere else and its derivative at 0 can be chosen as 0 or 1. ReLU has other
variants that solve this problem such as Leaky ReLU.

Activation functions are usually applied after each layer with the exception of the output layer.
An MLP with one hidden layer and ReLU activation implements the following function:

MLP(x) = W2(ReLU(W1x+ b1)) + b2, (2.5)

where the weight matrices W1 and W2 and b1 and b2 biases are the parameters of the MLP and they
are adjusted during training tominimize the error between the predicted and the desired target values.
A single layer of an MLP, also called dense layer, is a frequent building block of more complex neural
networks.

2.2.2 Training neural networks

To train neural networks, we need a training dataset, a set of input-output pairs. A smaller part of
the training dataset is usually designated as a validation dataset, not used for actual weight updates
but rather for setting hyperparameters or controlling the training process. Additionally an untouched
test set is used for the final evaluation of a model. For classification problems the outputs are class
labels. Neural networks are universal function approximators (Hornik et al., 1989; Cybenko, 1989;
Csáji, 2001) meaning that in theory they can learn any function. Training a neural network involves
adjusting its weights and biases to minimize the error between the predicted output and the actual
target. The goal is to optimize the network so that it can generalize well to unseen data. The process
typically involves three steps: forward pass, loss calculation and backward pass.

During the forward pass the input data is passed through the network layer by layer. Each neuron
computes a weighted sum of its inputs, applies an activation function, and passes the result to the next
layer. The output layer produces the network’s prediction.

The difference between the predicted output and the actual target ismeasured using a loss function
such as the cross-entropy loss for classification problems, which is defined as:

l = log
exp yk∑C
c=1 exp yc

, (2.6)

where yk is the probability of the expected target label, yc is the probability of label c and C is the
set of all labels. The cross-entropy loss has an efficient GPU implementation in machine learning

11

2. Background

libraries. Other popular loss functions include the binary cross-entropy loss for binary classification
and mean-squared error (MSE) for regression.

In the backward pass the network computes the gradient of the loss with respect to each weight
using backpropagation. This involves applying the chain rule to propagate errors backward from the
output layer to the input layer. Unlike earlier learning paradigms, backpropagation allows the update
of all parameters at once, it is also called end-to-end training.

The weights and biases are updated using an optimization algorithm, typically Gradient Descent
or its variants (e.g., Adam (Kingma and Ba, 2014)). The update reduces the loss function by moving the
weights in the direction of decreasing error, with the learning rate determining the step size. As GPUs
are particularly suited for parallel processing, these steps are generally done on multiple data samples
or minibatches at a time to save computational resources. Batch training also reduces the variance of
the gradient signal since the backpropagated gradients are averaged over multiple samples. An epoch
is a complete pass over the dataset. The training process is repeated for a certain number of epochs
or it is stopped via early stopping. Early stopping is applied when we no longer see improvement on
the validation dataset.

The size of the batches, the parameters of early stopping along with predefined architectural
choices such as the number of layers and neurons are considered hyperparameters. Hyperparameters
need to be defined before the forward pass of backpropagation. Hyperparameter optimization is a
difficult problem and sophisticated algorithms such as genetic algorithms often perform no better
than simple heuristics.

Training neural networks can be challenging due to several issues, one of the most common be-
ing the vanishing and exploding gradient problem. As information is propagated backward through
deep networks during backpropagation, gradients can either shrink or grow exponentially. Vanishing
gradients make it hard for weights in early layers to be updated, resulting in poor learning for those
layers, while exploding gradients cause the weights to grow uncontrollably, leading to instability.
ReLU helps mitigate the vanishing gradient problem by avoiding very small gradients. In addition,
techniques like gradient clipping can be applied to keep gradients within a certain range, preventing
them from growing too large.

Another challenge in training neural networks is overfitting, where the model performs well on
the training data but fails to generalize to unseen data. This happens when the network becomes
too complex, memorizing the training examples rather than learning the underlying patterns. Several
techniques are used to combat overfitting. One popular method is dropout, which randomly zeroes
a subset of neurons during each training iteration, preventing the network from relying too heavily
on any single neuron. Regularization techniques like L2 regularization (weight decay) also help by
penalizing large weights, encouraging the model to learn simpler, more generalizable representations.

2.2.3 Sequence modeling

Virtually all problems in NLP deal with sequences of symbols. These symbols can be characters, sub-
words, words or even sentences. Sequences can be of arbitrary length. Natural language often uses
long-range dependencies which poses another difficulty to modeling.

Sequence modeling has a long history predating the current surge of deep learning and previous
sequence modeling techniques, such as Hidden Markov Models and Finite State Automata (FSA) –
whichwere and are still widely used for computational morphology – show remarkable success in this
domain. These models were not differentiable and the model parameters were derived via iterative
maximum likelihood methods such as expectation maximization. Rule based systems also enjoyed
considerable success but they relied on extensive work from linguistic experts. There were recent

12

2.2. Neural networks

attempts to restrict these powerful modeling techniques in ways that make them differentiable thus
allowing end-to-end training with backpropagation on labeled data. Chapter 4 explores one such
application in morphology, a restricted FSA, originally used for sequence classification.

Sequence modeling techniques with neural networks date back to the 1960s with Rosenblatt’s
addition of loops to MLPs (Rosenblatt, 1957). In the next sections we give a quick overview of the
main building blocks of sequence modeling neural networks.

2.2.3.1 RNN

Recurrent Neural Networks (RNNs) are a class of neural networks designed to handle sequential data,
where the order of the inputs matters. Unlike feedforward networks, RNNs have connections that
form loops, allowing them to maintain a memory of previous inputs. This makes them particularly
effective for tasks where context is important, such as NLP, time-series prediction, and speech recog-
nition. The general formulation of RNNs is:1

ht = σh(Whxt + Uhht−1 + bh) (2.7)
yt = σy(Wyht + by) (2.8)

where xt is the input vector at timestep t, ht is the hidden state, yt is the output vector, σh and σy
are activation functions. The trainable parameters are Wh, Wy and Uh projection matrices and bh
and by biases. The hidden state is updated every timestep based on the previous hidden state and the
input. The output is dependent on the current hidden state. The key feature of RNNs is their ability
to process sequences of variable lengths since the hidden state is updated with every new input xt.
This recurrent structure enables RNNs to capture temporal dependencies.

Since natural sequences are finite, the cyclic graphs of RNNS can be unrolled in time. The resulting
acyclic graph is now trainable with backpropagation, also called backpropagation through time or
BPTT. However, this graph grows linearly in size with the length of the sequence and basic RNNs
face challenges like the vanishing and exploding gradient problem, making it difficult to learn long-
term dependencies. To address this, more advanced versions like Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks and Gated Recurrent Units (GRU) (Cho et al., 2014)
were developed.

2.2.3.2 LSTM

Long Short-TermMemory (LSTM) (Figure 2.2) networks are a type of RNN architecture introduced by
Hochreiter and Schmidhuber (1997). LSTMs are designed to handle the vanishing gradient problem,
which standard RNNs face when learning long-term dependencies in sequential data. LSTMs achieve
this by incorporatingmemory cells that can maintain information over long time steps. An LSTM unit
consists of three main components: forget gate, input gate, and output gate. The forward pass of a
standard LSTM is defined as:

1This is the Elman network, one of the many similar RNN formulations.

13

2. Background

ct−1 ct

ht−1 ht

ht

xt

sigm sigm tanh sigm

×

×

+

×

tanh

ft c̃tit ot

ct−1

ht−1

ct

ht

ht

Figure 2.2: Basic structure of an LSTM cell. Figure adapted from https://github.com/mvoelk/nn_
graphics.

ft = σg(Wfxt + Ufht−1 + bf) (2.9)
it = σg(Wixt + Uiht−1 + bi) (2.10)
ot = σg(Woxt + Uoht−1 + bo) (2.11)
c̃t = σc(Wcxt + Ucht−1 + bc) (2.12)
ct = ft ⊙ ct−1 + it ⊙ c̃t (2.13)
ht = ot ⊙ σh(ct). (2.14)

Here, ft is the forget gate, which decides which part of the previous memory to forget. The input
gate it determines which values from the input should update the memory cell. The output gate ot
determines the output and the next hidden state (Equation 2.14). The outputs of all three gates are
dependent only on the input at time t and the previous hidden state ht−1. The sigmoid function
squashes their output between 0 and 1. The cell state (separate from the hidden state) is updated in
two steps (2.12 and 2.13) and finally the next hidden state is updated based on ct and the output gate
ot. This gating mechanism allows LSTMs to capture long-term dependencies by carefully controlling
the flow of information over time. A similar but slightly simpler recurrent cell is the Gated Recurrent
Unit or GRU (Cho et al., 2014).

2.2.3.3 Sequence modeling with LSTMs

LSTMs are rarely used as individual cells; instead, both the cell state and hidden state are represented
as real-valued vectors. The input to LSTMs is also typically real-valued vectors, often in the form
of word embeddings. While embeddings are discussed in more detail in Section 5.1.1, for now, they
can be understood as static mappings from words to real-valued vectors. Figure 2.3 provides a basic
example of an LSTM being applied to sentiment analysis, a common sequence classification task.
Since LSTMs process sequences in only one direction, it is common practice to pair themwith another
LSTM that processes the sequence in the opposite direction, forming a bidirectional LSTM (as opposed
to a unidirectional LSTM). The final output of both LSTMs is usually concatenated and used as a
representation for the full sequence. LSTMs can also be stacked into multilayer LSTMs where the

14

https://github.com/mvoelk/nn_graphics
https://github.com/mvoelk/nn_graphics

2.2. Neural networks

output of one LSTM is the input of the next layer of LSTMs. Finally one or more dense layers may be
used to project into the desired dimension.

This

LSTM

is

LSTM

a

LSTM

good

LSTM

movie

LSTM

Dense

positive

Embedding

Figure 2.3: Sequence classification example with one layer LSTM.

Sequence tagging or sequence labeling2 is a set of tasks where one label is assigned to each unit
of the text, usually one for each token. Examples include part-of-speech (POS) tagging and named
entity recognition (NER). The LSTM architecture depicted in Figure 2.4 is identical to the one used
for sequence classification but we use every output of the LSTM not just the last one.

This

LSTM

is

LSTM

a

LSTM

good

LSTM

movie

LSTM

Embedding

DET VERB DET ADJ NOUN

Figure 2.4: Sequence tagging example.

2.2.3.4 Encoder-decoder model

Sequence classification and tagging required a fixed output length (a single one of one for each token)
but there are many problems in NLP where the length of the output is different from the length of the
input. Machine translation is one such example where an input sentence in one language is usually
translated into a different number of words in another language. The encoder-decoder or sequence-to-
sequence (seq2seq) architecture provides a general solution to this problem (Sutskever et al., 2014).

2Sometimes called token classification.

15

2. Background

Figure 2.5: Encoder-decoder

The general idea is illustrated in Figure 2.5. The input, usually depicted at the bottom, is first
encoded into a single vector regardless of its length. The encoder can be a bidirectional LSTM. The
representation of the input is then used to initialize the decoder which generates the output one
symbol at a time from left to right. Each generated symbol is conditioned on both the input and the
previously generated symbols. The generation is terminated when the decoder outputs a predefined
end-of-sequence symbol.

While the encoder-decoder model can map arbitrary sequences and even between different do-
mains, it struggles with long sequences and long-range dependencies. The encoder squashes the input
into a fixed size vector regardless of its length and this proved to be a serious information bottleneck.
The attention mechanism (Bahdanau et al., 2014; Luong et al., 2015) alleviates this problem by enabling
the decoder to selectively focus on certain parts of the input as depicted in Figure 2.6. The main idea
of attention is the for each decoding step, the decoder looks at all the outputs of the encoder and com-
putes a weighted sum of the intermediary output vectors called the context vector. The next output
symbol is conditioned on this context vector. A new context vector is computed for the next output
symbol. Attention has various versions with very similar effectiveness.

2.2.3.5 Transformer

Although LSTMs with attention deal well with mid-range dependencies, they have serious limita-
tions when it comes to long-term dependencies and parallelization. This is because LSTMs process
sequences step by step, making them inherently sequential and slowing down the training process,
especially for long sequences. To address these challenges, Transformers (Vaswani et al., 2017) rev-
olutionized sequence processing by eliminating the need for recurrent structures (horizontal arrows
in Figure 2.3) altogether. Transformers rely entirely on self-attention mechanisms, which allow them
to process all elements of a sequence simultaneously.

The Transformer architecture is illustrated in Figure 2.7. The encoder (left side) first tokenizes
the source sequence. Based on the application, there are different choices for tokenization which we
explore in Section 5.3. The tokens are encoded with a static embedding. Positional encoding replaces
the role of recurrent connections by adding a fixed vector to the embedding vector based on the
relative position of a token in the sequence. Positional encoding vectors are defined as:

16

2.2. Neural networks

Figure 2.6: Attention mechanism example. Source url.

PE(pos,2i) = sin(
pos

100002i/dmodel
) (2.15)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
), (2.16)

where pos is the relative position starting from 0, i is the ith dimension of the vector and dmodel is the
size of the embedding vector. The next step is the actual self-attention operation on the embedding
(plus positional) vectors. First, it computes the key, the query and the value vectors (K , Q and V)
by multiplying the input vectors with learned projection matrices. It then performs a so-called scaled
dot-product attention defined as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V. (2.17)

The output of self attention is a weighted sum of the value vectors for each input vector. The weights
are computed using the query and the key vectors and the softmax function normalizes it. This is done
simultaneously for every input as matrix operations. One set of key, query and value parameters is
called a single attention head but it is seldom used alone. Multi-headed attention involves dozens of
attention heads with the outputs concatenated. This is repeated for multiple layers where the output
of one layer is the input of the next layer. There is a normalization layer between each step and the
output is passed through a feed-forward network with ReLU activation.

The decoder works very similarly with two notable differences. In addition to self attention on
the generated output sequence, it also performs attention on the input sequence called cross-attention.

17

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

2. Background

Figure 2.7: Transformer architecture. Source: Wikipedia

The other difference is the use of masking. Similarly to LSTM-based seq2seq models, the output is
generated one token at a time during inference, therefore the training process should not expose
future symbols to the decoder. During the generation of token t, all tokens right of t are masked out
from the self attention operation.

Transformers are notoriously harder to train than LSTMs but certain tricks make training more
stable. The most important is layer normalization after each sublayer (LayerNorm(x+Sublayer(x))).
Another one is the use of learning rate warmup.

Transformers are highly parallelizable due to the lack of recurrent connections which paved the
way for an explosion in model size. Vaswani et al. (2017) used 6 to 8 layers, up to 1024 dimensional
embeddings and 8 attention heads in the original paper. Transformer-based models have come a long
way since then and as of 2024 the largest models use over 50 layers, 100+ attention heads and large

18

https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)

2.3. Introduction to morphology

embeddings with over 10,000 dimensions. As of November 2024, the largest openly available model is
LLaMA 2 with 70 billion parameters (Touvron et al., 2023). Part II of this thesis describes a large-scale
evaluation of the highly successful generation of Transformer models predating the current explosion
of LLMs.

2.3 Introduction to morphology

Morphology is the study of internal word structure and word formation. The basic units of discus-
sion aremorphemes, the smallest linguistic units with independent meaning or grammatical function.
Words consist of morphemes. Morphemes can be classified as root or affix. Root morphemes are the
nucleus of the word and affixes attach to root morphemes. A similar categorization is free vs. bound
morphemes. Free morphemes can appear as words by themselves while bound morphemes must at-
tach to free morphemes. This distinction is language dependent, for example the past tense morpheme
is bound in English but free in Chinese 3.

Morphological processes are generally divided into two types: derivation and inflection. Derivation
creates new words, often changing the part of speech or the grammatical category of the root word.
English examples of derivational morphology include -ly, -ness and -able. Inflection on the other hand
creates different forms of the same word. Lemmas are the canonical or dictionary entries of words
and the set of all forms of the same lemma are called lexemes. For example, go, went, gone and goes
belong the same lexeme of which the lemma is go.

2.3.1 Morphological typology

Morphological typology is a subfield of linguistic typology which categorizes the languages of the
world according to their dominant word formation processes, i.e. the way they combine morphemes
into words. The two main categories are analytic vs. synthetic languages. Analytic languages feature
little to no inflection and most information is carried in auxiliary words and word order. Conversely,
synthetic languages use inflection to change themeaning of aword. At the extreme end of this scale are
polysynthetic languages which can combine the meaning of full sentences in single words. Synthetic
languages are further divided into agglutinative and fusional languages. Agglutinative languages rely
on affixes, usually prefixes and suffixes. Multiple affixes can be combined by concatenating them and
the root often remains easily extractible. This is not the case for fusional languages where multiple
morphemes are combined into one morpheme in a way that the original morphemes, and often the
root word, are not segmentable. An interesting subtype of fusional morphology is templatic morphol-
ogy, where root words are templates with slots to be filled by affixes. It is important to note that
natural languages often do not fall clearly into one category and they may exhibit characteristics
of more than one morphosyntactic system. For example English is a largely analytic language with
heavy reliance on auxiliary verbs and pre- and postpositions but it retains some of the fusional ele-
ments of its Germanic heritage in its verbal morphology. Hungarian, while largely agglutinative, has
some fusional elements as well (cf. Section 2.3.2).

While each language has its own characteristics, related languages tend to have exhibit simi-
larities. The largest example of analytic languages is the Sino-Tibetan family which includes every
Chinese dialect. Most Indo-European languages are fusional with the notable exception of English.
However most of the world’s languages are agglutinative including Hungarian and most of the Uralic
family.

3https://ufal.mff.cuni.cz/~hana/teaching/ling1/05-Morphology.pdf

19

https://ufal.mff.cuni.cz/~hana/teaching/ling1/05-Morphology.pdf

2. Background

Although we deal with over 50 languages in this thesis, not all types of morphosyntactic systems
are equally represented. Our main source of data is the Universal Treebank which is only available
in sufficient quantity in European languages. While the Indo-European family already represents
a large variety of typological features (Skirgård et al., 2023), there are some missing types such as
polysynthetic languages. Unfortunately polysynthetic languages are all low resource and they lack
sufficient labeled data for our purposes. Furthermore our only examples of templatic morphology
are Arabic and Hebrew. We do study a large variety of fusional and agglutinative (mostly Uralic and
Indo-European) languages.

2.3.2 Hungarian morphology

We pay special attention to Hungarian throughout this thesis. Aside from Hungarian being the native
language of the author and many of her coauthors, it provides an interesting case study in Chapter 4
and the main topic of Section 7.1.

Hungarian is an agglutinative language which mainly uses a large variety of suffixes (for a com-
prehensive summary of inflectional suffixes see Veenker (1968)) and one circumfix for superlatives
(leg- ADJ -bb).

Nominal morphology, the morphology of nouns and pronouns, features a large number of cases
with the addition of plural and possessive suffixes resulting in hundreds of inflectional forms for each
lemma. The order of the suffixes is fixed and the phonological changes at the morpheme boundaries
are highly regular. Verbal morphology exhibits similar processes along with some fusional elements.

The most prominent of these processes is vowel harmony. Most suffixes are in fact templates such
bVn, the morpheme for the inessive case, meaning in, inside, where the vowel is filled based on the
phonological class of the vowels of the stem. bVn can be realized as either ban or ben depending
the front or backness of the vowels in the stem. Many other morphemes have two forms, front and
back, while some have three forms (front unrounded, front rounded and back) and some have four
(Siptár and Törkenczy, 2007). Vowel harmony is not unique to Hungarian. Finnish, its distant relative,
has a simpler form of vowel harmony. Although modern Estonian no longer uses vowel harmony,
many other Uralic languages do. Among the languages we examine in Chapter 6, Finnish, Turkish
and Persian have vowel harmony, while Korean has some limited form of vowel harmony.

20

Part I

Deep Learning for Morphology

21

Chapter3

Morphological Inflection and Analysis

Morphological inflection is the task of inflecting a lemma given either a target form or some con-
textual information. Analysis is the opposite, an inflected form is the input and its morphological
analysis is the desired output. Morphology has traditionally been solved by finite state transducers
(FST) that employ a large number of handcrafted rules. The discrete nature of such processes makes
it difficult to directly translate transducers into neural networks and to effectively train them using
backpropagation. There have been various attempts to replace parts of the FST paradigm with neural
networks (Aharoni and Goldberg, 2016).

In this chapter we apply various kinds of neural encoder-decoder models and we demonstrate
their effectiveness on both analysis and inflection. We first showcase a series of proof-of-concept
experiments on Hungarian morphological analysis with three types of encoder-decoder models, two
of them offering some level of interpretability (Section 3.1). We then introduce our submission to the
2018 SIGMORPHON Shared Taskwhich involved type-level inflection in 100 languages and in-context
inflection in 7 languages (Section 3.2).

3.1 Hungarian morphological analysis

Finite state transducers are highly successful in modeling Hungarian but the creation of such rule
based systems requires tremendous expert work. The latest such system is emMorph (Novák et al.,
2016) which builds on previous systems and uses a tagging schema designed by a team of Hungarian
linguists (Rebrus et al., 2012; Novák et al., 2017). emMorph uses the HFST engine (Lindén et al., 2011).
The resulting analyzer is fast, interpretable and highly accurate but it is unable to deal with out-
of-vocabulary words such as neologisms from English. In this section our main question is to what
degree we can imitate emMorph with encoder-decoder models.

Encoder-decoder models have been demonstrated to work very well for morphological inflection
(Cotterell et al., 2016; Kann and Schütze, 2016a; Kann et al., 2016) across a wide range of typologically
rich languages including Hungarian. However, the training data for these competitions was harvested
from Wiktionary inflection tables which aim to include every possible inflected form of a lemma
regardless of its frequency. We remedy this by using the word forms and their analyses form the
Szeged Korpusz (Csendes et al., 2005; Vincze et al., 2010).

emMorph outputs two analyses for a token on average. We do not try to disambiguate them and
we accept any of the possible analyses as correct from our encoder-decoder networks.

23

3. Morphological Inflection and Analysis

3.1.1 Data

The data is a filtered version of the Szeged Korpusz. It contains 159,131 unique token-analysis pairs.
emMorph is unable to analyze 5.6% of these which we exclude from our training data but we do run
inference on them (cf. Section 3.1.4). We are left with 63,314 unique lemmas which we split into three
sets, 58,314 train, 2,500 development and 2,500 test lemmas. We then split the inflected forms along
with their lemmas. We end up with 139,016 train, 5,584 development and 5,292 test word types. We
include every possible analysis of every form as separate samples resulting in 279,440 train, 11,724
development and 10,284 test samples in total. 92.1% of the tokens are nouns (54.7%), verbs (21%), or
adjectives (16.4%). There are 10 smaller POS classes which we group together when analyzing the
results. Hard attention models require step symbols in the target side of the data. We add a step
symbol whenever a source character is consumed by the transducer.

3.1.2 Models

We use three types of models in this section. The first one is a “standard” LSTM encoder-decoder
with Luong attention (cf. Section 2.2.3.4). The second one is an identical model with hard monotonic
attention.Hard attention is a type of attentionwhere the attentionweights are concentrated on exactly
one symbol instead of a soft distribution looking at the full source sequence. Monotonic refers to the
other restriction whereas the attention head can only move from left to right when generating a new
symbol. Effectively this means that after each generation step, the attention head either remains on
the same source symbol or moves ahead one step. This is controlled with artificial step symbols in the
training data. The third model is a SoPa encoder-LSTM decoder model which we introduce in more
detail in Chapter 4.

We experimented with various hyperparameters but it turns out that the models are not very
sensitive to the hyperparameters as long as the there is sufficient capacity i.e. enough trainable pa-
rameters. We set the hyperparameters the same for the three models when possible. The LSTMs all
used a single layer and their hidden size was set to 512. We used separate embeddings for the encoder
and decoder side of the models both set to 32 dimensions. The vocabulary consisted of characters and
morphosyntactic tags. The standard attention and hard monotonic attention models have no extra
hyperparameters. In the case of SoPa Seq2seq pattern length and the number of patterns are hyper-
parameters. After some initial testing, we used pattern lengths from 3 to 7, 25 apiece.

We use identical training parameters for the three types of models. We train the models with the
Adam optimizer with with lr = 0.001, β1 = 0.9, β2 = 0.999. The batch size is always set to either
128 or 256 and we use early stopping based on the development accuracy. The number of trainable
parameters is 4.3M for the Luong attention model, 4.6M for the hard attention model and 6.3M for
SoPa Seq2seq.

3.1.3 Results

Figure 3.1 shows the accuracy of each model by POS class.. Standard attention is the best out of the
three models when it comes to pure accuracy (the output is identical to either analysis of emMorph).
This is true in all POS classes. Hard monotonic attention is a close second and SoPa Seq2seq is the
third with a noticeable gap. Still, SoPa Seq2seq is over 75% correct for all major POS.

Our results are noticeably worse than the best SIGMORPHON submissions on Hungarian which
may be due to two reasons. First, we use a more detailed tagging scheme than the schema used by
SIGMORPHON (UniMorph). emMorph splits words into morphemes and analyzes them separately. It
also outputs multiple possible analyses. Second, the SIGMORPHON shared tasks use type level data

24

3.1. Hungarian morphological analysis

all noun verb adjective other
50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

luong attention
hard attention
sopa

Figure 3.1: Morphological analysis results by model and POS.

with very rare forms having the same weight in evaluation as frequent forms. Less frequent words
tend to be more regular making the task easier for neural models.

Both hard monotonic attention models and SoPa Seq2seq offer some form of interpretability.
Chapter 4 explores the interpretability of SoPa Seq2seq models in 9 languages including Hungarian.
Hard monotonic attention models are trained with step symbols in the target string so they output
step symbols during inference as well. When a step symbol is generated, the attention head moves
one symbol to the right and uses the next input symbol. This mechanism is similar to transducers
albeit much simpler. When we manually inspect some examples from the test set, we find that they
are linguistically plausible and they often coincide with expert analysis.

3.1.4 Analyzing out-of-vocabulary words

emMorph is unable to analyze words where the stem is not recognized or impossible to determine.
Out-of-vocabulary (OOV) words account to roughly 5% of word types. The most common reason for
OOV words are misspellings, unusual compounds, foreign words and slang. One advantage of neural
models is that they can take any input. Since the vocabulary is the set of characters, arbitrary character
symbols are accepted as inputs. If the input contains out-of-vocabulary characters (or words in word-
based models), we replace them with a dedicated unknown symbol. We ran the neural model on the
5% OOV tokens. Table 3.1 shows a few selected examples of OOV words and their analysis by each
model.

Input Translation Standard attention Hard attention SoPa

ópiumosdobozból from opium box ópiumos[/N]
doboz[/N]ból[Ela]

ópium[/N]os[_Adjz:s/Adj]
doboz[/N]ból[Ela]

ópiumosdoboz[/N]
ból[Ela]

jutatni to send (mistyped,
correct: juttatni)

jut[/V]
at[_Caus/V]ni[Inf] jutat[/V]ni[Inf] jutat[/V]ni[Inf]

vólna was (archaic form) vól[/V]
na[Cond.NDef.3Sg]

vól[/V]
na[Cond.NDef.3Sg]

válik[/V]
na[Cond.NDef.3Sg]

Windowsszal with Windows Windows[/N]zal[Ins] Windows[/N]al[Ins] Windowsal[Ins]

Table 3.1: Examples of OOV words and their analysis. Newlines were inserted for readability.

25

3. Morphological Inflection and Analysis

model

offrir

V;IND;PRS;3;PL

offrent

Figure 3.2: Inputs and output for the model

3.2 The Universal Morphological Reinflection Shared Task

SIGMORPHON first organized a shared task onmorphological inflection in 2016 (Cotterell et al., 2016)
which involved both inflection (inflect a word given its lemma) and reinflection (inflect a word given
another inflected form of the same lemma). The winning solution (Kann and Schütze, 2016b) used
a character sequence-to-sequence network with Bahdanau’s attention (Bahdanau et al., 2015). Kann
and Schütze (2016b) and other neural solutions (Aharoni et al., 2016) were up to 10% point better than
rule-based and transducer-based solutions, resulting in the wholesale abandonment of the rule-based
paradigm for morphology. In the second edition of the shared task (Cotterell et al., 2017) most teams
used similar settings.

In this section I present my submission as an individual team for the 2018 CoNLL–SIGMORPHON
Shared Task: Universal Morphological Inflection (Cotterell et al., 2018). My system placed 2nd in both
tasks and all tracks (Ács, 2018).

3.2.1 Task formulation

In this section we briefly describe the objective of the task and provide examples for each subtask.
A more comprehensive explanation is available on the shared task’s website1 and in task description
paper (Cotterell et al., 2018).

3.2.1.1 Task1: Type-level inflection

Inflection aims to find an inflected word given its lemma and a set of morphological tags in UniMorph
(Kirov et al., 2018). The process is illustrated in Figure 3.2 and a few examples are shown below (the
second column is the target):

release releasing V;V.PTCP;PRS
deodourize deodourize V;NFIN
outdance outdancing V;V.PTCP;PRS
misrepute misrepute V;NFIN
vanquish vanquished V;PST
resterilize resterilizes V;3;SG;PRS

The shared task featured over 100 languages and 10 additional surprise languages were re-
leased before the submission deadline. Most languages had three data settings: high (10,000 samples),
medium (1,000 samples) and low (100 samples), except some low-resource languages that did not have

1https://sigmorphon.github.io/sharedtasks/2018/

26

3.2. The Universal Morphological Reinflection Shared Task

enough samples for high or medium settings. Each language had a development set of 1,000 or fewer
samples.

3.2.1.2 Task2: Inflection in context

Task2 is a cloze task. We were given a sentence with a number of missing word forms (usually 1
or 2) and our task was to inflect the word given its lemma and context. Task2 two had two tracks:
in Track1 all the lemmas and morphosyntactic description are given in the sentence context (the
morphosyntactic description of the covered word is covered too), and in Track2 only the word forms
of the context are given. Below are examples from Track1 (the missing form is highlighted):

Les le DET;DEF;FEM;PL
compagnies compagnie N;FEM;PL
aériennes aérien ADJ;FEM;PL
à à ADP
bas bas ADJ;MASC;SG
coût coût N;MASC;SG
ne ne ADV;NEG
_ | connaître _

pas pas ADV;NEG
la le DET;DEF;FEM;SG
crise crise N;FEM;SG

and the same sentence for Track2:
Les _ _
compagnies _ _
aériennes _ _
à _ _
bas _ _
coût _ _
ne _ _
_ | connaître _

pas _ _
la _ _
crise _ _
. _ _

Both examples are taken from the development sets. The training sets have no covered words, and
we generated training examples by covering a single word at a time, and using the rest as its sentence
context.

Task2 also featured low, medium and high resource settings with roughly 1,000, 10,000 and 100,000
tokens respectively.

3.2.2 Task1 model: two-headed attention

In this section we describe our system for Task 1: Type-level inflection. We explain our experimental
setup and the random hyperparameter search, and finally we list three slightly different submissions
and their results.

27

3. Morphological Inflection and Analysis

decoderlemma
encoder

tag encoder

a l m a $ SOS N NOM PL $

lemma
attention

tag
attention

lemma
context

tag
context
tag

context

sigmoid
output projection

tanh

a

Figure 3.3: Two-headed attention model used for Task1. The figure illustrates the first timestep of
decoding. The output of this step is fed back to the decoder in the next timestep. Modules are colored
gray, attention heads yellow, inputs are purple, outputs are teal and encoder output matrices are
salmon. Dotted arrows represent copy operations and dashed arrows represent attention summaries.

3.2.2.1 Two-headed attention seq2seq

Inflection can be formulated as a mapping of two sequences, namely a lemma and a sequence of tags,
to one sequence, the inflected word form. The lemma and the inflected word forms are character
sequences that usually share a common alphabet while the tags are a sequence of language-specific
morphosyntactic codes. Figure 3.3 illustrates our architecture.We use separate encoders for the lemma
and the morphological tags and a single decoder. Both encoders employ character/tag embeddings
and bidirectional LSTMs, where the outputs are summed over the two directions. The two encoders’
hidden states are then linearly projected to the decoder’s hidden dimension and used to initialize
the decoder’s hidden state. This allows using different hidden dimensions in each module. Decoding
is done in an autoregressive fashion, one character at a time. At each timestep the decoder reads a
single character: SOS (start-of-sequence) at first, the ground truth during training (teacher forcing) and
the previous output during inference. The decoder uses a character level embedding, which may or
may not be shared with the lemma encoder (cf. Section 3.2.2.2), then it passes the embedded symbol
to a unidirectional LSTM. Its output is used by two attention modules, hence the name two-headed
attention, to compute a context vector using Luong’s attention (Luong et al., 2015). The lemma and

28

3.2. The Universal Morphological Reinflection Shared Task

tag context vectors are concatenated with the decoder output, then passed through a tanh, an output
projection and finally a sigmoid layer which produces a distribution over the character vocabulary of
the language. Greedy decoding is used.

3.2.2.2 Experimental setup

We created our own experiment framework that allows running and logging a large number of exper-
iments. The framework is available on GitHub2 and the configurations and scripts used for this shared
task are available in a separate repository3. The latter repository contains all best configurations in-
cluding the random seeds (we generate the random seeds at the beginning of each experiments, then
save them for reproducibility).

All experiments shared a number of configuration options while the others were randomly opti-
mized. We list the ones we fixed here and the others in Section 3.2.2.3. Each experiment used a batch
size of 128 for both training and evaluation except the ones on the Kurmanji language because the
development dataset contained very long sequences and we had to reduce the batch size to 16 to fit
into memory (12GB). We used the Adam optimizer with learning rate 0.001 and we stopped each ex-
periment when the development loss did not decrease on average in the last 5 epochs compared to
the previous 5 epochs. We ran at least 20 epochs before stopping even if the early stopping condition
was satisfied to avoid early overfitting, which happened in about 10% of the experiments. We also set
a hard upper limit for the number of epochs (200) but this was reached only two times out of 1,886
experiments. The average number of epochs before reaching the early stopping condition was 51 and
only 2.7% of experiments ran for more than 100 epochs. After each epoch, we saved the model if its
development loss was lower than the previous minimum. We used cross entropy as the loss function.

3.2.2.3 Random parameter search

Our initial experiments suggested that the model is very sensitive to random initialization and the
same configuration can result in models with very different performance. This is probably due to
the limited training data even in high setting and the large number of parameters of the model. We
chose three languages, Breton, Latin and Lithuanian, and ran a large number of experiments with
random configuration on them. The reason these were chosen is that the development accuracy on
these were in the mid-ranges among all the language during our initial experiments. The following
random experiments were all run on the high training sets. Common parameters (cf. Section 3.2.2.2)
were loaded from a base configuration and some parameters were overridden with a value uniformly
sampled from a predefined set. The range of values are listed in Table 3.2. Both encoders (lemma and
tag) and the decoder (listed as inflected) have three varying parameters: the size of the embedding,
the number of hidden LSTM cells and the number of LSTM layers. We also varied the dropout rate
for both the embedding and the LSTMs and the whether to share the vocabulary and the embedding
among the lemma and the decoder or not.

The running time of an experiment is dependent on the average length of the input sequences
and the size of the vocabulary. It turns out that these vary greatly among the languages in the dataset.
As listed in Table 3.3 Breton is much ‘smaller’ in both alphabet and sequence length than Lithuanian
or Latin and this was evident from the difference in average running time.

Table 3.4 summarizes the results of our random parameter search. Since the average running
time of different language experiments is very different, we ended up running many more Breton

2https://github.com/juditacs/deep-morphology
3https://github.com/juditacs/sigmorphon2018

29

https://github.com/juditacs/deep-morphology
https://github.com/juditacs/sigmorphon2018

3. Morphological Inflection and Analysis

Parameter Values

dropout 0.1, 0.3, 0.4, 0.6
share vocab true, false

inflected embedding size 10, 20, 30, 50
inflected hidden size 128, 256, 512, 1024
inflected num layers 1, 2

lemma embedding size 10, 20, 30, 50
lemma hidden size 128, 256, 512, 1024
lemma num layers 1, 2, 3, 4

tag embedding size 5, 10, 20
tag hidden size 64, 128, 256
tag num layers 1, 2, 3, 4

Table 3.2: Parameter ranges used for the random hyperparameter search.

experiments in roughly the same time. The standard deviation of results is quite large, especially for
Breton, which we attribute to the small alphabet, the short sequences and the small number of lemmas
(44) as opposed to Latin (6517) or Lithuanian (1443).

Breton Latin Lithuanian

alphabet size 27 55 58
inflected maxlen 14 23 32
inflected types 1,790 9,896 9,463
lemma maxlen 11 19 28
lemma types 44 6,517 1,443
tag types 20 33 34
tags maxlen 9 7 6

Table 3.3: Dataset statistics of the three languages we used for hyperparameter optimization.

We observed that models with the same parameters often result in very different word accuracy.
To test this, we took the best performing configuration for each language and trained 20 models by
language with identical parameters but different random seeds. Table 3.5 and Figure 3.4 show that
identical parameters can result in models with very different performance.

Breton Latin Lithuanian

experiments 1033 610 243

dev acc
mean 70.92 62.32 80.25
max 93.00 78.90 88.40
std 28.70 11.30 8.37

time mean 0.83 5.42 8.61

Table 3.4: Summary of the parameter search. The running time is given in minutes.

30

3.2. The Universal Morphological Reinflection Shared Task

Figure 3.4: The test and development accuracy of identical models initialized with different random
seeds.

Breton Latin Lithuanian

train acc mean 96.29 92.58 96.69
std 1.39 3.21 2.25
min 94.30 84.57 90.51
max 99.04 97.14 99.08

dev acc mean 87.35 74.73 86.95
std 2.41 3.17 2.32
min 84.00 69.00 81.80
max 92.00 79.10 90.60

Table 3.5: Accuracy statistics of 20 models trained with the same parameters but different random
seed.

3.2.2.4 Submission

We took the 5 highest scoring model for Breton, Latin and Lithuanian, our languages used for hyper-
parameter optimization and trained a model with those parameters for each language and each data
size, thus training 15 models per language and data size. Our first submission is simply the model
with the highest development word accuracy. The second submission is the result of majority voting
by all 15 models. The third one is the same as the first one but we changed the evaluation batch size
from 128 to 16. This results fewer pad symbols on average. Table 3.6 lists the mean performance of
each submission and Figure 3.5 compares our submissions with the top 7 teams.

31

3. Morphological Inflection and Analysis

Submission Data size Accuracy Ranking

#1
High 93.89 7
Medium 67.43 8
Low 3.74 22

#2
High 94.66 3

Medium 67.26 10
Low 2.43 25

#3
High 93.97 6
Medium 67.36 9
Low 3.63 23

Table 3.6: The mean accuracy of our Task1 submissions.

Figure 3.5: SIGMORPHON 2018 Task 1 results of the top 7 teams. Our team is depicted in orange.

3.2.3 Task2: Inflection in Context

In this section we describe our system for Task2 Track1, then explain how the model for Track2
differs from the model for Track1. The development datasets for Task2 have two versions: covered
and uncovered. An example is provided in Section 3.2.1.2. Figure 3.6 illustrates the model at a single
timestep (decoding one character). The model has several inputs (colored purple):

target lemma The lemma of the targetword. The inflected form of this lemma is the expected output.

left/right token context The other (inflected) tokens in the sentence. Left context refers to the to-
kens preceding the covered token and right context refers to the ones succeeding it.

left/right lemma context The lemmas of the preceding and succeeding tokens.

left/right tag context The corresponding tags of the preceding and succeeding tokens.

previously decoded symbol Start-of-sequence at the first timestep, then the last symbol produced
by greedy decoding.

The left and right contexts are encoded separately in the followingway. Each token and lemma are
encoded by a bidirectional character LSTM, preceded by a character embedding, and the tag sequence

32

3.2. The Universal Morphological Reinflection Shared Task

left tokeni

left lemmai

left tagsi

token
encoder
lemma
encoder

tag encoder

. . .

context
LSTM

le
ft
co
nt
ex
t

right tokeni

right lemmai

right tagsi

token
encoder
lemma
encoder

tag encoder

. . .

context
LSTM

rig
ht

co
nt
ex
t

decoder

SOS

target lemma
encoder

l e m m a

attention
sigmoid

output projection

tanh

a

Figure 3.6: Task2 architecture. The figure illustrates the first timestep of decoding. The output of this
step is fed back to the decoder in the next timestep. The target lemma encoder’s hidden state is used
to initialize the decoder hidden state (not pictured for the sake of clarity). The same coloring scheme
is used as in Figure 3.3.

of the corresponding token are encoded by a separate biLSTM and tag embedding. The lemma and
the token share their alphabet and our experiments showed that sharing the encoder results in a
slight improvement in accuracy. By taking the last output of each of the three encoders, we acquire
three fixed dimensional vector representation for each token. We concatenate these and use another
biLSTM (context LSTM) to create a single vector representation of the left/right context. The context
LSTM is shared by the left and the right context. The target lemma is encoded by the same encoder
as the other lemmas and inflected tokens and the output is used by the attention mechanism. The last
hidden state of the encoder is used to initialize the hidden state of the decoder. Decoding is similar
to the autoregressive process used in Task1 but there is only one attention mechanism and it attends
to the target lemma encoder outputs. Attention weights are computed using the concatenation of the
decoder output at a single timestep and the left and right context vectors. The output of the attention
module is concatenated with the decoder output, passed through a tanh and an output projection and
finally a softmax layer outputs a distribution over the character alphabet of the language. Similarly
to our Task1 model, the ground truth is fed to the decoder at training time and the greedily decoded
character at inference time. The cross entropy of the output distributions and the ground truth is used
as a loss function.

Our model for Track2 is very similar to the model for Track1, except the left and right lemma and
tag encoders are missing and the context vectors are derived only from the left and right tokens.

3.2.3.1 Experimental setup

Since our experiments for Task2 were significantly slower than the ones for Task1, we were unable to
run extensive parameter search. We did perform a smaller version of the same random search using

33

3. Morphological Inflection and Analysis

the parameter ranges listed in Table 3.7. We chose the French dataset with medium setting, which is
about 10,000 tokens. The average length of one experiment was 100 minutes and we were able to run
38 experiments. We ran the best configuration of the 38 on each language and each data size at least
once. Since our parameter search was very limited, we also varied the parameters manually and tried
other combinations. The exact configurations are available on the GitHub repository. All experiments
were run on NVIDIA GTX TITAN X 12GB GPUs.

Parameter Values

batch size 8, 16, 32, 64
dropout 0.0, 0.2
early stopping window 5, 10
char embedding size 30, 40, 50
context hidden size 64, 128, 256
context num layers 1, 2
decoder num layers 1
tag embedding size 10, 20, 30
tag num layers 1, 2
word hidden size 64, 128, 256
word num layers 1, 2

Table 3.7: Predefined parameter ranges used for Task2 parameter search.

Task2 uses a subset of the parameters that Task1 uses, so we were able to train the ”same” con-
figuration emerged as the best one during the limited hyperparameter search. We also tried using 2
layers instead of 1 layer in every encoder and decoder. Unfortunately time constraints did not allow
running more experiments.

3.2.3.2 Submission and results

For both Track1 and Track2 we only submitted one system, the output of the highest scoring model
on the development dataset. We finished in 2nd place in both tracks (Figure 3.7). Table 3.8 lists our
detailed results.

Track1 Track2

high med low high med low

de 73.21 56.83 30.64 64.61 52.17 27.81
en 76.23 66.77 61.33 69.89 64.05 56.90
es 56.10 42.50 29.17 41.65 32.12 27.77
fi 53.75 22.11 10.29 30.24 17.15 8.89
fr 67.21 51.12 26.27 45.42 23.63 9.57
ru 67.67 38.76 21.59 56.73 33.73 19.68
sv 65.64 41.91 26.06 54.26 34.89 22.34

Table 3.8: Task2 results.

34

3.2. The Universal Morphological Reinflection Shared Task

Figure 3.7: Our SIGMORPHON 2018 Task 2 results.

3.2.4 Conclusion

We presented our submissions for the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morpho-
logical Reinflection. We employed variations of sequence-to-sequence or encoder-decoder networks
with Luong attention. Our experiments for Task1 suggest that at the current data size, the model
is very sensitive to random initialization, so we used an ensemble of many systems, which placed
2nd of all teams in the high data setting. We also placed 2nd in both tracks of Task2. Our code and
configuration files including the random seeds are available on GitHub.

35

Chapter4

Neural Pattern Matching

Deep neural networks are successful at various morphological tasks as exemplified in the yearly SIG-
MORPHON Shared Task (Cotterell et al., 2016, 2017, 2018). However these neural networks operate
with continuous representations and weights which is in stark contrast with traditional, and hugely
successful, rule-based morphology. There have been attempts to add rule-based and discrete elements
to these models through various inductive biases (Aharoni and Goldberg, 2016).

In this chapter we tackle two morphological tasks and the copy task as a control with an inter-
pretable model, SoPa. Soft Patterns (Schwartz et al., 2018) or SoPa is a finite-state machine parameter-
ized with a neural network, that learns linear patterns of predefined size. The patterns may contain
epsilon transitions and self-loops but otherwise are linear. Soft refers to the fact that the patterns
are intended to learn abstract representations that may have multiple surface representations, which
SoPa can learn in an end-to-end fashion. We call these surface representations subwords, while the
abstract patterns, patterns throughout the paper.

An important upside of SoPa is that interpretable patterns can be extracted from each sample.
Schwartz et al. (2018) showed that SoPa is able to retrieve meaningful word-level patterns for sen-
timent analysis. Each pattern is matched against every possible subword and the highest scoring
subword is recovered via a differentiable dynamic program, a variant of the forward algorithm.

We apply this model as the encoder of a seq2seqmodel, and add an LSTM decoder.We initialize the
decoder’s hidden state with the final scores of each SoPa pattern and we also apply Luong’s attention
on the intermediate outputs generated by SoPa. We call this model SoPa Seq2seq. We compare each
setup to a sequence-to-sequence with a bidirectional LSTM encoder, unidirectional LSTM decoder
and Luong’s attention.

We show that SoPa Seq2seq is often competitive with the LSTM baseline while also interpretable
by design. SoPa Seq2seq is especially good at morphological analysis, often surpassing the LSTM
baseline, which confirm our linguistic intuition, namely that subword patterns are useful for extract-
ing morphological information. We also compare these models using a generalized form of Jaccard-
similarity and we find that some trends coincide with linguistic intuition.

This work (Ács and Kornai, 2020) was awarded best paper at the Hungarian Computational Lin-
guistics Conference in 2020. Our code is available GitHub1.

1https://github.com/juditacs/deep-morphology

37

https://github.com/juditacs/deep-morphology

4. Neural Pattern Matching

4.1 SoPa: A Weighted Finite-State Automaton RNN

SoPa is a collection of a predefined number of patterns that score each possible subword and the
highest score is used in the final representation of a sequence. We first describe a single pattern. A
pattern is aWFSA-ε, but hard constraints are imposed on its shape, and its transitionweights are given
by differentiable functions that have the power to capture concrete words, wildcards, and everything
in between. The model is designed to behave similarly to flexible hard patterns of traditional WFSAs,
but to be learnable directly and “end-to-end” through backpropagation. Importantly, it will still be
interpretable as a simple, almost linear-chain, WFSA-ε.

Each pattern has a sequence of d states2. Each state i has exactly three possible outgoing transi-
tions: a self-loop, which allows the pattern to consume a word without moving states; a main path
transition to state i+1, which allows the pattern to consume one token and move forward one state;
and an ε-transition to state i + 1, which allows the pattern to move forward one state without con-
suming a token. All other transitions are given a score of 0. When processing a sequence of text with
a pattern p, it starts with a special START state and only moves forward (or stays put) until reaching
the special END state. A pattern with d states will tend to match token spans of length d − 1 (but
possibly shorter spans due to ε-transitions, or longer spans due to self-loops). See Figure 4.1 for an
illustration.

The transition function, T , is a parameterized function that returns a d× d matrix. For a word x:

[T(x)]i,j =


E(ui · vx + ai), if j = i (self-loop)
E(wi · vx + bi), if j = i+ 1

0, otherwise,
(4.1)

where ui and wi are vectors of parameters, ai and bi are scalar parameters, vx is a fixed pre-trained
word vector3 for x, and E is an encoding function, typically the identity function or sigmoid.

ε-transitions are also parameterized but do not consume a token and depend only on the current
state:

[T(ε)]i,j =

{
E(ci), if j = i+ 1

0, otherwise,
(4.2)

Tokens vs. wildcards. Traditional hard patterns distinguish between tokens and wildcards. SoPa
does not explicitly capture the notion of wildcards, but the transition weight function can be inter-
preted in those terms. Each transition is a logistic regression over the next embedding vector vx. For
example, for a main path out of state i, T has two parameters,wi and bi. Ifwi has a large magnitude
and is close to the embedding vector for some token y (e.g., wi ≈ 100vy), and bi is a large negative
bias (e.g., bi ≈ −100), then the transition is essentially matching the specific token y. Whereas if wi

has a small magnitude (wi ≈ 0) and bi is a large positive bias (e.g., bi ≈ 100), then the transition is
ignoring the current token and matching a wildcard. Similarly to Schwartz et al. (2018), we do not
try to retrieve wildcard matches based on activation magnitue but rather extract the actual subword
a pattern matches.

2Schwartz et al. (2018) use patterns of varying lengths between 2 and 7, we found that patterns between 3 and 5 are
better suited for morphology.

3Schwartz et al. (2018) used GloVe vectors to initialize the word embeddings. We use randomly initialized character
embeddings instead.

38

4.1. SoPa: A Weighted Finite-State Automaton RNN

Figure 4.1: A representation of a surface pattern as a six-state automaton. Self-loops allow for
repeat- edly inserting words (e.g., “funny”). ε-transitions allow for dropping words (e.g., “a”). Source:
(Schwartz et al., 2018).

Figure 4.2: State activations of two patterns as they score a document. pattern1 (length three) matches
on ”in years”. pattern2 (length five) matches on “funniest and most likeable book”, using a self-loop
to consume the token ”most”. Active states in the best match are marked with arrow cursors. Source:
(Schwartz et al., 2018).

Scoring sequences. Having described how a single pattern matches a span exactly while consum-
ing the whole span, we now explain how these matches are aggregated over all matches on subspans
of the input sequence. In this sense, SoPa is more similar to regular expression search than match.
Depending on the choice of semiring, either the Forward or the Viterbi algorithm can be used to find
the highest-scoring match. The exact formlation is available in (Schwartz et al., 2018). We opted for
the Viterbi algorithm (max-product semiring). Keeping backpointers during the Viterbi forward pass
allows retrieving the matching subspans which we rely on in Section 4.5. Finally, the pattern scores
are stacked into one vector and passed through an MLP. We use this vector to initialize the decoder
of SoPa Seq2seq. We also use the intermediary pattern scores as inputs for the attention mechanism.

39

4. Neural Pattern Matching

Language Family Genus sample lemma paradigm alphabet F/L POS

Arabic Afro-Asiatic Semitic 138k 4007 196 45 26.3 NVA
Turkish Altaic Turkic 213k 3017 186 46 54.7 NVA
Quechua Hokan Yuman 178k 1003 553 22 146.8 NVA
Albanian Indo-European Albanian 14k 587 59 27 17.4 NV
Armenian Indo-European Armenian 259k 6991 134 46 35.3 NVA
Latvian Indo-European Baltic 129k 7238 78 34 10.3 NVA
Lithuanian Indo-European Baltic 33k 1391 139 56 20.1 NVA
Irish Indo-European Celtic 45k 7299 53 53 3.3 NVA
Danish Indo-European Germanic 25k 3190 14 44 7.7 NV
German Indo-European Germanic 171k 15032 37 63 4.5 NV
English Indo-European Germanic 115k 22765 5 65 4.0 V
Icelandic Indo-European Germanic 76k 4774 44 54 10.9 NV
Greek Indo-European Greek 147k 11872 118 76 6.5 NVA
Kurdish Indo-European Iranian 203k 14143 128 61 14.3 NVA
Asturian Indo-European Romance 29k 436 223 32 49.5 NVA
Catalan Indo-European Romance 81k 1547 53 35 40.6 V
French Indo-European Romance 358k 7528 48 44 35.3 V
Bulgarian Indo-European Slavic 54k 2413 95 31 18.9 NVA
Czech Indo-European Slavic 109k 5113 147 62 10.0 NVA
Slovenian Indo-European Slavic 59k 2533 94 56 8.9 NVA
Georgian Kartvelian Kartvelian 74k 3777 109 33 17.5 NVA
Adyghe NW Caucasian NW Caucasian 20k 1635 30 40 11.9 NA
Zulu Niger-Congo Bantoid 49k 566 249 46 57.2 NVA
Khaling Sino-Tibetan Mahakiranti 156k 591 432 32 91.5 V
Estonian Uralic Finnic 27k 886 64 26 28.0 NV
Finnish Uralic Finnic 1M 57165 97 50 27.1 NVA
Livvi Uralic Finnic 63k 15295 104 55 4.0 NVA
Northern Sami Uralic Saami 62k 2103 80 31 25.9 NVA
Hungarian Uralic Ugric 517k 14883 93 53 34.1 NV

Table 4.1: Dataset statistics. The languages are sorted by language family. F/L refers to the form-per-
lemma ratio. POS indicates which part of speech are present in the dataset out of the nouns, verbs
and adjectives.

4.2 Data

Universal Morphology or UniMorph is project that aims to improve how NLP handles languages with
complex morphology.4 Specified in Sylak-Glassman (2016), UniMorph has been used to annotate 350
languages from the English edition of Wiktionary5. Wiktionary contains inflection tables that list
inflected forms of aword. Part of the UniMorph project is converting these tables into (lemma, inflected
form, tags) triplets such as (ablak, ablakban, N IN+ESS SG). The first tag is the part-of-speech which
is limited to the main open classes (nouns, verbs and adjectives) in most languages, IN+ESS is the
inessive case and SG denotes singular.

Our goal is to sample 10000 training, 2000 development and 2000 test examples. We retrieved
109 UniMorph repositories (109 languages) but only 57 languages have at least 14000 samples, the
lowest possible number for our purposes.We first prefilter the languages and assign them to languages
families and genus using the World Atlas of Languages or WALS6. WALS does not contain extinct,
constructed or liturgical languages, and we do not incorporate these in our dataset. Out of the 109
languages, 19 have no WALS entry. 29 languages have large enough UniMorph datasets that allow
obtaining 10000/2000/2000 samples.7 Table 4.1 summarizes the dataset.

4https://unimorph.github.io/
5https://en.wiktionary.org/
6https://wals.info/
7Albanian has only 1982 test samples but we wanted to include it as a language isolate from the Indo-European family.

40

https://unimorph.github.io/
https://en.wiktionary.org/
https://wals.info/

4.3. Tasks

Language Task Source Target

Hungarian morphological analysis vásároljanak V SBJV PRS INDF 3 PL
Hungarian morphological analysis lepkékben N IN+ESS PL
English morphological analysis hugging V V.PTCP PRS
French morphological analysis désinstalleriez V COND 2 PL

Hungarian lemmatization vásároljanak vásárol
Hungarian lemmatization lepkékben lepke
English lemmatization hugging hug
French lemmatization désinstalleriez désinstaller

Hungarian copy vásároljanak vásároljanak
Hungarian copy lepkékben lepkékben
English copy hugging hugging
French copy désinstalleriez désinstalleriez

Table 4.2: Dataset examples.

4.3 Tasks

We train both kinds of seq2seq models on three tasks:morphological analysis, lemmatization, and copy
or autoencoder. The source sequence is the inflected form of the word in all three tasks, while the tar-
get sequence is a list of morphosyntactic tags formorphological analysis, the lemma for lemmatization
and the same as the source side for copy. Table 4.2 shows examples for the three tasks.

Inflected words and lemmas are treated as a sequence of characters but tags are treated as stan-
dalone symbols.We share the vocabulary and the embedding between the source and target side when
training for copy and lemmatization but we use separate vocabularies for morphological analysis.

4.4 Models

We train two kinds of sequence-to-sequence models which only differ in the choice of the encoder.
Both models first pass the input through an embedding. We train the embeddings from randomly
initialized values and do not use pre-trained embeddings. We use character embeddings with 50 di-
mensions for character inputs and outputs and tag embeddings with 20 dimensions for morphological
tags (only for morphological analysis). The embeddings are shared between the encoder and decoder
for lemmatization and copy, since both the source and the target sequences are characters. The output
of the source embedding is the input to the encoder module which is a SoPa with 120 patterns in SoPa
Seq2seq case and a bidirectional LSTM in the baseline. The decoder later attends on the intermediary
outputs of these modules. The final hidden state of the encoder module is used to initialize the de-
coder. The decoder side of these models is identical in both setups, an LSTM with Luong’s attention.
All LSTMs have 64 hidden cells and a single layer.

The size of SoPa patterns (3, 4, and 5 in our case) define the number of forward arcs that a pattern
has. These may contain epsilon steps and self loops but an epsilon or a self loops is always followed
by a main transition (consuming an actual symbol). This means that a 3 long pattern may contain one
epsilon and one main transition, two epsilons or two main transitions. Any main transition may be
preceded by a self loop. The pattern size includes the start state and the end state. In our experiments
we used 3, 4, and 5 long patterns, 40 patterns of each length.

41

4. Neural Pattern Matching

Most of the training details are also identical. We train with batch size 64, and we use early stop-
ping if the development loss and accuracy stop improving for 5 epochs. We maximize the number of
epochs in 200 but this is never reached. We save the best model based on development accuracy. We
use the Adam optimizer with 0.001 learning rate for all experiments.

SoPa is more difficult to train than LSTMs, so we decay the learning rate by 0.5 if the development
loss does not decrease for 4 epochs.

4.5 Model similarity

We define a similarity metric between two SoPa Seq2seq models measured on datasets that share their
source side. The target sidemay differ. The three tasks introduced in Section 4.3, all take inflectedword
forms as their source sequence, which allows computing our similarity metric between each pair of
tasks.

SoPa works with a predefined number of patterns and tries matching each pattern on any sub-
word of the input with a particular length. The highest scoring subword is used in the final source
representation. We take the highest scoring T = 10 patterns for each input and compare the sub-
words that resulted in these scores. The metric is defined as the average similarity over the dataset
D:

Sim(M1,M2, D) =
1

|D|
∑
d∈D

S(M1(d),M2(d)), (4.3)

whereM1 andM2 are the models, and S is the similarity of the two representations generated by the
encoder side of the models on sample d, defined as:

S(M1(d),M2(d)) =
1

2T
(
∑
pi∈P1

max
pj∈P2

J(pi, pj) +
∑
pj∈P2

max
pi∈P1

J(pi, pj)), (4.4)

where T is a predefined number of highest scoring patterns on that sample (10 in our experiments),
P1 is the set of T highest scoring patterns ofM1, P2 is the set of T highest scoring patterns ofM2 and
J is the Jaccard similarity of two subwords defined as the proportion of overlapping symbols by the
union of all symbols. Jaccard similarity is 0 if there is no overlap and is 1 when the subwords are the
same. For each sample, we first choose the highest scoring T patterns from each model, we denote
these sets of patterns as P1 and P2. Then we find the subwords corresponding to these patterns. We
compute the pairwise Jaccard similarities between every element of P1 and P2. Then for each pattern,
we find the most similar pattern from the other model. The average of these scores is the similarity of
the twomodels on that sample (see Equation 4.4) and the average over all samples (see Equation 4.3) is
the similarity of twomodels on datasetD. This metric is symmetric and it ranges from 0 to 1. Table 4.3
shows a small example of this similarity on the word ablakban.

4.6 Results and analysis

We first show that SoPa Seq2seq is competitive with the LSTM Seq2seq baseline, especially for mor-
phological analysis. An output is considered accurate if it fully matches the reference and we do not
consider partial matching. Some languages prove to be too difficult for the models, which may be due
to the lack of context that is often needed for morphological analysis and orthographic changes often
present in lemmatization. We continue our analysis on languages where each of the three tasks are

42

4.6. Results and analysis

^ablakban$ ^ablakban$ ^ablakban$ ^ablakban Max
^ablakban$ 0 0.2 1 0.75 1
^ablakban$ 0 0.5 0.5 0.75 0.75
^ablakban$ 0 0.5 0 0.167 0.5
^ablakban$ 0 0.75 0.167 0.333 0.75
Max 0 0.75 1 0.75 J=0.6875

Table 4.3: Similarity (Equation 4.4) between two models M1 and M2 on one sample using the 4
highest scoring subwords (T = 4) with the subwords underlined. Rows correspond to the highest
scoring subwords fromM1 (ban, kba, lak, kban), while columns correspond to the subwords fromM2

(^ab, akb, ban, lakb). A Jaccard similarity matrix (with position information) is constructed. The final
similarity is the mean maximum of every row and every column of the matrix.

Adyghe Armenian Bulgarian Catalan Danish English French Georgian Hungarian Kurdish Quechua Turkish
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

copy-lstm
copy-sopa
lemmatization-lstm
lemmatization-sopa
morphana-lstm
morphana-sopa

Figure 4.3: Accuracy of SoPa Seq2seq models on each language and task.

performed by SoPa ‘reasonably well’, which we set to 40% accuracy or higher on the development
set. This leaves us with 12 languages. The reason we set a lower limit to accuracy is that we have no
reason to believe that a bad model’s representation is useful for the task. Figure 4.3 shows the test ac-
curacy in these languages. Lemmatization is consistently the most difficult task for SoPa, while SoPa
is on pair with LSTM Seq2seq in morphological analysis, sometimes outperforming it. We attribute
this result to the fact that a morphological tag often corresponds to a single morpheme, usually with a
few possible surface realizations that SoPa’s ‘soft’ patterns can pick up on. On the other hand lemma-
tization and copy require regenerating much of the input which is more difficult from an inherently
summarized representation such as the one SoPa generates.

We continue by computing the pairwise similarity value defined in Equation 4.3 between the
three tasks. Higher values indicate that SoPa finds similar patterns valuable for generating the output.
Figure 4.4 shows the pairwise similarity of models trained for the three tasks. We only compute these
similarities on samples where the output of both models are correct (generally 40-60% of the test
samples).

Lemmatization and morphological analysis are the least similar in almost every language. This
is not surprising considering that lemmatization is the task of discarding information that morpho-
logical analysis needs to correctly tag. Quechua is the only exception from this trend which could be
explained by the very rich inflectional morphology (especially at the type-level) that results in lem-
mas being significantly shorter than inflected forms. This means that copy needs to memorize a lot

43

4. Neural Pattern Matching

Adyghe Armenian Bulgarian Catalan Danish English French Georgian Hungarian Kurdish Quechua Turkish
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ja
cc

ar
d

copy-lemmatization
copy-morphana
lemmatization-morphana

Figure 4.4: Model similarity between all task pairs by language. Higher similarity indicates that two
models handle the same source in a more similar way.

language task subwords

English copy ed,e$,ed$,es,in,at,re,s$,te,ri
English lemmatization at,g$,er,in,ng,iz,s$,en,ize,es
English morphological_analysis d$,s$,e$,es$,$,ed,ed$,o,ng,g$
French copy s$,ss,is,as,ie,ai,z$,nt,ns,en
French lemmatization er,s$,t$,nt,ie,ns,ra,is,ri,^d
French morphological_analysis s$,t$,z$,nt$,ez$,e$,ai,er,ns$,es$
Hungarian copy l$,n$,k$,sz,t$,nk$,kk,el,ok,na
Hungarian lemmatization sz,t$,k$,l$,ta,tá,^k,n$,kb,ró
Hungarian morphological_analysis l$,t$,n$,k$,ek,a$,$,g$,á$,ak$

Table 4.4: Top subwords extracted from English, French and Hungarian. ^and $ denote word start
and end respectively.

more of the source word than lemmatization.
Another trend we observe, is that copy and morphological analysis are more similar than copy

and lemmatization in languages with rich inflectional morphology such as Armenian, Hungarian,
Kurdish and Turkish and the opposite is true in fusional and morphologically poor languages such as
Danish and English. Georgian seems to be an exception.

Finally we demonstrate SoPa’s interpretability by extracting the most frequently matched sub-
words in each language and task. Table 4.4 lists the most common subwords in English, French and
Hungarian in each task. It should be noted that these subwords are very short because we used 3, 4
and 5 long patterns that match 2, 3 and 4 characters not including self loops and short patterns simply
occur more frequently.

4.7 Conclusion

We presented an application of Soft Patterns – a finite state automaton parameterized by a neural
network – as the encoder of a sequence-to-sequence model. We show that it is competitive with the

44

4.7. Conclusion

popular LSTM encoder on character-level copy and morphological tagging, while providing inter-
pretable patterns.

We analyzed the behavior of SoPa encoders on morphological analysis, lemmatization and copy
by computing the average Jaccard similarity between the patterns extracted from the source side. We
found two trends that coincide with linguistic intuition. One is that lemmatization and morpholog-
ical analysis require patterns that match less similar subwords than the other two task pairs. The
other one is that copy and morphological analysis are more similar in languages with rich inflectional
morphology.

45

Part II

Evaluating Pre-trained Language

Models

47

Chapter5

Background

5.1 History of meaning representation

Word representation models based on word distribution date back to Zellig Harris’ seminal 1954 book,
Distributional Structure (Harris, 1954) which was the first to mention Bag-of-words or BOW models.
BOW represents a passage, usually a sentence, as an unordered (bag) collection of words. The collec-
tion may include word counts. Since the order of word is not preserved, most syntactic information
is lost.1.

Both BOW and keyword-based models such as Term Frequency-Inverse Document Frequency
use sparse vectors, where each dimension corresponds to one word in the dictionary, as the numeric
representation of words which carries significant difficulties for computational models. They also fail
to capture any relationship between words and their context.

5.1.1 Word embeddings

A breakthrough came in 2013 whenMikolov et al. (2013) introducedWord2Vec, a model that generated
dense word embeddings based on a word’s co-occurrence patterns in a large corpus. Word2Vec used
two architectures: Continuous Bag-of-Words (CBOW), which predicted a word from its context, and
Skip-Gram, which predicted the context given a word. By training on these tasks, Word2Vec placed
semantically similar words close to each other in the embedding space. For example, king and queen
would appear near each other, and algebraic relationships like king−man+woman ≈ queen demon-
strated its ability to capture linguistic structure. Mikolov et al. (2013) published the trained Word2Vec
embeddings providing the first version of pre-trained embeddings. These embeddings were widely
successful at a large variety of NLP tasks and they still remain a fast and lightweight solution for
meaning representation in small models.

A similar set of word embeddings named Global Vectors or GloVe were released the next year
(Pennington et al., 2014). GloVe incorporated global co-occurrence statistics into the embedding space.
This approach resulted in embeddings that better represented semantic relationships and improved
performance across various NLP tasks.

Formally an embedding is defined as E ∈ R|V |×d, where E is the embedding matrix, V is the
vocabulary, and d is the dimension of the embedding. V is usually determined based on the data
available, and missing symbols are mapped to a predefined unknown symbol. d is usually set to less
than 1,000, typically in the 300–600 range.

1We experiment with BOW as a perturbation in Section 8.1

49

5. Background

Once an embedding is trained on raw text, it is most often used as the first block of a task-specific
neural network. The embedding weights may or may not be updated along with the rest of the net-
work parameters. The two approaches are rudimentary versions of feature extraction and fine-tuning,
two use cases we will explore in more detail.

Smaller embeddings, particularly character embeddings, are often trained from scratch as part of
end-to-end training for a specific task. We employ this strategy throughout Chapters 3 and Chapter 4.

Despite their success, Word2Vec and GloVe had a major limitation: they produced static embed-
dings, where a word had a single fixed vector regardless of its meaning in different contexts. For
example, the word “bank” would have the same representation whether referring to a financial insti-
tution or a riverbank. This lack of contextual awareness hindered their effectiveness in tasks requiring
nuanced understanding of language. Multi-sense embeddings extend this by allowing a small set of
distinct word senses with different vectors for each sense. For a detailed survey on multi-sense em-
beddings see (Camacho-Collados and Pilehvar, 2018; Borbély et al., 2016).

5.1.2 Pre-trained contextual embeddings

The next generation of meaning representations use context in a dynamic way. The language model
is now a function of the sentence or a longer sequence instead of a single word type. The resulting
representation is one or more tensor for every token in the sentence that depend on the context as
well. They also often include a pooled representation for the full sentence or a sentence pair suitable
for sentence level tasks such as sentiment analysis and sentence pair tasks such as natural language
inference.

Perhaps the earliest example of contextualized language models was Contextualized Word Vectors
or CoVe (McCann et al., 2017). CoVe uses the encoder of a trained neural machine translation model as
a language model of the source language of the translation. In downstream applications CoVe vectors
are concatenated with the ‘standard’ embedding vectors such as GloVe. McCann et al. (2017) find
that CoVe improves the downstream performance and that the quantity of the training data used for
training the machine translation model positively correlates with this performance.

The next generation of contextualized word vectors completely replaces GloVe and other pre-
trained static embeddings. ELMo or Embeddings from Language Models (Peters et al., 2018) is a two-
layer biLSTM stacked over a static embedding trained with a language modeling objective on large
corpora. The objective is to predict the next or the previous word given its context. This enabled ELMo
to produce different embeddings for the same word depending on its usage, significantly improving
performance on tasks like named entity recognition and sentiment analysis. Furthermore they sug-
gested a novel approach for task-specific fine-tuning. The output of the embedding layer and the two
LSTM layers are linearly combined and used as an input for downstream tasks. The layer weights are
task-specific and trained on the particular task’s training data. ELMo improved the state of the art
(SOTA) results for various English tasks. There are various editions of pre-trained ELMo vectors for
dozens of languages.

Arguably the most important breakthrough was the introduction of the BERT model from Google
(Devlin et al., 2019). BERT or Bidirectional Encoder Representations from Transformers, a Transformer-
based model, quickly became the gold standard for pre-trained models and it paved the way for a
large bulk of NLP research in the following years. The first BERT implementation used TensorFlow,
Google’s own framework which by then was less popular for research than its competitor, PyTorch.
Hugging Face, a machine learning company based in New York City, published the first PyTorch
version of BERT along with a model repository open for the public. Within a year the repository
had thousands of model checkpoints including a large variety of language and domain-specific BERT

50

5.2. BERT

model checkpoints. Since the BERT model family is the main focus of Part II. of this thesis, we intro-
duce BERT in more detail in Section 5.2.

5.1.3 Terminology

There are various names used in reference to the new generation of language models, and BERT
models in particular. Contextual or contextualized language models (CLMs) refer to any model that
uses the context of a word (and the word itself) to generate the numeric representation of the word.
Pre-trained language models (PLMs) refer to models with extensive pre-training on unlabeled raw text.
Masked language models (MLMs) specifically refer to the type of training objective where tokens are
masked in the middle of the sentence and the model is tasked to recover them. Throughout this thesis
most of the models we analyze are MLMs, but many of our methods are not limited to such models,
rather we are interested in the effect of pre-training, therefore we opt to use the term pre-trained
language models or PLMs. Large language models or LLMs refer to the high number of parameters
they have typically at least ten billion and most of these models are generative models while we
mainly study encoder models in this work. Most of the models we study are smaller than this and Ács
et al. (2023) only covers the BERT family with models at most a couple hundred million parameters.

We should also clarify the difference between models, model families and instances of models. A
model is an architecture such as a multilayer Transformer. The training objective is usually treated
as a part of the model, even though strictly speaking the same model architecture can be trained via
different objectives. For example the RoBERTa family is architecturally identical to the BERT family
but it does not use the next sentence prediction objective.

A model family is a loose term for a group of models that may have some difference in their
architecture and their training process, but they share many important traits. The BERT family is
a collection of self attention encoder models, trained using a masked language modeling objective.
Unlike other model families such as the BART family, BERT models are not generative and therefore
they have limited success in generative tasks.

A model instance or a pre-trained checkpoint is a set of weights, a pre-defined vocabulary and a
tokenizer. These three define a usable instance of a model. The vocabulary and the tokenizer may be
shared between multiple models such as in the case of mBERT and DistilmBERT. Throughout this
thesis, the model names refer to pre-trained checkpoints. We also include the models’ string id in the
Hugging Face model repository.

5.2 BERT

The next set of improvements came from replacing the LSTMwith Transformers and by a vast increase
in both model size and training data. Google researchers introduces BERT (Devlin et al., 2019) in 2018
pioneering Transformer-based pre-trained language models. It is safe to say that BERT revolutionized
the field and it quickly spurred a large number of similar models. The subfield of NLP related to BERT
models and their study is called BERTology.

BERT or Bidirectional Encoder Representations from Transformers is a multilayer Transformer
model trained with two objective functions, masked language modeling (MLM) objective and next
sentence prediction.

Masked language modeling is the task of predicting words replaced by a dedicated mask symbol.
Unlike the traditional languagemodeling objectiveMLM allows bidirectional training, in other words,
the distribution of the predicted word is a function of both the left and the right context. In practice,

51

5. Background

the training data generator picks a random 15% of the tokens to be predicted. 80% of those is replaced
with a mask symbol, 10% is replaced with a random token and 10% are left unchanged.

Next sentence prediction is inspired by question answering and natural language inference, tasks
that require understanding the relationship between multiple sentences instead of modeling a single
sentence. Pairs of sentences are extracted from the training data. Half of the examples are actual
consecutive sentences, half are not. However one of the immediate successors of BERT, RoBERTa
(Liu et al., 2019b) suggested that this may not be necessary as long as there is sufficient training data.

BERT uses the WordPiece tokenizer (Schuster and Nakajima, 2012) and each BERT model uses
its own subword vocabulary. BERT is originally designed for sentences or sentence pairs. Sentences
are prefixed with a [CLS] symbol and suffixed with a [SEP] symbol. The two sentences of sentence
pairs are separated with [SEP] as well. [CLS] can be used as a representation for the full sentence or
sentence pair. After the input is split into subwords, each subword is mapped to a vector the same way
as in word embeddings. A segment embedding that differentiates the first and the second sentence
of a sentence pair, is then added to the embedded vectors. Since Transformers are directionless, a
position embedding is used to mark word order. This process is depicted in Figure 5.1.

Figure 5.1: BERT tokenization. Source Devlin et al. (2019)

Devlin et al. (2019) introduced two ‘sizes’, a base model and a large model. BERT-base has 12
Transformer (Vaswani et al., 2017) layers with 12 attention heads. The hidden size of each layer is
768. BERT-large has 24 layers with 16 heads and 1024 hidden units. BERT-base has 86M parameters
without the embedding, BERT-large has 303M parameters without the embeddings. The size of the
embedding depends on the size of the vocabulary which is specific to each pre-trained BERT model.
BERT-base has 110M parameters, BERT-large has 340M parameters. The original paper introduced 6
checkpoints: cased and uncased English checkpoints for both sizes and a cased and an uncased 100
language model. The latter was quickly dismissed in favor of the cased one. This has been extended
with smaller versions since then.

BERT is generally used as the largest part of a downstream model with only a minimal adaptation
layer required for classification and other tasks. It is initialized with a pre-trained BERT checkpoint.
The full downstream model is then trained further on a task-specific dataset. This approached is
called fine-tuning. Fine-tuning, illustrated in Figure 5.2, is generally much faster than pre-training,
often requiring just one or a few training steps. The end result is a variety of specific BERT instances
(Figure 5.3). Hugging Face hosts a free repository for both pre-trained and fine-tuned checkpoints.2

2https://huggingface.co/models

52

https://huggingface.co/models

5.2. BERT

The other approach, called feature extraction, is to fix BERT’s weights and only update the adapta-
tion layer or layers. Although feature extraction is generally inferior to fine-tuning, its computational
requirements are much more modest. In this thesis we use feature extraction unless noted otherwise.

Figure 5.2: BERT fine-tuning for various downstream tasks. Source: Devlin et al. (2019).

5.2.1 Multilingual models

Multilingual models are pre-trained on corpora in multiple languages, usually without any distinction
as to which language a particular sentence is in. They generally use a single vocabulary and tokenizer
for all supported languages. Some multilingual models are limited to a few languages such as Slav-
icBERT (Arkhipov et al., 2019), which supports Russian, Bulgarian, Czech and Polish, and massively
multilingual models that support over 100 languages. The most prominent examples of massively
multilingual models are mBERT (Devlin et al., 2019) and XLM-RoBERTa (Conneau and Lample, 2019).
Both models were trained on over 100 languages including Hungarian.

5.2.2 Multilingual BERT

Multilingual BERT (mBERT) was released along with BERT, supporting 104 languages. The main
difference is that mBERT is trained on text from many languages. In particular, it was trained in a
resource-balanced manner. Languages with many Wikipedia articles were undersampled while the
low-resource languages oversampled, using Wikipedia dumps with a shared vocabulary across the
supported languages. As a BERT-base model, its 12 Transformer layers have 86M parameters, while
its large vocabulary BERT-base model has a much smaller vocabulary and therefore a smaller embed-
ding with 23M parameters. The combined parameter count of the English BERT, 110M parameters, is
mistakenly listed as the parameter count of mBERT on the website3.

5.2.3 XLM-RoBERTa

XLM-RoBERTa is a hybrid model mixing together features of two popular Transformer-based models,
XLM (Lample and Conneau, 2019) and RoBERTa (Liu et al., 2019b). XLM is trained on both masked

3https://github.com/google-research/bert/blob/master/multilingual.md

53

https://github.com/google-research/bert/blob/master/multilingual.md

5. Background

Figure 5.3: BERT usage for sequence classification and sequence tagging. Source: Devlin et al. (2019).

languagemodeling (MLM) and Translation LanguageModeling (TLM) objective on parallel sentences.
In contrast, XLM-RoBERTa is trained using the MLM objective only, like RoBERTa. The main differ-
ence between XLM-RoBERTa and RoBERTa remains the scale of the corpora they were trained on:
XLM-RoBERTa’s training corpora counts five times more tokens and more than twice as many (278M
with embeddings) parameters than RoBERTa’s 124M (Conneau et al., 2020). Another major differ-
ence between these two models is that XLM-RoBERTa is trained in self-supervised manner, while
the parallel corpora for XLM is a supervised teaching signal. In the Cross-lingual Natural Language
Interface (XNLI; Conneau et al., 2018b) evaluation of mBERT, XLM, and XLM-RoBERTa, the latter
outperformed the other CLMs in all the languages in XNLI. We abbreviate XLM-RoBERTa as XLM-R
in the figures and tables for brevity.

54

5.3. Subword tokenization

5.2.4 Other multilingual models

As of 2022, there were a few other massively multilingual general domain models available in the
model repository hosted by Hugging Face4:

XLM-large is the large version of XLM-RoBERTa. It uses the BERT-large architecture but otherwise
its setup is identical to XLM-RoBERTa. Its string id is xlm-roberta-large.

XLM-MLM-100 is also a larger variant of XLM-RoBERTa with 16 layers instead of 12. Its string id
is xlm-mlm-100-1280.

distilbert-base-multilingual-cased is a distilled version of mBERT. It cuts the parameter budget
and inference time by roughly 40% while retaining 97% of the tutor model’s NLU capabilities.
Its string id is distilbert-base-multilingual-cased.

mT5 (Xue et al., 2021) is a massively multilingual generative model. To the best of our knowledge,
this is the only general purpose generative model that supports Hungarian and a large portion
of the languages we study.

We include all of the above models in our main analysis (cf. Section 6.5) but our main focus is on
mBERT and XLM-RoBERTa, the twomid sized models that are comparable to each other and arguably
the most popular choices for encoder oriented tasks. This list has grown since 2022 but the focus has
shifted to generative models and our study is better suited for encoder models.

5.2.5 Monolingual models

Monolingual model checkpoints are trained on a single language. As with all BERT models, their
subword vocabulary is trained before any of the model weights. These vocabularies usually include
the ASCII character set and various subwords comprising of Latin or pure ASCII characters even if
the language itself uses a different alphabet. Monolingual models usually use a 5 to 10 times smaller
vocabulary than massively multilingual ones. In this thesis we use 5 monolingual BERT checkpoints:
EngBERT, HuBERT, RuBERT (Russian), FinBERT (Finnish) and EstBERT (Estonian).

5.3 Subword tokenization

Language models model natural language as a sequence of symbols. The choice of symbol determines
the vocabulary size and the tokenization algorithm. The most common choices are:

Characters. Defined as Unicode code points, are readily available without any sophisticated tok-
enization. On the other hand, they seldom convey meaning on their own, fully shifting the task of
semantic modeling to other modeling components.

Morphemes. Morphemes are the smallest linguistic units with meaning. In practice, morphemes
are rarely used as symbols for several reasons. The main one is that recovering morpheme bound-
aries is non-trivial. Even in languages with concatenative morphology, assimilation or sandhi effects
are common, which makes it hard to segment morphemes at character boundaries. There have been
various attempts at using morpheme boundaries for tokenization (Cotterell and Schütze, 2015; Cao
and Rei, 2016).

4https://huggingface.co/models

55

https://huggingface.co/models

5. Background

Subwords. Subwords are character spans shorter than words but, preferably longer than one char-
acter. The models we evaluate in Part II., use subword tokenization so we provide a more detailed
introduction in Section 5.3.

Words. Word tokenization was the standard way of modeling language for English. English has a
very limited morphology and the ratio of inflected forms to lemmas is low.5 However, this approach
is insufficient for morphologically richer languages.

Ever since the introduction of contextualmodels, languagemodels almost exclusively use subword
tokenization. Subword tokenization proved to be a simple yet effective way of tokenization evenwhen
multilingual models use a shared vocabulary across widely different languages (Ács, 2019).

Subwords are character spans shorter than words but, preferably longer than one character. They
are usually acquired through simple character frequency-based heuristics such byte pair encoding.
Subword vocabularies are built off-line and they are independent of the model weights. Indeed, dif-
ferent models often share their subword vocabularies.

Subword vocabularies are derived from simple frequency based methods such as byte pair en-
coding (Gage, 1994; Sennrich et al., 2016) and its extension, the SentencePiece (Kudo, 2018) algorithm.
Unlike the model weights, which are all trained simultaneously (end-to-end training), these vocab-
ularies are built offline, before any of the model weights are initialized. The model’s embedding is
initialized to match the size of the subword vocabulary.

Once a subword vocabulary is built, the segmentation of a word can be recovered via greedy de-
coding. Subword tokenization has multiple advantages compared to word tokenization. One is that
we directly control the vocabulary size when we build the vocabulary. Another one is that out-of-
vocabulary symbols can be reduced to a minimum if we match the alphabet of the language since
subword tokenizers fall back to character tokenization when necessary. The disadvantage is that al-
though subwords are longer than one character, unlike morphemes, they are not necessarily meaning-
ful. All language models that we evaluate in this thesis use subword tokenization but we manipulate
the tokenizer in some cases.

5.3.1 Multilingual subword tokenization

Multilingual models use a shared vocabulary across all languages. These shared vocabularies are
trained on mixed language data often without any language specific label. This results in overlapping
segments for different languages. These overlaps are sometimes desirable such as sharing subwords
for named entities or related words. An example is Hollandia, the Netherlands in Hungarian, seg-
mented as Holland + ia by mBERT, where the subword Holland is meaningful in both English and
Hungarian and their meaning is practically the same. On the other hand there are many false friends.
One of the most common subwords in both English and Hungarian is most which means ‘now’ in
Hungarian.

5.3.2 Cased and uncased models

Many of these models have cased and uncased versions. Uncased versions were trained on lowercased
data with the diacritic marks removed. The uncasedmodels, though lossy, are suitable for postprocess-

5The UNIMORPH dataset, which is derived from inflection tables in Wiktionary, only defines a total of 5 distinct
inflection paradigms for English.

56

5.4. Evaluating PLMs

Model Language Input token Tokenization Restored token

mBERT uncased Hungarian Nyíregyháza ny + ire + gy + haza nyiregyhaza
mBERT cased Hungarian Nyíregyháza Ny + ír eg y háza Nyíregyháza
English BERT uncased Hungarian Nyíregyháza ny ire gy ha za nyiregyhaza
English BERT cased Hungarian Nyíregyháza N + y + í + re + gy + h + á + za Nyíregyháza

Table 5.1: Examples of cased and uncased tokenization.

ing tasks such as adding punctuation marks to the output of an automatic speech recognizer (Nagy
et al., 2021).

Uncased models often perform aggressive ‘normalization’ by removing not only diacritics - a
practice often used in informal writing in Hungarian - but also removing important markers such
as dakuten in Japanese. Dakuten are part of the Japanese kana system, which consists of multiple
syllabaries, of which hiragana and katakana are the most prominent in modern Japanese. Dakuten
are most often used to indicate when a consonant of a syllable should be voiced. Similarly Arabic
short vowel markers are removed. Table 5.1 lists some examples of cased and uncased tokenization.
English models perform similar case removal and they are also missing many but not all non-English
characters as shown in the uncased examples in Table 5.1. We mostly focus on cased models in this
thesis.

5.3.3 The tokenizers of mBERT and XLM-RoBERTa

Each BERT model has its own vocabulary. The vocabulary is trained before the model, not in an
end-to-end fashion like the rest of the model parameters. mBERT and XLM-RoBERTa both share
the vocabulary across 100 languages with no distinction between the languages. This means that a
subwordmay be used inmultiple languages that share the same script. The subwords are differentiated
whether they are word-initial or continuation symbols. mBERT, trained using WordPiece (Schuster
and Nakajima, 2012), marks the continuation symbols by prefixing them with ##. In contrast, XLM-
RoBERTa, acquired with SentencePiece (Kudo, 2018), marks the word-initial symbols rather then the
continuation symbols, with a Unicode lower eights block. The idea is that both these marks are almost
non-existent in natural text so it is easy to recover the original token boundaries.

mBERT uses a vocabulary with 118k subwords, while XLM-RoBERTa’s vocabulary has 250k sub-
words. This means that XLM-RoBERTa tends to generate fewer subwords for a given token, because
longer partial matches are found more easily. Ács (2019) defines a tokenizer’s fertility as the propor-
tion of subwords to tokens. The higher this number is, the more often the tokenizer splits a token.

5.4 Evaluating PLMs

PLMs are most often implemented as multilayer Transformer networks with over a hundred million
trainable parameters that implement a non-linear function that assigns a continuous representation to
the input sentence or sentence pair. The quality of this representation is hard to assess due to multiple
reasons. First, the function learned by the model is highly non-linear, therefore it is impossible to
pinpoint single factors in the input, such as the presence or absence of particularwords, responsible for
the output. Second, the training objectives are self-supervised, they are generated form the input data
via masking or simply next word prediction as in traditional (e.g. hidden Markov) language models.
This means that the pre-training process never actually optimizes for a downstream application. This
is alleviated by fine-tuning, where we optimize themodel on a downstream application but the labeled

57

5. Background

data used for fine-tuning is usually orders of magnitudes smaller than the unlabeled data used for the
pre-training. For these reasons, PLMs are considered black box models.

The quantitative evaluation of PLMs can be performed via intrinsic and extrinsic measures. In-
trinsic measures include training metrics such as the training and development loss, and depending
on the type of the model, language modeling metrics such as perplexity or masked language mod-
eling accuracy. Extrinsic evaluation is performed via surrogate tasks, where the language model is a
component of a larger model aimed at solving some downstream task.

There is also a growing body of work aimed at interpreting the inner workings of PLMs. Inter-
pretability is crucial in real world applications where accountability is a requirement (Doshi-Velez
and Kim, 2017; Markus et al., 2021; Holzinger et al., 2017; Tan et al., 2023; Zhao et al., 2024).

In this chapter we perform both intrinsic and extrinsic evaluation. Our intrinsic method is prob-
ing (6) and our extrinsic evaluation is aimed at two downstream tasks that are available in many
languages, POS tagging and NER.Wemainly focus on evaluatingmultilingual and non-Englishmono-
lingual models.

5.4.1 Intrinsic measures

Intrinsic measures include training statistics such as the loss as a function of the training steps. During
training, we use the train set to compute gradients and update the model weights and we use the
development set as a held out set for independent evaluation. Losses and other measures may be
computed on the development set but they are not used for updating the model weights. The test set
is only used to assess the fully trained model. Depending on the objectives used for training a model,
multiple types of intrinsic measure are available.

Loss. The loss or cost function is a function with two inputs, the model output and the reference
output i.e. the correct output. The loss function assigns a real value to these inputs that quantifies the
goodness of the model output. Lower loss values indicate that the model output is closer to the refer-
ence. In the case of models trained via backpropagation, we require that these losses are differentiable
with respect to the model parameters. In practice, this limits the choice to a fewmajor variants such as
cross entropy for classification or mean squared error for regression. Language modeling objectives
are formulated as classification tasks, where the model has to predict either the next word (generative
models) or a masked word in its context (BERT). The task is to pick the correct word or subword from
a predefined vocabulary, a classification task often with more than 100,000 different labels.

Perplexity. Perplexity quantifies how well a probability distribution predicts a given sample. The
perplexity of a probability distribution p is defined as

PP(p) =
∏
x

p(x)−p(x) (5.1)

where x ranges over all samples.

Masked languagemodeling perplexity. Models from the BERT family are trained with a masked
language modeling objective, i.e. the model has to predict a subset of the subwords that are masked.
MLM perplexity is the perplexity measured on these subwords.

58

5.4. Evaluating PLMs

5.4.2 Downstream performance

The most straightforward way of assessing a model’s capabilities is via downstream applications. The
pre-trained checkpoints for these models are intended for such usage.

Despite the wealth of multilingual and language-specific models, most evaluation methods are
limited to English, especially for the early models such as the original 6 BERT checkpoints (cf. Sec-
tion 5.2) and we only find a handful of papers aimed at multiple languages. Devlin et al. (2019) showed
that the original mBERT outperformed existing models on the XNLI dataset (Conneau et al., 2018b), a
16 language translation of the test set of NLI. mBERT was further evaluated by Wu and Dredze (2019)
for 5 tasks in 39 languages, which they later expanded to over 54 languages for part-of-speech tag-
ging and dependency parsing and 99 languages for named entity recognition (Wu and Dredze, 2020).
All three tasks include Hungarian as one of the low resource languages but they do not analyze the
specific languages in detail.

mBERT has been assessed on a variety of multilingual tasks such as dependency parsing (Kon-
dratyuk and Straka, 2019) or constituency parsing Kitaev et al. (2019). (Kondratyuk and Straka, 2019)
tested all 75 languages that have UD treebanks including Hungarian. mBERT’s multilingual capabil-
ities have been explored for NER, POS and dependency parsing in dozens of language by Wu and
Dredze (2019) and Wu and Dredze (2020). The surprisingly effective multilinguality of mBERT was
further explored by Dufter and Schütze (2020).

5.4.3 Benchmarks

Benchmarks are collections of one or more annotated dataset with standard train and test splits. These
are a popular way of assessing NLP models in a reproducible and comparable manner. Many bench-
marks have online submission systemswith leaderboards in the style of machine learning competition
websites such as Kaggle6.

Most tasks in these benchmarks are sentence or sentence pair classification tasks with tens of
thousands of training samples. The limited training set makes it possible to train themodels onmodest
hardware. Although many of these benchmarks predate BERT, BERT-based solutions quickly took
over the state of the art in 2018. Although since then LLMs have taken over, BERT and its successors
still offer reasonable performance with modest computational requirements.

5.4.3.1 English benchmarks

As with any other aspect of NLP, English is by far the highest resources language when it comes
to standardized benchmarks. These benchmarks consist of a variety of datasets and tasks designed
to measure aspects such as linguistic understanding, reasoning, and the ability to handle real-world
complexities. Prominent examples include the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018), which assesses models across tasks like sentiment analysis, sentence
similarity, and natural language inference. Its successor, SuperGLUE (Wang et al., 2019), introduces
more challenging tasks to evaluate advanced reasoning abilities. Similarly, datasets such as SQuAD
(Stanford Question Answering Dataset) (Rajpurkar et al., 2016) test reading comprehension, requiring
models to extract answers from text passages. By offering standardized evaluation frameworks, these
benchmarks provide a means to compare models consistently.

However, English NLP benchmarks are not without limitations. Many benchmarks emphasize
specific tasks or linguistic phenomena, potentially overlooking broader, real-world complexities like

6https://www.kaggle.com/

59

https://www.kaggle.com/

5. Background

multilingual contexts or domain-specific knowledge. For instance, while datasets like GLUE and Su-
perGLUE focus on general language tasks, they may fail to capture nuances in technical, legal, or
medical language. Additionally, models optimized for these benchmarks can exhibit overfitting be-
haviors, excelling in benchmark tasks without achieving robust generalization. Newer multilingual
benchmarks such as XTREME (Hu et al., 2020) and BIG-bench (bench authors, 2023) address this by
including a wider range of linguistic and cognitive tasks.

5.4.3.2 Multilingual benchmarks

XTREME (Hu et al., 2020) is a multilingual set of benchmarks that covers 40 languages. It has 4 types
of tasks, sentence classification, structured prediction (POS and NER), sentence retrieval and question
answering. Each task consists of 2 or 3 different benchmarks, with 9 benchmarks in total. Not all tasks
are available in all languages, for example only 4 tasks are available in Hungarian. Since Hungarian
is only available in the structured prediction (a.k.a. sequence tagging) tasks and a small machine
translation benchmark, we do not use XTREME with this thesis.

XNLI (Conneau et al., 2018b) is a multilingual natural language inference dataset. It is a translation
of the development and test splits of the MultiNLI (Gururangan et al., 2018) dataset in 16 languages.
Hungarian is not included among the 16 languages. It is intended to be used as a test set for cross-
lingual transfer and the train set of MultiNLI is not translated.

5.4.3.3 Hungarian benchmarks

Unfortunately there are very few standardized non-English benchmarks although the list is growing
with the Korean version of GLUE (Park et al., 2021) or Liro, a collection of Romanian benchmarks
(Dumitrescu et al., 2021). The largest such collection for Hungarian is the Hungarian Language Un-
derstanding or HuLU benchmark (Ligeti-Nagy et al., 2022) introduced in January 2022. Our Hungarian
experiments in Section 7.1 predate HuLU.

Unlike the English GLUE benchmark, very few high-level datasets are available for Hungarian,
therefore downstream evaluation is very limited. In this section we describe the datasets most suitable
for evaluating PLMs and we do not aim to give a complete overview of Hungarian NLP resources.
György Orosz curated a list of Hungarian NLP tools and datasets7.

The most notable public datasets are:

OpinHuBank (Miháltz, 2013) A sentiment analysis dataset with 10,000 sentences rated on a 5-
scale.

Szeged Treebank The largest fully manually annotated treebank in Hungarian with 82,000 sen-
tences.

Szeged Dependency Treebank (Vincze et al., 2010) A dependency-tree format version of the
Szeged Treebank. It uses its own dependency labels which predate the Universal Dependen-
cies standard.

Hungarian UD A subset of the Szeged Dependency Treebank converted to UD 1.0. Contains 1,800
sentences.

NerKor (Simon and Vadász, 2021) The largest gold standard named entity corpus for Hungarian
with 1.5M sentences. Our main experiments on Hungarian (Ács et al., 2021) predate this dataset.

7https://github.com/oroszgy/awesome-hungarian-nlp

60

https://github.com/oroszgy/awesome-hungarian-nlp

5.4. Evaluating PLMs

A piacokért folyó világméretű versenyt a fizetőképes
DET NOUN ADJ ADJ NOUN DET ADJ

kereslet megjelenése tette lehetővé .
NOUN NOUN VERB ADJ PUNCT

Table 5.2: Hungarian sentence with POS tagging.

WikiAnn (Pan et al., 2017) An automatically annotated named entity dataset in 282 languages in-
cluding Hungarian.

Automatically tagged Webcorpus 2.0 (Nemeskey, 2020b) Webcorpus 2.0 is a large web crawl
which was automatically analyzed with e-magyar (Sass et al., 2017). We use the POS tagging as
it conforms with the UD UPOS tagging standard and it is much larger than the Hungarian UD
treebank.

HuLU Hungarian Language Understanding. A new Hungarian benchmark based on the English
GLUE benchmark. Our experiments on Hungarian (Ács et al., 2021) predate this dataset.

5.4.4 Part of speech tagging

POS tagging assigns a part-of-speech label to each token in a sentence. It is often required as an
intermediary task between tokenization and dependency parsing. Silver and gold standard POS tagged
datasets are available in most medium and high resource languages and many low resource languages
as well. There are many different standards often crafted for specific languages. Universal POS or
UPOS, a POS tagset introduced along with Universal Dependencies, is a cross-lingual standard which
has been adapted to over 100 languages and is used in all UD treebanks. An example sentence is shown
in Table 5.2.

5.4.5 Named entity recognition

Our other downstream evaluation task is named entity recognition (NER). NER identifies and classi-
fies named entities. Depending the tagging standard, there are usually 4 types of NEs, person (PER),
location (LOC), organization (ORG) and miscellaneous (MISC). Many named entities are multiword
named entities, in other words, they span over multiple tokens. The inside-outside-beginning of IOB
tagging schema (Ramshaw and Marcus, 1995) and its variant the IOB2 schema represent these as
chunks in a sequence of tokens. The first token of a chunk is tagged B-, all continuation tokens are
tagged I- and tokens not part of a named entity are tagged O. B- and I- are followed by the type
of the entity such as B-LOC. Table 5.3 shows an example sentence with multiple multiword named
entities.

Born in Winchester , Massachusetts , he is the
O O B-LOC I-LOC I-LOC O O O O

grandson of Major League Baseball player Lennie Merullo .
O O B-ORG I-ORG I-ORG O B-PER I-PER O

Table 5.3: An example sentence with named entities tagged using the IOB2 schema.

61

5. Background

5.5 Large language models

BERT and other Transformer based models paved the way for scaling up in both model size and the
amount of training data resulting in increasingly large models. OpenAI’s GPT-2 (Radford et al., 2019),
released in 2019, was the first major model with over a billion parameters. GPT-3 (Brown et al., 2020),
its successor in 2020, was substantially larger with 175 billion parameters. It provided the base model
for the hugely successful ChatGPT, an online chatbot with remarkable capabilities. As of November
2024 the latest edition is GPT-4o (OpenAI, 2023). The GPT-3 and GPT-4 are only available via APIs
and the model architecture and weights were never released.

Llama (Touvron et al., 2023) is Meta’s (formerly Facebook) autoregressive model family starting
in February 2023. The latest version at the time of the thesis is Llama 3.2 released in September 2024.
Unlike the GPT model family, Llama model weights are available for download.

LLMs standard usage is via prompting a.k.a. giving natural language instructions. Most LLMs are
also chatbots with the ability to handle long multiturn conversations. They are also adept at multi-
step reasoning (chain of thought). LLMs however are trained on general information and they lack the
context for most industrial applications. Retrieval augmented generation or RAG is a general method
for combining information retrieval with LLM prompting. The user provides their own specific doc-
uments, usually with the help of a vector database, to the LLM.

Although the main focus of this part of the thesis is the evaluation of the BERT model family, we
extend our studies to LLMs albeit on a small scale. We acknowledge that the LLM results presented
are limited in scope.

62

Chapter6

Probing

Probing, also called auxiliary prediction tasks or diagnostic classifiers, is a popular method for analyz-
ing PLMs. Probing aims to recover linguistic information from the representation extracted from a
language model. A probing task is a small set of linguistically annotated data, typically a classification
problem. This data is passed through the language model and the resulting representation is probed
for the labels. A small adaptive layer, often a multilayer perceptron, is trained on top of this represen-
tation. If the classifier is able to predict the linguistic label, the model contains the data. The adaptive
layer typically has orders of magnitudes fewer parameters than PLMs. The underlying model is gen-
erally not fine-tuned on the probing task but it may be fine-tuned on a downstream task (Ravichander
et al., 2021).

6.1 Related work

Word embeddings dominated the mid 2010s NLP research and industry and continue to be essential
building blocks of simple models. They were also studied directly via classifiers that examined vari-
ous linguistic and other properties. The embedding probes (Luo et al., 2021) used simple classifiers on
embedding vectors to recover certain semantic information such as color (Sommerauer and Fokkens,
2018), referential attributes (Gupta et al., 2015), among others. Rubinstein et al. (2015) compared dif-
ferent types classifiers on various taxonomical and attributive classification tasks. Köhn (2015) was
perhaps the first work that extended this line of study to 6 other languages besides English. With the
introduction of seq2seq models that encoded sentences rather than words, these studies provided a
natural foundation to probing sentence embeddings.

The first probing on sentence encoders was performed by Köhn (2015) and Gupta et al. (2015), who
trained classifiers on static word embeddings. The classifiers predicted various morphological, seman-
tic and syntactic properties. To the best of our knowledge, Shi et al. (2016) was the first work that used
probing classifiers on the encoder of trained neural machine translation models. They probed for two
sentence level attributes, tense and voice as well as three phrase or word level attributes: POS, small-
est phrase constituent and top-level syntactic sequence. Later work tended to simplify the probing
target to sentence level attributes. Conneau et al. (2018a) probed for various sentence level attributes
in trained seq2seq models. The models are trained on 4 kinds of seq2seq tasks: NMT (4 languages),
AutoEncoder, SkipThought (Kiros et al., 2015) and grammatical parsing. Their probing tasks range
from artificial tasks such as swapped bigram detection to attributes of the constituency parse tree and
other syntactic properties. Zhang and Bowman (2018) used probing to compare 4 training objectives.

63

6. Probing

Belinkov et al. (2017a) was perhaps the first to probe for morphology in 6 languages including
somemorphologically rich languages in LSTM-based NMTmodels. They showed that character-based
representations, particularly at lower layers, are better for such languages and higher morphological
tagging accuracy correlates with higher BLEU scores. They also show that while the representations
generated on the encoder side indeed contain morphology, the decoder lacks this ability. They hy-
pothesize that the attention mechanism during decoding does the heavy lifting instead. They follow
up with similar works for POS and syntactic probing (Belinkov et al., 2017b; Adi et al., 2017).

The next generation of probing papers targeted BERT and its variants among other models but
they are mostly limited to English models. Hewitt and Manning (2019) showed that entire syntax
trees can be recovered to some degree from BERT and ELMo models, while baseline models lack this
quality. Liu et al. (2019a) probed BERT and ELMo for syntactic, POS and constituency labels. Tenney
et al. (2019b) extend the set of probing task with some labeling tasks (NER, semantic role labeling,
dependency labeling) and introduce a span directed probing setup named edge probing. They also
include some semantic tasks but the probed models, BERT, ELMo, CoVe and GPT, fail to outperform
the baselines on such tasks. Warstadt et al. (2019) focus on a single English-specific grammatical
phenomenon, negative polarity items and find that BERT has some grammatical knowledge. Elazar
et al. (2020) propose amnesic probing, a causal attribution method, which examines if the removal of
certain information has a negative effect on a model’s performance on some task.

Another line of investigation aims to find the location of certain linguistic information within
BERT. Tenney et al. (2019a) claim that the English BERT rediscovers the classis NLP pipeline and
lower layers are responsible for lower level tasks such as POS, while higher layers handle high level
tasks such as coreference resolution. de Vries et al. (2020) argue that this layerwise separation is not
as clear for English and Dutch models.

Despite its popularity, probing has been criticized for its proclivity to overestimate the model’s
capabilities. Voita and Titov (2020) showed that probing classifiers can ’learn’ random labels to some
degree over chance. Belinkov (2021) surveys all probing methods and points to several types of short-
comings. We address these shortcomings in Section 6.6.

6.2 Morphosyntactic probing

In this thesis, we focus on morphosyntactic probing. Like Shi et al. (2016), we include tense but we
extend this set with 3 frequent morphosyntactic tags: case, gender and number. Unlike Belinkov et al.
(2017a) we do not aim to perform full morphological tagging with a single task but rather focus on
individual frequent tags. This reduces the probing classifier size and it makes the results easier to
compare across languages.

UD provides annotation for over a 100 languages and these 4 tags are available in dozens of lan-
guages. Many well-resources languages use affixes to express these tags as well as agreement between
certain parts of the sentences. Some languages have more limited morphology and most of the infor-
mation is carried in prefixes and word order. English is one such example. Another group of languages
uses templatic morphology.

Since morphological annotation is available in most UD Treebanks, we use morphological clas-
sification as the target of probing tasks. Morphology is traditionally defined as the study of a word
formation and concepts coveringmultiple words or the full sentence are relegated to syntax. However,
it is difficult to define the boundary between morphology and syntax, particularly in a way that works
for multiple languages. English, for example, has very little morphology at the word level, much of the
role that morphology plays in other languages, is relegated to syntax. The sentences The cat is in the

64

6.2. Morphosyntactic probing

box and The cat is on the box are different only in their preposition. Uralic languages have extensive
case markings including multiple locative cases that would mark such a difference at the word level
(A macska a dobozban van vs. A macska a dobozon van.

Universal Dependencies introduced a standardized morphological tagging schema that disregards
the exact definition of morphology and simply uses word level morphological tags when applicable.
The choice of tags to include in a treebank is up to the authors and it may differ between treebanks
in the same language.

Table 6.1 shows an English sentence tagged using the CoNLL-U format. The sixth column contains
each token’s morphological tagging as a list of Feature=Value pairs. Although English does not have
case inflection, most English treebanks do have Case features on nouns. The value set varies between
{Nominative, Accusative} and {Nominative, Accusative, Genitive}, although Genitive is very infrequent.

Id Form Lemma UPOS XPOS Morphological features

1 The the DET DT Definite=Def|PronType=Art
2 third third ADJ JJ Degree=Pos|NumType=Ord
3 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin
4 being be AUX VBG VerbForm=Ger
5 run run VERB VBN Tense=Past|VerbForm=Part|Voice=Pass
6 by by ADP IN _
7 the the DET DT Definite=Def|PronType=Art
8 head head NOUN NN Number=Sing
9 of of ADP IN _
10 an a DET DT Definite=Ind|PronType=Art
11 investment investment NOUN NN Number=Sing
12 firm firm NOUN NN Number=Sing
13 . . PUNCT . _

Table 6.1: Example sentence in CoNLL-U format. Columns related to dependency parsing are omitted
for clarity.

6.2.1 Formulation

We define a probing task as a triple of ⟨language, POS, morphological feature⟩, following UD’s naming
conventions for morphological features. The task ⟨English, VERB, Tense⟩ requires identifying the
tense of a verb (present or past) in its context. Each sample is a sentence with a particular target word
and a morphological feature value corresponding to that word. The tense of run in the example in
Table 6.1 can only be disambiguated in its context.

A probing dataset is a set of triples defined as

D = {si, ti, li}ni=1, (6.1)

where sentence si : w1, . . . , wk is a sequence of wi, i ∈ [1, k] words, ti is a target index and li is the
morphosyntactic label ofwt, the tth token of sentence si. The dataset is always split into three parts, a
train, a validation or development and a test set denoted asDtrain,Ddev,Dtest respectively. This means
that although sentence context is available, the morphosyntactic tag itself refers to one token in the
sentence. The same sentence may be part of multiple probing instances. The same is true for the target
word forms, although we disallow the same form in more than one of the train, development and test
sets.

65

6. Probing

The PLMs we probe use subword tokenizers that transform the input sentence into a list of sub-
words:

Tokenizer(s) = sw1, . . . , swl,sw, (6.2)

where each swi subword is part of a predefined subword vocabulary. We also save the start position
of each original token (starti). In practice this is not supported natively by the tokenizers but we use
the gold tokenization of UD and we run the subword tokenization on each token instead of the full
sentence. This is very close to the strategy used by the tokenizers on full sentences. The starting
positions are necessary for any token-level usage such as our morphosyntactic probing.

Since each token si may be segmented into multiple subwords, we need a way of pooling a single
representation from multiple subword representations. We explore 9 options in Section 6.4 where
we show that for morphology, the simplest strategies, namely taking the first or the last subword
representation are just as good if not better than more sophisticated strategies. The index of the first
subword of the target word is j = startt and the index of the last subword is j = startt+1 − 1.
We always pick the better choice based on the development performance unless noted otherwise.
Formally we pick subword function spk for probing task p as:

argmax
k

Accp(Ddev, spk), (6.3)

where Acc is the accuracy of label prediction, i.e. the proportion of correctly classified samples and
spk ∈ SP is the subword pooling function.

The other main component of our morphosyntactic probing is the probing architecture or adaptive
layer itself. We use a small multilayer perceptron (MLP) in all experiments unless noted otherwise.
The MLP has one hidden layer with 50 neurons. The input layer’s size is the same as the hidden
dimension of the model we probe, 768 in the case of BERT-base models. The output dimension is the
number of classes in the probing task (see Section 6.3 for statistics on class d distribution). The label
distribution of li is defined as:

P (li) = σ(MLP(LM(si)j)), (6.4)

where σ is the softmax function, LM is the language model we probe and j is the index of either the
first or the last subword of the target word st. We use the most probable label argmax(P (li)) as the
prediction of the probing classifier. The performance is evaluated using accuracy, the proportion of
correctly classified examples.

6.2.2 Data sampling

Each token in UD is tagged by zero or more morphological features (e.g., case, number, gender, tense),
including part of speech (POS). Every language, POS, and morphological feature comprise a candidate
probe, with the task of predicting a given word token’s feature value from the word and its context.
Our sampling method takes sentences in the CoNLL-U format as its input and it samples each task
separately with a few restrictions.

We avoid overlap of the targetword in the train, validation and test splits, in otherwords one target
word i.e. the word that is to be classified, can only appear in one these. UD treebanks have dedicated
train, validation and test splits and we use these splits for our train, validation and test splits. We
first merge all treebanks in a particular language and then sample the sentences in iteratively. Each
sentence is sampled so that the target word does not appear as a target word in the other two splits.

66

6.2. Morphosyntactic probing

Instead of sampling all train sentences right away, we sample 10 train sentences, then 1 validation
and 1 test sentence. This avoids oversampling frequent target words in the train set.

Morphological value distributions are highly non-uniform.We limit class imbalance to 3:1, i.e., the
largest class may not be more than 3 times larger than the smallest class. This requires downsampling
frequent classes and in extreme cases, discarding very rare classes as happens with some Finnish noun
cases.

Since the goal of probing is to find out what the model knows rather than what can be learned
based on the probing data alone, small training sizes are desirable. We limit our training data to 2,000
train, 200 validation and 200 test samples (sentences). These numbers are achievable through a wide
range of languages and tasks and they keep training times very short, thus allowing a very large
number of experiments.

Our sampling method limits the sentence length between 3 and 40 tokens. The average sentence
length is 20.5 tokens. The subword tokenizer of mBERT generates 38.2 tokens on average, while the
subword tokenizer of XLM-RoBERTa outputs 34.2 tokens. Target fertility is defined as the number of
subwords the target token is split into. Target fertility is 3.1 and 2.6 for mBERT and XLM-RoBERTa
respectively. However, this measure varies substantially among languages, particularly in the case
of mBERT’s tokenizer. mBERT generates the fewest subwords for target words in English (2.05) and
the most for Greek (4.75). XLM-RoBERTa on the other hand tends to split Persian the least (2.05)
with English coming second (2.14) and it splits Hungarian the most (3.21) and the target fertility for
all other languages is below 3 for XLM-RoBERTa. mBERT’s target fertility is above 3 for 22 out of
the 42 languages. This again suggests that XLM-RoBERTa’s larger vocabulary is better suited for a
multilingual setup.

Lastly we analyze the target words in more detail. Our data creation method disallows having
the same target word appear in more than one of the train, validation or test splits. If the example
sentence “I read your letter yesterday.” is part of the train set and read is the target word, it may not
appear as a target word in the validation or the test set regardless of its morphosyntactic analysis.
It may be part of the rest of the sentence though. A probing task has 2024 unique target words on
average. Split-wise this number is 1644 for the train split, 189 for the validation split and 190 for the
test split. Recall that we have 2000 train, 200 validation and 200 test sentences. Interestingly there is
very little ambiguity in the morphosyntactic analysis of the 4 tags we consider. 6.5% of words have
ambiguous analysis in the full UD treebanks of the 42 languages.

6.2.3 Training details

Our model is illustrated in Figure 6.1. The input sentence is tokenized with a subword tokenizer. The
subwords are passed to the language model which outputs a vector by layer for each subword. We
then take the vectors corresponding to either the first or the last subword (subword choice is explored
in Section 6.4) from each layer and use the weighted sum of these vectors (layer pooling options are
explored in Section 6.6). This weighted sum is passed onto a small adaptive layer, a multilayer percep-
tron (MLP). This MLP and the layer weights are the only components we train, while the language
model is frozen. Alternative approaches such as differentMLPs and fine-tuning themodel are explored
in Section 6.6.

We train all classifiers with identical hyperparameters but independently of each other. There is
no parameter sharing aside from the pre-trained model weights. The classifiers have one hidden layer
with 50 neurons and ReLU activation. The input and the output layers are determined by the choice
of language model and the number of target labels. This results in 40k to 60k trained parameters, far
fewer than the number of parameters in any of the language models. All models are trained using the

67

6. Probing

mBERT tokenizer

You have patience .

[CLS] You have pati ##ence . [SEP]

mBERT (fixed)

13∑
i = 1

wixiMLPP (singular) trained

Figure 6.1: Probing architecture. Input is tokenized into wordpieces and a weighted average of the
mBERT layers taken on the last wordpiece of the target word is used for classification by an MLP.
Only the MLP parameters and the layer weights wi are trained. xi is the output of the ith layer, wi is
the learned layer weight. The example task here is ⟨English, Number, NOUN⟩.

Adam optimizer (Kingma and Ba, 2014) with lr = 0.001, β1 = 0.9, β2 = 0.999. We use 0.2 dropout
for regularization and early stopping based on the development set. The maximum number of epochs
is set to 200 but in practice this is only reached in about 2% of the experiments. The batch size is
always set to 128 except in the fine-tuning experiments where it is set to 8. All experiments are run
on a single GPU, either a GeForce RTX 2080 Ti (12GB) or a Tesla V100 (16GB).

6.3 Multilingual probing dataset

We used the sampling method from Section 6.2.2 on the Universal Dependencies Treebanks to sample
tasks in as many languages as possible.

6.3.1 Choice of languages and tags

UD 2.9 (Nivre et al., 2020) has treebanks in 122 languages. mBERT supports 104 languages while
XLM-RoBERTa supports 100 languages. There are 55 languages in the intersection of these three
sets. We include every language from this set except those where it is impossible to sample enough
probing data. This was unfortunately the case for Chinese, Japanese, and Vietnamese due to the lack of
data with morphosyntactic information and in Korean due to the different tagset used in the largest
treebanks. 11 other languages have insufficient data for sampling. In contrast with e.g. Şahin et al.
(2019), who used UniMorph for morphological tasks, a type level morphological dataset, UD allows
studying morphology in context (often expressed through syntax). Moreover we extended UD 2.9

68

6.3. Multilingual probing dataset

0 10 20 30 40 50 60 70 80
Number of tasks

IE-Slavic
IE-Romance
IE-Germanic

Uralic
IE-Baltic
IE-other
IE-Indic
Semitic

Turkic
Basque

Figure 6.2: Number of morphosyntactic probing tasks by language family.

with Kote et al. (2019), an Albanian treebank andwith a silver standard Hungarian dataset (Nemeskey,
2020a). The resulting probing dataset includes 42 languages.

UD has over 130 different morphosyntactic tags but most of them are only used for a couple of
languages. In this work, we limit our analysis to four major tags that are available in most of the 42
languages: Case, Gender, Number, and Tense, and four open POS classes ADJ, NOUN, PROPN, VERB.
Out of the 4×4 = 16 POS-tag combinations, 14 are attested in our set of languages. The missing two,
⟨NOUN, Tense⟩ and ⟨PROPN, Tense⟩, are linguistically implausible. One task, ⟨ADJ, Tense⟩ is only
available in Estonian. The most common tasks are ⟨NOUN, Number⟩, ⟨NOUN, Gender⟩ and ⟨VERB,
Number⟩, available in 37, 32 and 27 languages respectively. Figure 6.5 illustrates the availability of
each task by language.

60% of the tasks are binary (e.g., ⟨English, NOUN, Number⟩), 20.6% are three-way (e.g., ⟨German,
NOUN, Gender⟩) classification problems. The rest of the tasks have four or more classes. ⟨Hungarian,
NOUN, Case⟩ has the most classes with 18 distinct noun cases, followed by ⟨Estonian, NOUN, Case⟩,
⟨Finnish, NOUN, Case⟩ and ⟨Finnish, VERB, Case⟩ with 15, 12, and 12 cases respectively. Figure 6.3
shows a histogram of the class count distribution.

Table 6.2 lists the 42 languages included in the probing dataset. The task counts vary greatly. We
only have one task in Afrikaans, Armenian, and Persian, while we sample 13 tasks in Russian and
12 in Icelandic.1 The resulting dataset of 247 tasks is highly skewed toward European languages as
evidenced by Figure 6.2. Over 80% of the tasks come from the Indo-European family and the top 15
languages account to more than 50% of all tasks (Figure 6.4). The Slavic family in particular accounts
for almost one third of the full dataset. This is due to two facts. First, Slavic languages have rich
morphology so most POS/tag combinations exist in them (unlike, e.g., the Uralic languages which
lack gender). Second, there are many Slavic languages and their treebanks are very large, the Czech
treebanks are over 2M tokens, while the Russian treebanks have 1.8M tokens. The modest number
of non-European tasks is an important limitation of our study. Fortunately the Indo-European lan-
guage family is large and diverse enough that we have examples for many different morphosyntactic
phenomena.

1The Icelandic UD was substantially expanded recently (Arnardóttir et al., 2020). We were not able to sample enough
data from the earlier versions.

69

6. Probing

Family Language # Tasks Family Language # Tasks

Basque Basque 3 IE-Slavic Belarusian 6
IE-Baltic Latvian 11 IE-Slavic Bulgarian 5
IE-Baltic Lithuanian 6 IE-Slavic Croatian 8
IE-Germanic Afrikaans 1 IE-Slavic Czech 10
IE-Germanic Danish 3 IE-Slavic Polish 10
IE-Germanic Dutch 3 IE-Slavic Russian 13
IE-Germanic English 2 IE-Slavic Serbian 7
IE-Germanic German 10 IE-Slavic Slovak 8
IE-Germanic Icelandic 12 IE-Slavic Slovenian 5
IE-Germanic Norwegian Bokmal 4 IE-Slavic Ukrainian 7
IE-Germanic Norwegian Nynorsk 4 IE-other Albanian 6
IE-Germanic Swedish 5 IE-other Armenian 1
IE-Indic Hindi 6 IE-other Greek 4
IE-Indic Urdu 4 IE-other Irish 3
IE-Romance Catalan 6 IE-other Persian 1
IE-Romance French 7 Semitic Arabic 4
IE-Romance Italian 7 Semitic Hebrew 4
IE-Romance Latin 9 Turkic Turkish 4
IE-Romance Portuguese 6 Uralic Estonian 7
IE-Romance Romanian 6 Uralic Finnish 8
IE-Romance Spanish 6 Uralic Hungarian 5

Table 6.2: List of languages and the number of tasks in each language.

6.3.2 Dataset statistics

Our sampling method limits the sentence length between 3 and 40 tokens. The average sentence
length is 20.5 tokens. The subword tokenizer of mBERT generates 38.2 tokens on average, while the
subword tokenizer of XLM-RoBERTa outputs 34.2 tokens. Target fertility (Ács, 2019) is defined as the
number of subwords the target token is split into. Target fertility is 3.1 and 2.6 for mBERT and XLM-
RoBERTa respectively. However, this measure varies substantially among languages, particularly in
the case of mBERT’s tokenizer. mBERT generates the fewest subwords for target words in English
(2.05) and the most for Greek (4.75). XLM-RoBERTa on the other hand tends to split Persian the least
(2.05) with English coming second (2.14) and it splits Hungarian the most (3.21) and the target fertility
for all other languages is below 3 for XLM-RoBERTa. mBERT’s target fertility is above 3 for 22 out
of the 42 languages. Figure 6.6 shows the two models’ fertility averaged over all samples in the same
language. mBERT has a higher fertility for 34 languages out of 42 (left figure) but the picture is more
extremewhenwe only look at the fertility of target words (right figure), where it is shown thatmBERT
has an often much higher target fertility for every language except English. This again suggests that
XLM-RoBERTa’s larger vocabulary is better suited for a multilingual setup.

We analyze the behavior of the tokenizers on one task, ⟨Hungarian, NOUN, Case⟩ in more detail.
Hungarian has 18 noun cases and their inflection is highly regular. Each case, aside from the unmarked
nominative, has a dedicated abstract morpheme that manifests as a suffix. There may be multiple
versions of the surface form due to vowel harmony and assimilation but in general most cases can
be described with two or three unique word endings. Table 6.3 lists the five most common subwords

70

6.3. Multilingual probing dataset

2 3 4 5 6 7 8 11 12 15 18
Number of morphotag value types

0

20

40

60

80

100

120

140

Nu
m

be
r o

f t
as

ks

Figure 6.3: Number of binary, ternary etc. classes among the 247 morphology probing tasks.

0 2 4 6 8 10 12
Number of tasks

Russian
Icelandic

Latvian
Czech

German
Polish
Latin

Slovak
Finnish

Croatian
Ukrainian
Estonian

Italian
French

Serbian

Figure 6.4: 15 languages with the most morphological probing tasks.

each tokenizer generates for each Hungarian case. Often the five most common subwords account for
over 90% of the target words and in some cases such as the causative (Cau), there are fewer than five
unique final subwords that the tokenizers ever use. Vowel harmony variations are also frequent in the
table. While this analysis only concerns a single task, it is evident that the simple frequency-based
subword tokenizers can pick up morphological regularities.

Next we analyze the target words in more detail. Our data creation method disallows having the
same target word appear inmore than one of the train, validation or test splits. If the example sentence
“I read your letter yesterday.” is part of the train set and read is the target word, it may not appear
as a target word in the validation or the test set regardless of its morphosyntactic analysis. It may
be part of the rest of the sentence though. A probing task has 2024 unique target words on average.
Split-wise this number is 1644 for the train split, 189 for the validation split and 190 for the test split.
Recall that we have 2000 train, 200 validation and 200 test sentences. Interestingly there is very little
ambiguity in the morphosyntactic analysis of the 4 tags we consider. 6.5% of words have ambiguous
analysis in the full UD treebanks of the 42 languages.

71

6. Probing

Afr
ika

an
s

Alba
nia

n
Arab

ic

Arm
en

ian

Basq
ue

Bela
rus

ian

Bulg
ari

an

Cata
lan

Croa
tia

n
Czec

h
Dan

ish
Dutc

h
En

glis
h

Est
on

ian
Fin

nis
h
Fre

nch

Germ
an
Gree

k

Heb
rewHind

i

Hun
ga

ria
n

Ice
lan

dic Iris
h
Ita

lianLat
in

Lat
via

n

Lit
hu

an
ian

Norw
eg

ian
 Bokm

al

Norw
eg

ian
 Nyn

ors
k

Per
sia

n
Pol

ish

Por
tug

ue
se

Ro
man

ian

Ru
ssi

an

Se
rbi

an
Slo

va
k

Slo
ve

nia
n

Sp
an

ish

Sw
ed

ish
Tur

kis
h

Ukra
inia

n
Urdu

ADJ, case
ADJ, gender

ADJ, number
ADJ, tense

NOUN, case
NOUN, gender

NOUN, number
PROPN, case

PROPN, gender
PROPN, number

VERB, case
VERB, gender

VERB, number
VERB, tense

Figure 6.5: Task ‘availability’ by language. Blue indicates that a tasks is available in a language.

Label mBERT XLM

Abl tól, ől, ól, től, ától (93.4%) tól, től, étől, ától, októl (91.2%)
Acc t, et, át, ket, ét (41.2%) t, et, át, ét, okat (49.3%)
Ade nál, nél, ál, él, l (99.3%) nál, nél, ánál, eknél, énél (95.6%)
All hoz, hez, oz, ához, éhez (86.0%) hoz, hez, ához, khoz, éhez (71.3%)
Cau ért, rt, t, RT (100.0%) ért, áért, éért, T (100.0%)
Dat nak, nek, ának, k, ének (77.9%) nak, nek, ának, ének, ainak (75.0%)
Del ról, ről, ől, ól, éről (85.3%) ról, ről, éről, áról, ekről (78.7%)
Ela ből, ból, ából, éből, ól (92.6%) ből, ból, ából, éből, ekből (89.7%)
Ess ként, ént, nt, ul, ül (91.9%) ként, ul, ül, képp, sul (99.3%)
Ill ba, be, ába, ébe, a (89.7%) ba, be, ába, ébe, jába (91.2%)
Ine ban, ben, ában, okban, jában (66.9%) ban, ben, ában, okban, ében (74.3%)
Ins ával, vel, val, l, kal (35.3%) ával, sal, ekkel, ével, okkal (34.6%)
Nom k, ás, és, ja, úra (14.7%) ja, ok, t, k, ek (13.2%)
Sub ra, re, ére, ára, ásra (74.3%) ra, re, ére, ára, ekre (64.7%)
Sup on, n, án, en, ján (58.1%) on, án, en, kon, ján (54.4%)
Tem kor, or, r, door, nr (99.3%) kor, akor, or, skor, door (99.3%)
Ter g, ig, áig, éig, . (90.4%) ig, áig, tig, g, . (97.1%)
Tra á, vé, vá, é, ává (72.1%) ává, évé, sá, ké, vé (47.8%)

Table 6.3: The five most common last subwords by case in Hungarian noun cases. The overall fre-
quency by case of the five most common last subwords is listed in parentheses.

72

6.4. Subword pooling

1.2 1.4 1.6 1.8 2.0 2.2 2.4
XLM-RoBERTa fertility

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

m
BE

RT
 fe

rti
lit

y

ar

hy be

bg

ca
nl

en

et

fr

de

el

hi

hu
ga

it

lvlt

pt
es

tr

ur

2.0 2.2 2.4 2.6 2.8 3.0 3.2
XLM-RoBERTa target fertility

2.0

2.5

3.0

3.5

4.0

4.5

m
BE

RT
 ta

rg
et

 fe
rti

lit
y

ar

hy

be

bg

en

et fi

fr
de

el

hi

hu

ga
lv

lt

fa

ru

sk
truk

ur

Figure 6.6: mBERT vs. XLM-RoBERTa fertility by language. The left plot shows the average fertility
of the full probing dataset, the right plot depicts the average fertility of the target words. We added
a dotted line at x = y for illustration. Language codes are added for languages at the end of the two
scales, the rest are omitted for clarity.

Since morphology is most often expressed as affixes in our languages, the target words tend to be
longer than the average word length in characters. This also makes the tokenizers more likely to split
the target words into multiple subwords. Target fertility is higher than sentence fertility in over 85%
of the samples for both models. In 50% of the samples, the two models generate the same number of
subwords, most often 2, for the target words. However, the remaining half is almost always (92%) split
into fewer subwords by XLM-RoBERTa than mBERT. Figure 6.7 shows a heatmap of target subword
counts for all samples and XLM-RoBERTa’s tendency to generate one less subword is evident.

Lastly we look at the proportion of unsplit target words. It is reasonable to assume that an unsplit
word has a better representation in PLMs than one that is split into multiple subwords that may or
may not correspond to morphemes. Once again XLM-RoBERTa’s larger vocabulary is less likely to
split words and mBERT is more biased towards Indo-European languages, where the ratio of unsplit
target words may be as high as 35% (⟨English, VERB, Tense⟩). Figure 6.8 shows a histogram of the
proportion of unsplit tokens in a task by model. mBERT splits more than 90% of the target words in
more than one third of the tasks, while XLM-RoBERTa is much less likely to do the same. Multiple
subwords mean multiple BERT outputs that require some kind of pooling that creates a single tensor
for a single token. In the next section, we explore how the choice of this pooling function affects
model performance.

6.4 Subword pooling

BERT and other PLMs use subword tokenizers that generate one or more subwords for each token.
This means that token-level usage of such models requires a way to pool multiple subword represen-
tations. Since most tasks consume full words, practitioners have the freedom to decide whether to use

73

6. Probing

1 2 3 4 5
XLM-R target subword count

1
2

3
4

5m
BE

RT
 ta

rg
et

 su
bw

or
d

co
un

t

20000

40000

60000

80000

100000

120000

Figure 6.7: Heatmap of subword counts of the target word by model. Counts over 5 subwords (3.8%
of all samples) are omitted for clarity.

0.0 0.1 0.2 0.3
0

10

20

30

40

50

60

70

80

Co
un

t

mBERT unsplit
XLM unsplit

Figure 6.8: Histogram of the ratio of unsplit tokens in a task. Lower x-axis values mean that the
proportion of multi-subword target words is higher.

the first, the last, or some combination of all subwords. The original paper introducing BERT, Devlin
et al. (2019), suggests using the first subword for named entity recognition (NER), and did not explore
different poolings. Kondratyuk and Straka (2019) also use the first subword, for dependency parsing,
and remark in a footnote that they tried the first, last, average, and max pooling but the choice made
no difference. Kitaev et al. (2019) report similar findings for constituency parsing, but nevertheless
opt for reporting results only using the last subword. Hewitt and Manning (2019) take the average of
the subword vectors for syntactic and word sense disambiguation tasks. Wu et al. (2020) use attentive
pooling with a trainable norm for news topic classification and sentiment analysis in English. Shen
et al. (2018) use hierarchical pooling for sequence classification tasks in English and Chinese.

In this section, we compare 9 subword pooling functions on 3 tasks in 9 languages. We run the
experiments on two multilingual models, mBERT and XLM-RoBERTa, introduced in Section 5.2.2 and

74

6.4. Subword pooling

Section 5.2.3 respectively. Both models have been extensively applied to English and multilingual
tasks, but generally at the sentence or sentence pair level, where subword issues do not come to the
fore. mBERT uses a common wordpiece vocabulary with 118k subword units. When a word is split
into multiple subword units, each token that is not the first one is prefixed with ##. XLM-RoBERTa’s
vocabulary was trained in a similar fashion but with 250k units and a special start symbol (Unicode
lower eights block) instead of continuation symbols. Each word is prefixed with this start symbol
before it is tokenized into one or more subword units. These start symbols are often then tokenized
as single units, particularly before Chinese, Japanese and Korean characters, therefore artificially in-
creasing the subword unit count. We indicate the proportion of words starting with a standalone start
symbol along with other tokenization statistics in Table 6.5.

As Table 6.5 shows, the number of subword tokens is highly dependent on the language. English
words are only split in 14.3% (resp. 16.9%) of the time by the two models, while in many other lan-
guages more than half of the words are tokenized into two or more subword units. We hypothesize
that this is due to the combination of the characteristics of the English language and its overrepre-
sentation in the training data and the subword vocabulary.

We also observe that the two models’ tokenizers work in very different ways. Out of the 2800
morphological test examples, only 58 are tokenized the same way and 51 of these are not split into
multiple subwords. Only 7 words that are in fact tokenized, are tokenized the same way. Although
the full tokenization is rarely the same, the first and the last subwords are the same in 45.5% and in
44.7% of the cases.

Our main contributions are:

• we show that subword pooling matters, the differences between choices are often significant
and not always predictable;

• XLM-RoBERTa is slightly better thanmBERT in the majority of morphological and POS tagging
tasks; while mBERT is better at NER in all languages;

• the common choice of using the first subword is generally worse than using the last one for
morphology and POS but the best for NER;

• the difference between using the first and the last subword is larger in lower layers than in
higher layers and it is more pronounced in languages with rich morphology than in English;

• the choice of subword pooling makes a large difference for morphological and POS tagging but
it is less important for NER.

This work was presented at the 16th Conference of the European Chapter of the Association
for Computational Linguistics (EACL2021). The source code, the data and the full result tables are
available on GitHub.2

6.4.1 Pooling methods

We test 9 types of poolingmethods listed in Table 6.6 and grouped in three broad types. The first group
uses the first and last subword representations in some combination. In f+l pooling themixing weight
is the only learned parameter. The second group are parameter-free elementwise pooling operations.

2https://github.com/juditacs/subword-choice

75

https://github.com/juditacs/subword-choice

6. Probing

Language Tag POS # class

Arabic case NOUN 3
Arabic gender ADJ 2

Czech gender ADJ 3
Czech gender NOUN 3

English verbform VERB 4

Finnish case NOUN 12
Finnish verbform VERB 3

French gender ADJ 2
French gender NOUN 2
French verbform VERB 3

German case NOUN 4
German gender ADJ 3
German gender NOUN 3
German verbform VERB 3

Table 6.4: List of morphological probing tasks we test the subword pooling methods on. The last
column is the number of classes in a particular task.

mBERT XLM-RoBERTa

count 2+ count 2+ _start

Arabic 1.95 48.9 1.49 35.0 3.4
Chinese 1.58 53.5 2.13 88.5 86.6
Czech 2.04 53.0 1.7 45.2 1.6
English 1.25 14.3 1.25 16.9 0.8
Finnish 2.32 67.3 1.86 53.0 2.3
French 1.34 22.4 1.41 28.7 2.1
German 1.64 30.6 1.57 29.7 1.3
Japanese 1.6 43.0 2.25 94.6 92.9
Korean 2.44 75.7 2.16 67.3 9.0

Table 6.5: Subword tokenization statistics by language and model. First and third columns: average
number of pieces that one word is split into. Second and fourth columns: proportion of multi-subword
words. Last column: proportion of words that start with a standalone start token in XLM-RoBERTa.

76

6.4. Subword pooling

Method Explanation Params

first first subword unit none
last last subword unit none

last2 concatenation of the
last two subword units none

f+l wufirst + (1− w)ulast w

sum elementwise sum none
max elementwise max none
avg elementwise average none

attn
Attention over the
subwords, weights
generated by an MLP

MLP

lstm biLSTM reads all vectors,
final hidden state LSTM

Table 6.6: Subword unit poolingmethods. ufirst and ulast refer to the first and the last units respectively.

The last two methods rely on small neural networks that learn to combine the subword repre-
sentations. Our subword attn has one hidden layer of 50 neurons with ReLU activation and a final
softmax layer that generates a probability distribution over the subword units of the token. Similarly
to self-attention, these probabilities are used to compute the weighted sum of subword representa-
tions to produce the final token vector. The lstm uses a biLSTM (Hochreiter and Schmidhuber, 1997)
that summarizes the 768-dimensional vectors (the hidden size of both models) into a 50-dimensional
hidden vector in each direction, which are then concatenated and passed onto the classifier. These
two are considerably more complicated and slower to train than the other methods, but attn works
well for morphological tasks, and lstm for POS tagging in CJK languages. Shen et al. (2018) found
hierarchical pooling, a variety of our attn pooling method, beneficial, but they investigated sentence
level tasks where the subword stream is much longer than in the word-level tasks we are considering
(words are rarely split into more than 4 subwords) and hierarchical pooling has better traction.

6.4.2 Layer pooling effects

Both mBERT and XLM-RoBERTa have an embedding layer followed by 12 hidden layers. The only
contextual information available in the embedding layer is the position of the token in the sentence
via the positional encoding used in BERT models. Hidden activations are computed with the self-
attention layers, therefore in theory have access to the full sentence. We ran our experiments for each
layer separately as well as for the sum of all layers. For all tasks, as we move up the layers, results also
move up or down in tandem. As exhaustive experiments considering different combinations of layers
were computationally too expensive for our setup, and would significantly complicate presentation
of our results, we pick a single setting for all experiments by computing the best expected layer for
each task as

E(L) =
∑

li∈L iA(li)∑
li∈LA(li)

, (6.5)

77

6. Probing

where L is the set of all layers, li is the ith layer, and A(li) is the development accuracy at layer i.
As Figure 6.9 shows, the expected layers are almost always centered around the 6th layer. Therefore,
with the exception of comparing first and last, which we analyze in greater detail in Section 6.4.4.1,
we chose the 6th layer to simplify the presentation. This differs from our probing setup in that for
morphosyntactic probing, we use the weighted sum of all layers as opposed to using a single layer.
The reason is that for sentence-level tasks such as POS and NER, we cannot cache the output for the
full sentence and all 13 layers due to memory constraints. Caching is essential for such a large number
of experiments.

6 70.0

0.5

1.0

ta

sk
s

Morphology

6.00 6.25 6.50 6.750

5

10

De
ns

ity

POS tagging

6.1 6.20

5

De
ns

ity

NER tagging

Figure 6.9: Distribution of the weighted average of layers across all tasks.

6.4.3 Experimental setup

We generally follow the training setup introduced in Section 6.2.3 for morphosyntactic probing. We
train the same MLP architecture for POS tagging and NER on top of each token representation. We
keep the number of parameters intentionally low, about 40k, to avoid overfitting on the probing data
and to force theMLP to probe the representation instead ofmemorizing the data.We do note, however,
that mlp and lstm increase the number of trained parameters to 77k and 330k respectively. We run
each configuration 3 times with different random seeds. The standard deviation of results is always
less than 0.06 for morphology and less than 0.005 for POS and NER.

Choosing the size of the LSTM lstm is our subword pooling method with the most parameters.
The number of parameters scales quadratically with the hidden dimension of the LSTM. We pick this
dimension with binary parameter search on morphology tasks. Our early experiments showed that
increasing the size over 1000 showed no significant improvement, and a binary search between 2 and
1024 led us to choose a biLSTM with 100 hidden units.

6.4.4 Results

Our analysis consisted of two steps. We first performed the first and last tasks at each layer (see
Figure 6.10). Based on the results of this, we picked a single layer, the 6th, to test all 9 subword pooling
choices. The full list of results on the 6th layer are listed in Tables 6.7, 6.10 and 6.11.

6.4.4.1 Layer pooling

We find that although last is almost always better than first, the gap is smaller in higher layers. We
quantify this with the ratio of the accuracy of last and first at the same layer. Figure 6.10 illustrates
this ratio for a few selected morphological tasks and POS and NER for all 9 languages. We split the
morphological tasks into two groups, Finnish tasks and other tasks since the gap is so large in Finnish

78

6.4. Subword pooling

task model first last last2 f+l sum max avg attn lstm

⟨Arabic, Case, NOUN⟩ mBERT 76.5 73.3 74 74.8 75 73.5 75 75.5 74.8
⟨Arabic, Case, NOUN⟩ XLM-Ro 77.1 74.5 74 75.6 80.9 80.1 79.3 77.8 74.5
⟨Arabic, Gender, ADJ⟩ mBERT 93.3 97.3 97 97.5 98.8 98.2 98.2 99.3 97.3
⟨Arabic, Gender, ADJ⟩ XLM-Ro 96.5 97.5 97.2 97.5 99 99 99 99.5 97.5
⟨Czech, Gender, ADJ⟩ mBERT 41.5 77.1 74 72.6 64.2 63 63 75.6 68.0
⟨Czech, Gender, ADJ⟩ XLM-Ro 41.6 73.5 71.8 70.8 64.2 65 63.2 73 66.5
⟨Czech, Gender, NOUN⟩ mBERT 61.7 77.4 77.9 74.6 76.3 75.1 74.8 81.3 79.3
⟨Czech, Gender, NOUN⟩ XLM-Ro 69.3 84.1 83.3 83.7 80.6 82.4 81.1 82.9 82.4
⟨English, Verbform, VERB⟩ mBERT 83.7 91.2 87.2 89.2 89 89.5 89.7 90.7 88.5
⟨English, Verbform, VERB⟩ XLM-Ro 82.7 91 89.7 90.8 91.8 91.7 89 91.3 89.7
⟨Finnish, Case, NOUN⟩ mBERT 33 90.7 90.7 87.7 87.4 86.2 88.1 93.9 92.0
⟨Finnish, Case, NOUN⟩ XLM-Ro 49.6 94.4 94.7 94.2 94.9 95.7 95.7 96.0 95.4
⟨Finnish, Verbform, VERB⟩ mBERT 74.6 92.5 91.4 92.5 89.9 90 90.9 93.2 91.9
⟨Finnish, Verbform, VERB⟩ XLM-Ro 88.6 97.8 97.5 97.8 96.7 97.3 97.2 97.8 96.5
⟨French, Gender, ADJ⟩ mBERT 87.7 93.2 92.8 93.2 92.7 92.7 92.3 92.2 92.5
⟨French, Gender, ADJ⟩ XLM-Ro 83.2 92 91.7 90.5 89.7 89.3 88.7 92.5 90.3
⟨French, Gender, NOUN⟩ mBERT 88.3 96.7 94.7 95.2 95.3 95.2 96 95.8 96.2
⟨French, Gender, NOUN⟩ XLM-Ro 93.3 93.5 94.8 96.0 95.8 95.7 95.2 95.8 95.8
⟨French, Verbform, VERB⟩ mBERT 95.5 100.0 99.7 99.5 99.7 99.3 99.5 99.8 99.5
⟨French, Verbform, VERB⟩ XLM-Ro 93.5 99.3 99.2 99.2 99.5 99.5 99.3 99.3 99.0
⟨German, Case, NOUN⟩ mBERT 63.2 77.7 72 75.3 74 74.5 75.3 77 74.0
⟨German, Case, NOUN⟩ XLM-Ro 64.7 71.8 70.8 77.3 74.2 75 74.2 71.3 73.7
⟨German, Gender, ADJ⟩ mBERT 58.9 77.9 78.1 73.6 67.7 70 71.6 76.1 73.0
⟨German, Gender, ADJ⟩ XLM-Ro 54.7 74.6 75.0 74.5 73.8 71.8 71.8 74 69.7
⟨German, Gender, NOUN⟩ mBERT 60.5 79.1 78.8 78.3 77.8 78.6 78.4 79.8 76.8
⟨German, Gender, NOUN⟩ XLM-Ro 61.2 84.4 85.7 82.8 84.1 85.6 85.1 88.9 86.9
⟨German, Verbform, VERB⟩ mBERT 89.2 94.5 94.5 95.0 94.5 95.0 95.0 95.0 94.2
⟨German, Verbform, VERB⟩ XLM-Ro 90.4 94.4 94.7 94.2 94.4 93.9 94.4 95.0 94.7

Table 6.7: Full list of morphosyntactic probing results by subword pooling function at the 6th layer.

tasks that it would dwarf the other tasks on the same plot. ⟨Finnish, Case, NOUN⟩ shows the largest
gap in the lower layers, last is 8 times better than first. We observe smaller gaps in other tasks. POS
shows a fairly uniform picture with the exception of Korean, where first is worse in all layers and
both models. Lower layers in mBERT show a larger gap in Czech and the same is true for Chinese
and Japanese in XLM-RoBERTa. NER shows little difference between first and last except for the
first few layers, particularly in Chinese and Korean. To interpret these results, keep in mind that CJK
tokenization is handled somewhat arbitrarily by XLM-RoBERTa, particularly in the first subword
(cf. Table 6.5).

6.4.4.2 Morphology

We present the results of 14 morphological probing tasks (see Table 6.4) and 9 subword pooling strate-
gies (see Table 6.6) using the 6th layer of each model.

79

6. Probing

0 1 2 3 4 5 6 7 8 9 10 11 12 S

2

4

6

8

fir
st

 /
la

st

Morphology - mBERT - Finnish
Finnish case_noun
Finnish verbform_verb

0 1 2 3 4 5 6 7 8 9 10 11 12 S

1.0

1.5

2.0

2.5

Morphology - mBERT - other tasks
Arabic case_noun
Arabic gender_adj
English verbform_verb
French verbform_verb
German case_noun

0 1 2 3 4 5 6 7 8 9 10 11 12 S

1.0

1.1

1.2

1.3

POS - mBERT

0 1 2 3 4 5 6 7 8 9 10 11 12 S0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

NER - mBERT

0 1 2 3 4 5 6 7 8 9 10 11 12 S
layer

2

4

6

8

fir
st

 /
la

st

Morphology - XLM-RoBERTa - Finnish
Finnish case_noun
Finnish verbform_verb

0 1 2 3 4 5 6 7 8 9 10 11 12 S
layer

1.0

1.5

2.0

2.5

Morphology - XLM-RoBERTa - other tasks
Arabic case_noun
Arabic gender_adj
English verbform_verb
French verbform_verb
German case_noun

0 1 2 3 4 5 6 7 8 9 10 11 12 S
layer

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
POS - XLM-RoBERTa

Arabic
Chinese
Czech
English
Finnish

French
German
Japanese
Korean

0 1 2 3 4 5 6 7 8 9 10 11 12 S
layer

0.96

0.98

1.00

1.02

1.04

1.06

1.08 NER - XLM-RoBERTa

Figure 6.10: last-first ratio of the test accuracy of some morphological tasks and of POS and NER
in all languages across all layers. We plot Finnish morphological tasks separately since the effect is
so pronounced that presenting them on the same plot would render the scaling uninformative for the
other cases. S is the sum of all layers. Note that we do not have a strongly prefixing language due to
the lack of available probing data.

30 40 50 60 70 80 90 100
mBERT

30

40

50

60

70

80

90

100

XL
M

-R
oB

ER
Ta

Arabic
Czech
English
Finnish
French
German

Figure 6.11: Accuracy of mBERT vs. XLM-RoBERTa on morphological tasks.

mBERT vs. XLM-RoBERTa Averaging over all tasks, XLM-RoBERTa achieves 85.7% macro ac-
curacy while mBERT achieves 83.9%. On a per-language basis, XLM-RoBERTa is slightly better than
mBERT in every language except for French. Figure 6.11 shows our findings. The twomodels generally

80

6.4. Subword pooling

perform similarly with the exception of French and Finnish: mBERT is almost always better at French
tasks, while XLM-RoBERTa is always better at Finnish tasks. Similar trends emerge when looking
at the results by subword pooling method. XLM-RoBERTa is always better regardless of the pooling
choice but the difference is only significant (p < 0.05) for max and sum.3 These findings suggest that
XLM-RoBERTa retains more about the orthographic presentation of a token, and it uses tokenization
that is closer to morpheme segmentation, hence performing better at inflectional morphology, which
is most often derivable from the word form alone.

First or last subword? As Figure 6.12 shows, with the exception of the ⟨Arabic, Case, N⟩ task,
last is always better than first. We find the largest difference in favor of last in Finnish and Czech.
Table 6.8 lists all tasks where the difference between first and last is larger than 20% along with
the only counterexample (where the difference is about 10% in the other direction). These findings
are likely due to the fact that Finnish and Czech exhibit the richest inflectional morphology in our
sample.

The exceptional behavior of Arabic casemay relate to the fact that case often disappears inmodern
Arabic (Biadsy et al., 2009). When this occurs the first token, being closest to the previous word,
may provide a more reliable indicator, especially if that word was a preposition. Given the complex
distribution of Arabic case endings, our sample is too small to ascertain this, and the results, about
75% on a 3-way classification task, are clearly too far from the optimum to draw any major conclusion
(note that on Finnish case, a 12-way classification task, we get above 94%4).

Other pooling choices While first is clearly inferior in morphology, the picture is less clear for
the other 8 pooling strategies. As Figure 6.13 illustrates, attn is better than all other choices for both
models but its advantage is only significant over a few other choices. We observe larger – and more
often significant – differences in the case of mBERT than in XLM-RoBERTa.

30 40 50 60 70 80 90 100
first

30

40

50

60

70

80

90

100

la
st

language
Arabic
Czech
English
Finnish
French
German
model
bert
xlm

Figure 6.12: first vs. last on morphological tasks.

3We use paired t-tests on the accuracy of the models on the 14 tasks.
4Finnish has more than 12 cases but infrequent ones were excluded.

81

6. Probing

Task Model first last

⟨Finnish, Case, N⟩ mBERT 33.0 90.7
⟨Finnish, Case, N⟩ XLM-RoBERTa 49.6 94.4
⟨Czech, Gender, A⟩ mBERT 41.5 77.1
⟨Czech, Gender, A⟩ XLM-RoBERTa 41.6 73.5
⟨German, Gender, N⟩ XLM-RoBERTa 61.2 84.4

⟨Arabic, Case, N⟩ XLM-RoBERTa 77.1 74.5
⟨Arabic, Case, N⟩ mBERT 76.5 73.3

Table 6.8: Morphological tasks with the largest difference between first and last. The two tasks
where first is better than last are also listed.

attn avg f+l last last2 lstm max sum

attn

avg

f+l

last

last2

lstm

max

sum

* * * * * *

* *

* *

* * * *

* *

*

* * *

* *

mBERT

attn avg f+l last last2 lstm max sum

attn

avg

f+l

last

last2

lstm

max

sum

* *

*

*

*

*

XLM-RoBERTa

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0.97

0.98

0.99

1.00

1.01

1.02

1.03

Figure 6.13: Pairwise ratio of test accuracy by subword choice on morphological tasks. Colors indi-
cate row/column ratios. Green cells mean that the row subword choice yields better results than the
column choice. ∗ marks pairs where the difference is statistically significant. attn is better than all
other choices, therefore its row is green. first is omitted for clarity as it is much worse than the other
choices.

Attention weights The MLP used in attn assigns a weight to each subword which are then nor-
malized by softmax. We examine these weights for each token in the test data for morphology. Ta-
ble 6.9 lists the proportion of tokenswhere attn assigns the highest weight to the first, last or amiddle
token, or the token is not split by the tokenizer. The last subword is weighted highest in more than
80% of the cases. The only task where the last subword is not the most frequent winner is ⟨Arabic,
Case, N⟩, where the first is weighted highest in 60% of the tokens by both models. These findings are
in line with the behavior of first and last.

6.4.4.3 POS tagging

We train POS tagging (cf. Section 5.4.4) models for 9 languages with 9 subword pooling strategies. We
evaluate the models using tag accuracy. The full list of results is available in Table 6.10.

mBERT vs. XLM-RoBERTa As with morphological probing tasks, XLM-RoBERTa is slightly bet-
ter than mBERT (95.4 vs. 94.6 macro average). We also observe that the choice of subword makes less
difference than it does in morphological probing. Figure 6.14 shows that experiments in one language

82

6.4. Subword pooling

XLM-RoBERTa mBERT

first 7.1% 6.0%
last 81.5% 83.7%
middle 5.9% 6.3%
single 5.5% 4.0%

Table 6.9: Distribution of the location of the highest weighted subword. Single refers to tokens that
are not split by the tokenizer.

language model attn avg f+l first last last2 lstm max sum

Arabic mBERT 96.1 96.4 96.4 96.1 96.2 96.3 96.5 96.4 96.4
Arabic XLM-RoBERTa 96.5 96.8 96.8 96.6 96.6 96.7 96.8 96.7 96.8

Chinese mBERT 95.5 96.2 96.2 95.3 95.3 96.2 96.2 96.1 96.1
Chinese XLM-RoBERTa 94.9 95.3 95.4 92.6 95.3 95.4 95.4 95.1 95.4

Czech mBERT 98.2 98.2 98.3 97.5 98.2 98.3 98.3 98.2 98.1
Czech XLM-RoBERTa 98.4 98.4 98.4 98.0 98.3 98.4 98.5 98.3 98.4
English mBERT 95.8 96.0 96.0 95.5 95.7 95.8 96.0 95.8 95.7
English XLM-RoBERTa 96.1 96.3 96.2 95.9 96.1 96.3 96.4 96.3 96.2
Finnish mBERT 90.9 91.4 91.1 90.1 90.2 91.6 92.3 91.2 91.2
Finnish XLM-RoBERTa 94.8 95 95 94.3 94.1 94.9 95.3 94.9 95
French mBERT 97.4 97.6 97.5 97.4 97.4 97.4 97.4 97.5 97.6

French XLM-RoBERTa 97.6 97.7 97.7 97.5 97.6 97.6 97.6 97.6 97.6
German mBERT 97.8 97.9 98.0 97.4 97.9 98.0 98.0 97.9 97.9
German XLM-RoBERTa 97.7 97.9 97.9 97.5 97.9 97.9 98.0 97.9 97.8
Japanese mBERT 96.0 96.5 96.6 95.7 95.9 96.5 96.8 96.4 96.3
Japanese XLM-RoBERTa 96.4 96.8 96.7 95.2 96.6 96.8 97.0 96.7 96.7
Korean mBERT 94.1 93.7 94.3 84.8 93.6 94.3 94.5 93.7 93.8
Korean XLM-RoBERTa 94.9 94.7 95 87.6 94.3 95 95.1 94.5 94.7

Table 6.10: Full list of POS tagging results by subword pooling function at the 6th layer.

tend to cluster together regardless of the subword pooling choice except for a few outliers: first for
Chinese and Korean is much worse in both models. The same result can be observed in Japanese,
to a lesser extent though. Language-wise we find that XLM-RoBERTa is much better at Finnish and
somewhat worse in Chinese but the two models generally perform similarly.

Choice of subword. As with morphology first the is the worst choice, but the effect is not as
marked for POS tasks. In Figure 6.14 we observe 3 outliers, XLM-RoBERTa, first for Chinese and
first for Korean for both models. The only consistent trend is that XLM-RoBERTa is clearly better
for Finnish regardless of the choice of subword pooling. The picture is less clear for other languages.

We split the analysis into CJK and non-CJK languages. Figure 6.15 and Figure 6.16 show a com-
parison for non-CJK languages and CJK languages respectively. The difference between choices is
generally much smaller than for morphology. first is the worst choice both for CJK and non-CJK
languages. Interestingly one of the best choices for morphology, last, is the second worst choice for
POS tagging, while one of the worst for morphology, lstm, is one of the best for POS tagging. We
hypothesize that this is due to overparametrization for morphology. POS tagging is a much more
complex task that needs a larger number of trainable parameters (recall that LSTM parameters are
shared across all tokens).

83

6. Probing

ar cs de en fi fr jp ko zh

85

90

95

Te
st

 a
cc

ur
ac

y

POS tagging

mBERT
XLM-RoBERTa

ar cs de en fi fr jp ko zh

NER tagging

Figure 6.14: mBERT vs. XLM-RoBERTa for POS tagging and NER.

at
tn av
g f+
l

fir
st

la
st

la
st

2

lst
m

m
ax

su
m

attn

avg

f+l

first

last

last2

lstm

max

sum

* * *
* *
* *

* * * * *
*

* *
*

mBERT

at
tn av
g f+
l

fir
st

la
st

la
st

2

lst
m

m
ax

su
m

attn

avg

f+l

first

last

last2

lstm

max

sum

* * * *
* * * * *
* *

* * * * * *

* *
* *

* *
* * *

XLM-RoBERTa

0.994

0.996

0.998

1.000

1.002

1.004

1.006

0.994

0.996

0.998

1.000

1.002

1.004

1.006

Figure 6.15: Subword choices for POS tagging in non-CJK languages. See Figure 6.13 for an explanation
of the figure. first is included.

6.4.4.4 Named entity recognition

As Figure 6.14 shows, in NER (cf. Section 5.4.5) the choice of subword poolingmakes far less difference
than in morphology. In terms of models, mBERT has a clear advantage over XLM-RoBERTa when it
comes to NER. The difference between the two models is generally larger than the difference between
two subword choices within the same language. The smallest difference between the two models
appears to be in Czech, Finnish and German, which all have rich, partially agglutinative, morphology.
This fits with our earlier findings that showed that XLM-RoBERTa might be better at handling rich
morphology. Overall first and the related f+l as well as lstm come out as winners, the differences
are rather small and often not statistically significant for CJK. The full results are listed in Table 6.11.

84

6.4. Subword pooling

attn avg f+l last last2 lstm max sum

attn

avg

f+l

last

last2

lstm

max

sum

*

*

* * *

*

* *

mBERT

attn avg f+l last last2 lstm max sum

attn

avg

f+l

last

last2

lstm

max

sum

* *

*

*

*

*

XLM-RoBERTa

0.9925

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

0.9925

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

Figure 6.16: Subword choices for POS tagging in CJK languages. See Figure 6.13 for an explanation of
the figure. first is omitted for clarity as it is much worse than the other choices.

at
tn av
g f+
l

fir
st

la
st

la
st

2

lst
m

m
ax

su
m

attn

avg

f+l

first

last

last2

lstm

max

sum

* * * * * *
* * * * * * *
* * * * * * *

* * * * *
* * * * * * * *
* * * * * * * *
* * * * * *
* * * * * *

* * * * *

mBERT
at

tn av
g f+
l

fir
st

la
st

la
st

2

lst
m

m
ax

su
m

attn

avg

f+l

first

last

last2

lstm

max

sum

* * * * * *
* * * * * *
* * * * * *
* * * * * * *

* * * * * * *
* * * * * * *

* * * * * *
* * * * * *
* * * * * * *

XLM-RoBERTa

0.9925

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

0.9925

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

Figure 6.17: Subword choices for NER tagging in non-CJK languages. See Figure 6.13 for an explana-
tion of the figure. first is included.

6.4.5 Discussion

Throughout our extensive experiments we observed that pooling strategies can have a significant
impact on the conclusions drawn from probing experiments.When consideringmultiple typologically
different languages, the strength of the conclusions drawn from experiments can be weakened by
considering a single pooling option. Our recommendation for NLP practitioners is to try at least three
subword pooling strategies, particularly for tasks in languages other than English. first and last
usually gives a general picture – as a third control we recommend attn and lstm. More complicated
tasks such as POS or NER tagging may require lstm with many parameters, while tasks that rely
more on the orthographic representation such as morphology tend to benefit from attn.

Our methodology is only limited by the availability of data. It would be interesting to extend these
study with languages that use prefixes too such as Indonesian or Swahili.

85

6. Probing
at

tn av
g f+
l

fir
st

la
st

la
st

2

lst
m

m
ax

su
m

attn

avg

f+l

first

last

last2

lstm

max

sum

mBERT

at
tn av
g f+
l

fir
st

la
st

la
st

2

lst
m

m
ax

su
m

attn

avg

f+l

first

last

last2

lstm

max

sum

* * * *
* *
* *

*
*

* * * *
* *

* *

XLM-RoBERTa

0.985

0.990

0.995

1.000

1.005

1.010

1.015

0.985

0.990

0.995

1.000

1.005

1.010

1.015

Figure 6.18: Subword choices for NER tagging in CJK languages. See Figure 6.13 for an explanation of
the figure. first is omitted for clarity as it is much worse than the other choices.

language model attn avg f+l first last last2 lstm max sum

Arabic mBERT 92.0 92.6 92.8 92.4 91.9 91.9 92.7 92.1 92.4
Arabic XLM-RoBERTa 88.6 89.8 89.7 89.1 88.7 89.0 90.0 89.2 89.5
Chinese mBERT 87.0 87 87 87 86.9 87.1 86.8 87.1 87.2

Chinese XLM-RoBERTa 82.2 83.1 83.1 82.5 82.3 83.1 83.6 82.3 83
Czech mBERT 95.3 95.5 95.6 95.3 95.0 95.3 95.5 95.4 95.4
Czech XLM-RoBERTa 93.6 94.2 94.3 93.9 93.5 93.9 94.2 93.9 94
English mBERT 90.8 91.2 91.3 91 90.7 90.7 91.3 91.1 91.2
English XLM-RoBERTa 87.7 88.5 88.5 88.3 88.0 88.1 88.4 88.3 88.4
Finnish mBERT 95.3 95.5 95.6 95.3 94.8 95.0 95.7 95.3 95.3
Finnish XLM-RoBERTa 93.7 94.4 94.3 94 93.4 93.7 94.3 94.1 94.1
French mBERT 93.8 94.1 94.1 93.8 93.2 93.5 94 94.0 93.8
French XLM-RoBERTa 89.9 90.5 90.6 90.1 89.5 89.6 90.5 90.3 90.3
German mBERT 95.4 95.7 95.8 95.6 95.1 95.2 95.7 95.5 95.5
German XLM-RoBERTa 94.0 94.5 94.5 94.3 93.9 94.0 94.6 94.2 94.4
Japanese mBERT 89.2 89.3 89.3 89.4 89.0 89.0 89.3 89.3 89.1
Japanese XLM-RoBERTa 85.8 86.4 86.4 86.3 85.8 86.0 86.6 86.0 86.3
Korean mBERT 92.8 93.3 93.2 92.8 92.1 92.6 93.6 93.0 93.1
Korean XLM-RoBERTa 90.2 90.9 90.9 90 89.3 90.1 91.1 90.4 90.8

Table 6.11: Full list of NER results by subword pooling function at the 6th layer.

The key takeaway from this section is that performance on lower level tasks depends on the way
we pool over multiple subword units that belong in a single word token. This is more of an issue in
languages other than English, where a significantly larger proportion of words are represented by
multiple subword units.

Morphological and POS tasks are both probing word-level attributes, but the results show huge
disparity: for the morphological tasks first pooling is the worst strategy, and attn is the best, while
for POS tagging attn is almost as bad as first, the best being lstm. The NER task is intermediary
between word- and phrase-level, and subword pooling effects are less marked, but still statistically
significant.

86

6.5. Morphology in pre-trained language models

6.5 Morphology in pre-trained language models

In this section examine how well morphology can be recovered from the model representations. We
first compare the models with various baselines in Section 6.5.1 including pre-trained fastText vectors
and multiple LSTM variations trained solely on the probing data. We also probe the large version
of XLM-RoBERTa named XLM-L or XLM-large and mT5 (Xue et al., 2021), a massively multilingual
generative model. In Section 6.5.3 we focus on the two large language models in comparison with the
strongest baseline and we analyze the results along various categories. Finally we compare mBERT
and XLM-RoBERTa in Section 6.5.4. As we showed in Section 6.4.4.2 the choice of subword pooling
makes very little difference in morphosyntactic tasks, we opt to use the fastest options, we either pick
the first or the last subword of the token in question. Exploring all options for all languages and tasks
would be prohibitively expensive.

This work was published in the Journal of Natural Language Engineering (Ács et al., 2023). Some
parts of this and the following sections are borrowed from Ács et al. (2023) but we also extended the
experiments with newer models, most notably GPT-4o and its smaller version GPT-4o-mini.

6.5.1 Baselines

Our baseline models are described in Table 6.12 by three attributes. The first is pre-training. The
probed language models, mBERT and XLM-RoBERTa are both pre-trained on vast datasets. Our
only pre-trained baselines is fastText (Grave et al., 2018), a character n-gram based model trained
on Wikipedia and Common Crawl similarly to XLM-RoBERTa5. The rest of the baselines are LSTM
models trained solely on the train set of a particular probing task.

The second attribute is whether a model is contextual or not. Contextual models use the full
probing sentence during both training and inference time. In contrast, non-contextual models only
use the target word form and ignore its context. In theory the latter type is incapable of distinguishing
between syncretic forms6. Models marked as target only rely solely on the target word. Although
fastText was trained on full sentences, the vectors themselves are context independent.

Our last attribute is the choice of tokenization. mBERT, XLM-RoBERTa and other PLMs use sub-
word tokenization with their own vocabulary (cf. Section 5.3). We borrow mBERT’s vocabulary and
tokenizer and apply it to LSTM models as well. We compare these with character LSTM models. It
should be noted that subword LSTM models require about ten times more parameters than character
LSTM models since their input vocabulary and hence their embedding is much larger. We note the
parameter count of the probing layer (not the LM itself) in the last column.

6.5.1.1 Training details

The MLP on top of mBERT and XLM-RoBERTa is intentionally small and we match the parameter
number in chLSTM with a character embedding with 30 dimensions and a bidirectional LSTM with
the hidden dimension set to 100 in total (the exact numbers are listed in Table 6.12). We performed a
small scale hyperparameter search for the LSTMparameters and it turns out that the results are largely
unchanged unless we use very small LSTMs and embeddings. Subword models need a considerably
larger embedding in order to encode the much larger input vocabulary. We set this to 768 following
the embedding size of both mBERT and XLM-RoBERTa. We also set the LSTM size to 768. These

5Both Wikipedia and Common Crawl are ongoing projects and XLM-RoBERTa and fastText were released a few years
apart. This could result in substantial difference in data size.

6Different inflections that happen to have the same surface form.

87

6. Probing

result in millions of parameters as opposed to the modest number of parameters used in chLSTM.
XLM-large has more trainable parameters because its hidden dimension is 1024 as opposed to 768 in
mBERT, XLM-RoBERTa and mT5.

The embedding input size is determined by the input vocabulary size. Character models use a
very small (usually< 100) input vocabulary, while subword models use inventories with over 100,000
elements. Our baseline models that use subwords only use the subset that appears in the train part
of the probing data but this still results in thousands of distinct subwords. Target only models have
fewer parameters because the input vocabulary is smaller than in models that use the full sentence.

Model Pre-trained on Contextual Tokens Params

mBERT 100 largest Wikipedia yes subword 38k
XLM-RoBERTa Wikipedia + Common Crawl yes subword 38k

XLM-Large Wikipedia + Common Crawl yes subword 51k
XLM-MLM-100 Wikipedia + Common Crawl yes subword 64k
DistilmBERT distilled mBERT yes subword 38k
mT5 Common Crawl yes subword 38k

char LSTM none yes character 42k
subword LSTM none yes subword 8M
char LSTM - target only none no character 40k
subword LSTM - target only none no subword 4.8M

fastText Wikipedia + Common Crawl no n-gram 15k

Stanza UD yes mixed N/A

GPT-4o N/A yes subword 200+ billion
GPT-4o-mini N/A yes subword N/A

Table 6.12: Attributes of the probed models. The last column is the number of trainable probing pa-
rameters. It does not include the frozen parameters of the pre-trained model. Stanza models are not
trained on the probing data.

6.5.1.2 Stanza

Stanza is a collection of linguistic analysis tools in 70 languages trained on UD treebanks. Stanza is an
ideal tool for comparison since it was trained on the same dataset we use to sample our probing tasks.
The underlying model is a highway bidirectional LSTM (Srivastava et al., 2015) with inputs coming
from the concatenation of Word2vec or fastText vectors, an embedding trained on the frequent words
of UD and a character-level embedding generated by a unidirectional LSTM.We use the default models
available for each language and we do not fine-tune the models.

It works in a pipeline fashion and one of its intermediate steps is morphosyntactic analysis in UD
format. We use this analysis as a high quality baseline for all of our 42 languages and 247 tasks except
Albanian (6 tasks). We apply Stanza on the full probing sentences and we extract the morphosyntactic
analysis of the target words. Since Stanza’s own tokenizer often outputs a different tokenization than
UD’s gold tokenization, we extract every overlapping token and check the union of the morphosyn-
tactic tags if there is more than one such overlapping token. This results in a set of Feature=Value
pairs. We extract each occurrence of the feature of the particular probing task. If there is only one
and it is the same as the reference label, it is correct. If there are more than one values and the correct
value is among them, we divide one by the number of distinct values. In practice, this is very rare,
91% of the time, there is only one value in it is the same as the reference value. 8.3% of the time the

88

6.5. Morphology in pre-trained language models

reference value is not in the analysis of Stanza. The remaining 0.7% are the cases where there are
multiple values including the correct one.

6.5.1.3 GPT-4o and GPT-4o mini

GPT-3 and later models show remarkable success in a variety of high-level tasks in many languages.
Although these large LLMs are not the main focus of this thesis, we perform a small test on GPT-4o
and its smaller variant GPT-4o-mini. The exact technical details of these models, and the difference
between the two, are not publicly available. Both models are available via paid APIs.

Although there are various open source LLMs, we opt to use GPT-4o for onemain practical reason:
it supports structured outputs, i.e. we can restrict its output to be one of the desired morphosyntactic
labels. Our preliminary tests with GPT-3.5 and Llama-8B showed low adherence to the ‘rules’ regard-
less of the phrasing of the prompt. GPT-4o accepts enumeration as a JSON schema.

We use GPT-4o without fine-tuning (zero-shot setup) and every prompt is run separately in batch
mode. We run a single prompt for every test sample, 49,567 in total. Since the details of GPT’s training
data are not publicly available, it is possible that UD’s test set is part of the training set.

Fortunately GPT-4o has a batching mode with support for JSON schema along with the templates.
We tried a few variations for the exact prompt but we did not perform extensive prompt engineering.
To level the playing field, the prompt includes every information available for the traditional probes.
The prompt template is defined below and for each test sample, we replace the values denoted in curly
braces.

Morphosyntactic prompting template

System message:

You are a linguistic expert.

User message:

Instruction

Below is a sentence in {language}.
What is the {tag} of the {POS} {token}?
It is the {i}th token of the sentence.

Sentence

{sentence}

Answer:

6.5.2 Results

This section presents ourmorphosyntactic probing results across 247 tasks in 42 languages.We greatly
extend the original experiments of Ács et al. (2023) with 6 additional pre-trained models and we
prompt GPT-4o and GPT-4o-mini with the test set of our probing dataset. We also add new baselines.

First we note some general observations, then we analyze the behavior of mBERT and XLM-
RoBERTa in comparison with the best baseline, chLSTM.

89

6. Probing

PLMs are on par with Stanza. Stanza is a high quality specialized library with language specific
models. The best performing pre-trained language models are on par with the accuracy of Stanza. It
should be noted that Stanza is a full featured NLP toolchain and we only compare one of its function-
alities with PLMs. It is also much faster and better suited for large-scale analysis.

chLSTM is the best baseline. Table 6.14 lists the average accuracy of the 14 tasks by model as
well as the average of the 247 tasks for each model. Figure 6.19 illustrates this grouped by POS. It is
clear that both mBERT and XLM-RoBERTa are significantly better than any of the baselines including
fastText but the margin is different. chLSTM, a character LSTM trained on the full sentence, is the best
baseline with 85% accuracy on average and it provides a practical upper estimate of what is learnable
from the probing data alone. fastText is a close second with a 83.3% average.

Contextual models are better than non-contextual models. Context indeed plays a role in
morphosyntactic probing as evidenced by the 2.2% point difference between chLSTM and chLSTM-t,
the latter only using the target. The subword versions of these models swLSTM and swLSTM-t are
4.5% point different. Verbal tasks rely less on the context while we see a bigger gap in nominal and
adjective tasks. This is unsurprising given that verbal morphology tends to be exhibited on the word
form rather than the context. The differences being relatively small suggest that morphology is largely
derivable from the word form alone but context can improve the picture.

Subword tokenization does not work well with small models. Subword models regardless
of the usage of context, are over 5% point worse than the non-subword models despite using over
100 times more parameters. We attribute this to data sparsity. The input is tokenized with mBERT’s
tokenizer but most subwords never appear in the 2000 training examples of a particular probing task.
Still, the input vocabulary tends to be very large for such a small dataset. swLSTM models use 5600
subwords-per-task on average, while swLSTM-tmodels use 1625 subwords. This means that the target
word form uses 1625 different subwords, most of them occurring only once. We performed the same
set of experiments with XLM-RoBERTa’s tokenizer and the results are very similar.

XLM-large and XLM-MLM. XLM-large is the best model, it slightly outperforms its smaller (a.k.a.
base) variant, XLM-RoBERTa and XLM-MLM. However, this comes at a cost of a much larger model
size7. XLM-MLM is also twice as large as XLM-RoBERTa and their performance is very similar. We
added XLM-large and XLM-MLM for the sake of completeness but since mBERT does not have a large
variant, the base XLM-RoBERTamodel is more comparable to mBERT and we focus our main analysis
on the base model.

DistilmBERT. Distillation clearly comes at a cost, the overall accuracy is reduced by 2.7% points.
This means a 28% increase in error rate. DistilmBERT is still better than any of the baselines and the
merits of distillation on cost efficiency are undeniable in higher level applications.

mT5. mT5 is a generative model for 100 languages and as such we expect lower performance when
using only its encoder. The results show that it is in fact much worse for this task than most of our
baselines.

7The batch size had to be reduced for these experiments

90

6.5. Morphology in pre-trained language models

Tag POS mBERT XLM-R XLM-large XLM-MLM Stanza* GPT-4o GPT-4o-mini

case adj 87.6 90.5 90.0 89.9 93.3 84.6 62.4
noun 88.8 91.4 90.8 90.8 90.6 83.6 65.7
propn 87.5 89.3 88.2 89.0 89.1 79.8 65.5
verb 88.5 90.9 91.3 92.5 90.1 74.7 45.6

gender adj 87.6 86.3 87.2 88.8 91.9 92.3 82.0
noun 87.2 88.6 90.4 88.1 90.0 93.0 84.9
propn 75.6 76.5 77.6 76.8 70.4 79.0 77.3
verb 88.0 88.5 88.9 88.6 86.7 87.3 71.5

number adj 96.4 97.1 97.3 97.2 96.3 96.0 84.5
noun 93.5 95.1 95.1 94.4 94.2 95.9 91.2
propn 89.2 90.1 92.3 90.4 78.7 91.0 73.0
verb 95.8 97.0 97.4 96.3 95.7 97.3 90.3

tense adj 98.0 99.5 100.0 100.0 98.0 89.5 87.5
verb 91.7 94.1 95.5 92.0 91.1 91.1 88.0

ALL 90.4 91.8 92.2 91.5 91.4 90.9 80.8

Table 6.13: Average test accuracy over all languages by task and model. We excluded the weakest
(cf. Figure 6.19) models, mT5 and DistilmBERT, for brevity. The last row is the average of all 247
tasks. The Stanza results do not include the 6 Albanian tasks due to the lack of Albanian models.

Tag POS mBERT XLM-R chLSTM swLSTM chLSTM-t swLSTM-t fastText

case adj 87.6 90.5 77.8 74.5 69.1 61.4 70.3
noun 88.8 91.4 78.8 74.4 70.1 61.6 73.7
propn 87.5 89.3 78.9 76.8 67.4 60.8 68.4
verb 88.5 90.9 80.2 75.1 79.0 67.4 78.9

gender adj 87.6 86.3 83.5 76.2 78.1 70.3 80.3
noun 87.2 88.6 78.9 72.6 77.3 67.8 80.9
propn 75.6 76.5 64.4 60.0 62.0 54.1 69.0
verb 88.0 88.5 87.8 83.4 86.9 82.5 87.0

number adj 96.4 97.1 91.8 87.4 89.8 83.2 89.4
noun 93.5 95.1 88.9 83.7 87.3 80.4 90.2
propn 89.2 90.1 83.3 77.2 80.4 73.9 78.4
verb 95.8 97.0 95.1 91.0 93.9 89.2 95.2

tense adj 98.0 99.5 100.0 98.1 98.8 97.6 96.6
verb 91.7 94.1 90.7 83.7 89.3 81.0 91.0

ALL 90.4 91.8 85.0 79.9 81.5 74.2 83.6

Table 6.14: Average test accuracy over all languages by task andmodel including all baselines. The last
row is the average of all 247 tasks. The prefix ch means that the model uses character tokenization,
while sw means it uses subword tokenization. The postfix -t means that the model only uses the target
word form and ignores its context.

GPT-4o performs the same as PLMs on average. The overall accuracy of GPT-4o is between
the accuracy of mBERT and XLM-RoBERTa but this is partially due to GPT-4o struggling with some
tasks. If we disregard the bottom 20% of tasks by GPT-4o’s accuracy, its average accuracy jumps to
95.1% while mBERT and XLM-RoBERTa are only 92.5% and 93.8% correct on the same set of tasks. We
analyze this in more detail in Section 6.5.6.

GPT-4o-mini is suboptimal for this task. GPT-4o-mini is 10% point worse than GPT-4o and it
also underperforms both chLSTM and target only chLSTM (cf. Table 6.14).

91

6. Probing

ALL ADJ NOUN PROPN VERB
55

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

mBERT
XLM-R
XLM-L
XLM-MLM
mT5
distilmBERT
char LSTM (chLSTM)
subword LSTM
char LSTM - target
subword LSTM - target
fastText
Stanza
GPT-4o
GPT-4o-mini

Figure 6.19: Accuracy of the pre-trained and the baseline models grouped by POS.

6.5.3 mBERT and XLM-RoBERTa against chLSTM

In this section we analyze the general morphological capabilities of mBERT and XLM-RoBERTa in
comparison with the strongest baseline, chLSTM.We do this way because many of the morphological
tasks are easy to begin with and chLSTM, a baseline trained solely on the probing data, is already
well over 90%. It is only when PLMs are noticeably better than chLSTM, that we can assume that
morphosyntactic information is in fact stored somewhere in the pre-trained weights.

Tables 6.13 and 6.14 list the accuracy of each task averaged over the languages the task is available
in. Perhaps the most salient fact about these results is that PLMs perform over 85% in each task except
⟨PROPN, Gender⟩. Proper nouns are themost difficult regardless of themorphological tag. Pre-trained
models reduce the error rate of the best baseline by 50% in spite of the relatively low (40k) number of
trainable parameters. The baselines have a similar or higher number of trainable parameters which
suggests that some of the morphosyntactic information must come from the pre-trained weights of
mBERT and XLM-RoBERTa.

Figure 6.20 shows a task-by-task comparison color coded by tag. It is evident that the large ma-
jority of tasks are over the diagonal, in other words, the pre-trained models are better. There are 8
exceptions in eachmodel comparison but only 4 gender tasks (and ⟨Estonian, ADJ, Tense⟩ for mBERT)
are where the difference is statistically significant. Number and tense easy for all three models, while
gender is much better retrieved from PLMs than from chLSTM.

Figures 6.21 and 6.22 show the difference between the accuracy of PLMs and chLSTM averaged
over language families. chLSTM is only better than one or both of PLMs in 8 tasks out of the 247 and
the difference is never large.

We find a large number of tasks at the other end of the scale. Particularly Slavic case and gender
probes work much better in both mBERT and XLM-RoBERTa than in chLSTM. Slavic languages have
highly complex declension with 3 genders, 6–8 cases, and frequent syncretism. This explains why
chLSTM is struggling to pick up the pattern from 2,000 training samples alone. mBERT and XLM-
RoBERTa were both trained on large datasets in each language and therefore may have picked up
a general representation of gender and case.8 It is also worth mentioning that among the 100 lan-

8Slavic conjugation is not much simpler, but concentrates on the word not on the context; see Chapter 8.

92

6.5. Morphology in pre-trained language models

60 70 80 90 100
chLSTM

60

70

80

90

100

m
BE

RT

number
case
gender
tense

60 70 80 90 100
chLSTM

60

70

80

90

100

XL
M

-R

number
case
gender
tense

Figure 6.20: chLSTM’s accuracy on each probing task in comparison with mBERT and XLM-RoBERTa.
We added a x = y diagonal for clarity.

guages that these models support, Slavic languages are one of the largest language families with 10
or more languages. They are also highly overrepresented in UD and hence in our probing dataset
(cf. Section 6.3). Figure 6.23 shows the differences for each Slavic language and task. The similari-
ties appear more geographical (Ukrainian and Belarus, Czech and Polish) than historical, though the
major division into Eastern, Western, and Southern Slavic is still somewhat perceptible.

We next examine the languages that PLMs tend to struggle with and the ones that they handle
with ease. Figure 6.24 shows the bottom five and the top five languages by the average accuracy of
PLMs on tasks in these languages. Irish, Latin, Icelandic, Albanian and German are the languages that
the models struggle with the most, although the results widely differ task-by-task as measured by the
large standard deviation. We find Catalan, English, Armenian, French and Turkish at the other end of
the scale. Since chLSTM is also very good at these languages, we conclude that our morphosyntactic
probing tasks are simply easy to solve with 2000 training examples. French is a possible exception but
this is mainly caused by chLSTM’s low performance on gender tasks.

6.5.4 Comparison between mBERT and XLM-RoBERTa

Table 6.13 showed that XLM-RoBERTa is slightly better than mBERT on average and in every POS-
tag category except ⟨ADJ, Gender⟩. However, this advantage is not uniform over tag and POS as
evidenced by Figure 6.25, which shows the number of tasks where one model is significantly better
than the other. XLM-RoBERTa is always better or no worse than mBERT at case and tense tasks with
the exception of ⟨Swedish, NOUN, Case⟩ and ⟨Romanian, VERB, Tense⟩, where mBERT is the stronger
model.

Figure 6.26 illustrates the same task counts by language family. We observe the same performance
in most tasks from the Germanic and Romance language families. XLM-RoBERTa is better at the ma-
jority of the tasks from the Semitic, Slavic, and Uralic families, and the rest aremore even. Interestingly
the twomembers of the Indic family in our dataset, Hindi and Urdu behave differently. XLM-RoBERTa
is better at 5 out of 6 Hindi tasks and the models are the same at the sixth task. mBERT on the other

93

6. Probing

ca
se

ge
nd

er

nu
m

be
r

te
ns

e

IE-Baltic

IE-Germanic

IE-Indic

IE-Romance

IE-Slavic

IE-other

Isolate

Semitic

Uralic

mBERT - chLSTM

ca
se

ge
nd

er

nu
m

be
r

te
ns

e

XLM-R - chLSTM

0

5

10

15

20

Figure 6.21: Difference in accuracy between mBERT (left) and chLSTM, and XLM-RoBERTa (right)
and chLSTM grouped by language family and morphological category. Grey cells represent missing
tasks.

ad
j

no
un

pr
op

n

ve
rb

IE-Baltic

IE-Germanic

IE-Indic

IE-Romance

IE-Slavic

IE-other

Isolate

Semitic

Uralic

mBERT - chLSTM

ad
j

no
un

pr
op

n

ve
rb

XLM-R - chLSTM

0

5

10

15

20

25

Figure 6.22: Difference in accuracy between mBERT (left) and chLSTM, and XLM-RoBERTa (right)
and chLSTM grouped by language family and POS. Grey cells represent missing tasks.

94

6.5. Morphology in pre-trained language models

Belarusian

Russian

Ukrainian

Bulgarian

Croatian

Serbian

Slovenian

Czech

Polish

Slovak

mBERT - chLSTM

AD
J,c

as
e

AD
J,g

en
de

r

AD
J,n

um
be

r

NO
UN

,c
as

e

NO
UN

,g
en

de
r

NO
UN

,n
um

be
r

PR
OP

N,
ca

se

PR
OP

N,
ge

nd
er

PR
OP

N,
nu

m
be

r

VE
RB

,c
as

e

VE
RB

,g
en

de
r

VE
RB

,n
um

be
r

VE
RB

,te
ns

e

Belarusian

Russian

Ukrainian

Bulgarian

Croatian

Serbian

Slovenian

Czech

Polish

Slovak

XLM-R - chLSTM

5

0

5

10

15

20

25

30

5

0

5

10

15

20

25

30

East
South

W
est

East
South

W
est

Figure 6.23: Task-by-task difference between PLMs and chLSTM in Slavic languages. Grey cells rep-
resent missing tasks.

95

6. Probing

Irish (3) Latin (9) Icelandic (12) Albanian (6) German (10) Turkish (4) French (7) Armenian (1) English (2) Catalan (6)
60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

mBERT
XLM-R
chLSTM

Figure 6.24: The best and the worst 5 languages by the average performance of mBERT and XLM-
RoBERTa. Thin lines represent the standard deviation. The number of tasks in a particular language
is listed in parentheses.

hand, is better at one Urdu task and the models are the same at other three Urdu tasks. This might be
due to the subtle differences in mBERT and XLM-RoBERTa subword tokenization (cf. Section 5.3.1).

6.5.5 Difficult tasks

Some morphosyntactic tags are hard to retrieve from the model representations. In this section we
examine such tags and the results in more detail. Table 6.15 lists the 10 hardest tasks measured by
the average accuracy of mBERT and XLM-RoBERTa. ⟨German, PROPN, Case⟩ is difficult for two rea-
sons. First, nouns are not inflected in German; case is marked in the article of the noun. The article
depends on both the case and the gender and syncretism (ambiguity) is very high. This is reflected in
the modest results for ⟨German, NOUN, Case⟩ as well (72.9% for mBERT, 80.7% for XLM-RoBERTa).
Second, proper nouns are often multiword expressions. Since all tokens of a multiword proper noun
are tagged PROPN in UD, our sampling method may pick any of those tokens as a target token of a
probing task.

Another outlier is ⟨Arabic, ADJ, Case⟩. Arabic adjectives usually follow the noun they agree with
in case. With the elative there is no agreement, and sometimes the adjective precedes the noun which
is in genitive, but the adjective is not. This kind of exceptionality may simply be too much to learn
based on relatively few examples – it is still fair to say that grammarians (humans) are better pattern
recognizers than PLMs.

Although the difficult tasks for mBERT and XLM-RoBERTa tend to be the same, this is not the
case for GPT-4o, which struggles with some of the tasks from Table 6.15 and excels with others such
as ⟨Latin, ADJ, case⟩. We analyze this in more detail in the next section.

6.5.6 GPT-4o

The results of GPT-4o prompting fall between XLM-RoBERTa andmBERT on average but the standard
deviation over the 247 tasks is higher (10.5 vs. 8.2). Figure 6.27 shows a task-by-task comparison
between GPT-4o and the PLMs. GPT-4o is clearly better at gender tasks and worse at case tasks than
mBERT and XLM-RoBERTa. The biggest gap between GPT-4o and mBERT (or XLM-RoBERTa) is in
case tasks in Hindi, Urdu, Finnish and Basque. Case in agglutinative languages is usually marked at
the word level hence simple orthographic cues are very useful. chLSTM, which relies on orthography

96

6.5. Morphology in pre-trained language models

0

5

10

15

20

ca
se

adj verb noun propn

0

5

10

15

20

ge
nd

er

0

5

10

15

20

nu
m

be
r

0

5

10

15

20

te
ns

e

Figure 6.25: mBERT XLM-RoBERTa comparison by tag and by POS.

IE-Baltic IE-Germanic IE-Indic IE-Romance IE-Slavic IE-other Isolate Semitic Uralic
0

10

20

30

40

ta
sk

 c
ou

nt

better
mBERT
XLM-R
same

Figure 6.26: mBERT XLM-RoBERTa comparison by language family.

97

6. Probing

task mBERT XLM-R chLSTM Stanza GPT-4o

⟨Icelandic, PROPN, gender⟩ 58.4 64.7 53.7 59.2 79.1
⟨German, PROPN, case⟩ 66.6 68.8 64.0 71.5 71.0
⟨Icelandic, ADJ, gender⟩ 67.5 70.4 64.7 82.1 83.1
⟨Arabic, ADJ, case⟩ 65.8 72.2 63.7 81.6 67.2
⟨German, PROPN, gender⟩ 70.4 69.1 53.9 78.6 74.1
⟨Albanian, NOUN, case⟩ 69.0 71.8 67.8 55.5
⟨Latin, ADJ, case⟩ 69.7 71.8 63.0 81.0 90.5
⟨Irish, NOUN, gender⟩ 71.2 72.4 69.5 80.0 80.5
⟨Dutch, PROPN, gender⟩ 70.2 74.8 62.9 65.0 53.0
⟨Hindi, PROPN, gender⟩ 70.4 75.2 60.9 68.0 77.5

Table 6.15: 10 hardest tasks for PLMs.

alone, performs much better than GPT-4o. On the other hand gender tasks, where GPT-4o excels,
often require lexical knowledge of the language. Perhaps this is the tradeoff we pay for GPT-4o’s high
level capabilities.

The results of GPT-4o are clearly very different from that of the mBERT and XLM-RoBERTa. The
two smaller models behave very similarly evidenced by their high correlation over the 247 tasks (0.95
Person correlation). GPT-4o on the other hand has a more modest correlation, 0.55 with either models.
GPT-4o has some wild outliers where its performance is well below the baselines. The picture is very
similar when we use Spearman’s rank correlation to counteract outliers. Although the gap is smaller
(0.94 between mBERT and XLM-RoBERTa and 0.69–0.7 between GPT-4o and the other two models)
but the difference in model behavior is obvious. It may be beneficial to tweak the prompt but it falls
outside of the scope of this thesis.

40 50 60 70 80 90 100
GPT-4o

60

65

70

75

80

85

90

95

100

m
BE

RT

number
case
gender
tense

40 50 60 70 80 90 100
GPT-4o

60

65

70

75

80

85

90

95

100

XL
M

-R

number
case
gender
tense

Figure 6.27: GPT-4o’s accuracy on each probing task in comparison with mBERT and XLM-RoBERTa.
We added a x = y diagonal for clarity.

98

6.6. Ablations

hidden:[50], linear hidden:[], linear hidden:[100], ReLU hidden:[50, 50], ReLU
0.2

0.1

0.0

0.1

0.2

%
 p

oi
nt

 d
iff

er
en

ce

mBERT
XLM-R

Figure 6.28: The average probing accuracy using different MLP variations. We indicate the size(s) of
hidden layer(s) in square brackets.

6.6 Ablations

In this section we empirically consider the criticisms raised in Belinkov (2021) and Ravichander et al.
(2021) for probing setups like ours. Our first group of tests (6.6.1) confirms that the probing accuracy
does not depend on the choice of probe, in particular, linear probes are no better or worse than non-
linear ones. We also show that probing individual layers of mBERT or XLM-RoBERTa is worse or no
better than probing the weighted sum of all layers (6.6.2). We also show that fine-tuning decreases
the probing accuracy while it substantially increases the computational requirements (6.6.3). Finally,
we show that probing a randomly initialized model, a control used by Voita and Titov (2020), is sig-
nificantly worse than probing the trained model (6.6.4). We present all results averaged over all 247
tasks in this section. With the exception of 6.6.4, we do not perturb the input sentences. Finally, we
perform a few ablations specific to BERT models in Section 6.6.6.

6.6.1 Linear probing and MLP variations

The probes we presented so far all use an MLP with a single hidden layer with 50 neurons. The input
is the weighted sum of the 12 layers and the embedding layer with learned weights. The size of the
output layer depends on the number of classes in the probing tasks. We use ReLU activations in the
MLP.

The original BERT paper used a simple linear classification layer with weightW ∈ RK×H , where
K is the number of labels and H is the hidden size of BERT, 768 in the case of mBERT and XLM-
RoBERTa. Hewitt and Liang (2019) argue that linear probes have high selectivity, i.e., they tend to
memorize less than non-linear probes. We test this on our dataset with two kinds of linear probes.
The first one is the same as the general probing setup but we remove the ReLU activation. The second
one completely removes the hidden layer similarly to the original BERT paper. We also test two MLP
variations, one with 100 hidden size instead of 50 and another one with two hidden layers.

Figure 6.28 shows the accuracy of the two linear probes and the larger MLPs as the difference
from the default version we used elsewhere. These numbers are averaged over that 247 tasks. The
differences are all smaller than 0.25% points. These results indicate that the probing accuracy does
not depend on the probe type and particularly that linear probes perform similarly to non-linear
ones.

99

6. Probing

6.6.2 Layer pooling

Our default setup uses a weighted sum of the 12 layers and the embedding layers, one scalar weight
for each of them with a total of 13 learned weights. It has been shown (Tenney et al., 2019a) that
the different layers of mBERT work better for different tasks. Lower layers work better for low level
tasks such as POS tagging, while higher layers work better for higher level tasks such as coreference
resolution. Morphosyntactic tagging is a low level task. The embedding layer itself is often indicative
of the morphological role of a token. We test this by probing each layer separately as well as probing
the concatenation of all layers.

Figure 6.29 shows the difference between probing the weighted sum of all layers and probing
individual layers averaged over all tasks. We observe approximately 10% point difference in the em-
bedding layer (layer 0) and the lower layers. This difference gradually decreases and it is close to 0 in
the upper layers. Our results support the finding of Hewitt et al. (2021) that morphosyntactic cues are
encoded much higher into the layers9 then previously suggested by Tenney et al. (2019a), discussed
in Hewitt and Liang (2019). Layer concatenation (concat) is slightly better than the weighted sum of
the layers, but it should be noted that the parameter count of the MLP is an order of magnitude larger
thanks to the 13 times larger input dimension.

We also observe that the gap between the embedding layer (layer 0) and the first Transformer layer
(layer 1) is much smaller in the case of XLM-RoBERTa than mBERT. XLM-RoBERTa’s embedding
layer is significantly better than mBERT’s embedding layer to begin with (82.2% vs. 80%) and this gap
shrinks to 0.3% point at the first layer (82.2% and 81.9%). This is more evidence for one of our main
observations that XLM-RoBERTa’s embedding and vocabulary are better than those of mBERT’s.

We further examine the layer weights in our ‘default setup’ where the layers are weighted by 13
scalar weights. The 13 scalar weights are learned for each probing experiment along with the MLP
weights. We use the softmax function to produce a probability distribution for the layer weights. Our
analysis shows that the layer distribution is very close to the uniform distribution. We quantify this
in two ways: the ratio of the highest and the lowest layer weight, and the entropy of the weight
distribution. The two measures highly correlate (0.95 Pearson correlation). The highest ratio of the
largest and smallest layer weight is 2.22 for mBERT and 2.24 for XLM-RoBERTa, while the lowest
entropy is 3.62 for both models (the entropy of the uniform distribution is 3.7). We list the 50 task
with the highest max-min ratio in Figure 6.30. Interestingly the higher layers are weighted higher in
each of the 50 outlier tasks again contradicting the notion that low level tasks such as morphology
use lower layers of BERT (Tenney et al., 2019a).

We also found that the two models show similar patterns task-wise. When the layer weights
corresponding to one task have a lower entropy, they tend to have a lower entropy when we probe the
other model too. The ranking of the entropy of the 247 tasks’ weights confirms this (0.63 Spearman’s
rank correlation). Most of the outlier tasks are from the Slavic family or are in German. This is similar
to what we learn from the Shapley outlier analysis later (Section 8.2.3).

6.6.3 Fine-tuning

Fine-tuning (as opposed to feature extraction), trains all BERT parameters along with the MLP in
an end-to-end fashion. This raises the number of trainable parameters from 40k to over 170M. The
recommended optimizer for fine-tuning BERT models is AdamW (Loshchilov and Hutter, 2019), a
variant of the Adam optimizer. We try both Adam and AdamW for fine-tuning the model on each task
and show that AdamW is indeed a better choice than Adam (Table 6.16) but nevertheless the feature

9This holds for not just XLM-RoBERTa, but mBERT as well.

100

6.6. Ablations

0 1 2 3 4 5 6 7 8 9 10 11 12 concat

10

8

6

4

2

0

%
 p

oi
nt

 d
iff

er
en

ce

mBERT

0 1 2 3 4 5 6 7 8 9 10 11 12 concat
layer

10

8

6

4

2

0

%
 p

oi
nt

 d
iff

er
en

ce

XLM-R

Figure 6.29: The difference between probing a single layer and probing the weighted sum of layers.
concat is the concatenation of all layers. 0 is the embedding layer. Large negative values on the y-axis
mean that probing the particular layer on the x-axis is much worse than probing the weighted sum
of all layers.

Adam AdamW

Fine-tuning 76.2 89.2

Feature extraction 90.4 89.9

Table 6.16: Comparison of fine-tuned and frozen (feature extraction) models.

extraction results are 0.5 percentage point better than the fine-tuning results and this difference is
statistically significant. Our experiments also show that the running time is increased 80-fold when
we fine-tune mBERT. Due to this increase in computation time, we do not repeat the experiments for
XLM-RoBERTa. It should be noted that BERT fine-tuning has its own tricks (Houlsby et al., 2019; Li
and Liang, 2021; Ben Zaken et al., 2022) that may lead to better results but we do not explore them in
this thesis.

101

6. Probing

0.050
0.075
0.100

Russian, V, case
mBERT
XLM-R

Russian, A, case Croatian, A, gender German, A, case Serbian, N, case

0.050
0.075
0.100

German, A, gender Arabic, A, case Croatian, A, case Slovenian, A, gender Arabic, N, case

0.050
0.075
0.100

Czech, A, case Czech, A, gender Slovenian, N, case Latin, A, gender Polish, A, case

0.050
0.075
0.100

Latvian, A, case Russian, N, case German, P, case Finnish, N, case Slovenian, A, case

0.050
0.075
0.100

German, N, case Norw Bokmal, N, gender Slovak, A, gender Polish, P, case Russian, P, case

0.050
0.075
0.100

Irish, N, case Icelandic, N, gender Russian, A, gender French, A, gender Serbian, A, gender

0.050
0.075
0.100

Slovak, N, case Russian, V, tense Lithuanian, A, gender Latin, V, tense Hindi, A, case

0.050
0.075
0.100

Czech, P, case Latin, A, case Portuguese, A, gender Ukrainian, N, case Ukrainian, A, gender

0.050
0.075
0.100

Ukrainian, A, case Latvian, V, tense Latin, A, number Russian, V, gender Icelandic, V, gender

0 2 4 6 8 10 12
0.050
0.075
0.100

French, V, tense

0 2 4 6 8 10 12

Lithuanian, V, number

0 2 4 6 8 10 12

Polish, A, number

0 2 4 6 8 10 12

Ukrainian, V, tense

0 2 4 6 8 10 12

Croatian, N, case

Figure 6.30: Layer weight outliers. Layer 0 is the embedding layer.

102

6.6. Ablations

Pre-trained Random layers Fully random Majority baseline

mBERT 90.4 73.5 67.0 41.0
XLM-RoBERTa 91.8 74.7 70.1 41.0

Table 6.17: Probing accuracy on the randomly initialized mBERT and XLM-RoBERTa models.

em
be

dd
ing

1st
 la

ye
r

ran
do

m la
ye

rs

ran
do

m la
ye

rs
+B 2

ran
do

m la
ye

rs
+L 2

ran
do

m la
ye

rs
+R 2

ran
do

m la
ye

rs

+pe
rm

ute ran
do

m
ran

do
m
+B 2

ran
do

m
+L 2

ran
do

m
+R 2

ran
do

m

+pe
rm

ute

un
pe

rtu
rbe

d
70

75

80

85

90

95

Ac
cu

ra
cy

Figure 6.31: RandommBERT and randomXLM-RoBERTa performance comparison with different per-
turbation setups and the unperturbed trained model variants (orange bars). Left-to-right: Blue: Accu-
racy of the embedding and first layers’ probes; Green: Random models with pre-trained embedding
layer: no perturbation, b2, l2, r2, permute; Red: Random models where the embedding layer is ran-
dom as well: no perturbation, b2, l2, r2, permute; Orange: Unperturbed trained models. Perturbations
are introduced in Chapter 8.

6.6.4 Randomly initialized PLMs

Randomly initialized language models have been widely used as a baseline when evaluating language
models (Conneau et al., 2017), especially via auxiliary classifiers (Conneau et al., 2018b; Zhang et al.,
2018; Htut et al., 2019; Voita and Titov, 2020). Zhang et al. (2018) showed that the mechanism of as-
signing morphosyntactic tags to these random embeddings is significantly different. As they demon-
strated, randomly initialized PLMs rely on word identities, while their trained counterparts maintain
more abstract representations of the tokens in the input layer. Therefore, probing classifiers applied
on random PLMs may pick up low-level patterns only, such as word identity, and this could mislead
the probing controls when used as a baseline.

In order to test this hypothesis, we trained the probing classifiers using randomly initialized
mBERT and XLM-RoBERTa models. In this setup both fully random and pre-trained embedding layer
with random Transformer layers were compared to trained PLMs.

Table 6.17 shows the overall probing accuracy achieved on random models. We add the majority
(most frequent) baseline as a comparison. Although the random PLMs are clearly better than the
majority baseline, they are far worse than the trained PLMs.

We tested the perturbations introduced in Chapter 8 in combination with random models as well.

103

6. Probing

250 500 750 1000 1250 1500 1750 2000
Train size

80

82

84

86

88

90

92

94
Ac

cu
ra

cy
model

mBERT
XLM-R

Figure 6.32: Probing accuracy with reduced training data.

Figure 6.31 shows that neither b2, l2, r2 nor permute10 perturbations affect the model’s performance
in a way that they do when applied on the trained models (compare Figure 8.1). Nevertheless, this sub-
experiment offers two further supporting arguments for the claims Zhang et al. (2018) made about
random PLMs learning word-identities:

1. The accuracies of random models’ morphological probes match the accuracies of their embed-
ding layers’ probe; i.e. even the Transformer-based random PLMs rely mostly on the word-
identities represented by their embeddings

2. Probing perturbed and unperturbed embeddings of randomPLMs does notmake a big difference
(the accuracies of unperturbed and perturbed models’ are less than 1% apart). Clearly, word
identities count the most, their order almost not at all.

Based on this finding we do not use randomized PLMs as baselines.

6.6.5 Training data size

Our sampling method (cf. 6.2.2) generates 2,000 training samples. Raising this number would remove
many tasks from languages with smaller UD treebanks. Probing methods on the other hand are sup-
posed to test the already existing linguistic knowledge in the model, therefore probing tasks’ training
sets should not be too large. In this section, we show that smaller training sizes result in inferior prob-
ing accuracy. Our choice of 2,000 samples was a practical upper limit that allowed for a large number
of tasks from mid-to-large sized UD treebanks.

Figure 6.32 shows the average accuracy of the probing tasks when we use fewer training samples.
Although the probing tasks work considerably better than the majority baseline even with 100 sen-
tences, the overall accuracy gets better as we increase the training data. Interestingly, XLM-RoBERTa
is always slightly better than mBERT.

104

6.6. Ablations

ALL NOUN PROPN VERB ADJ
65

70

75

80

85

90

95

Te
st

 a
cc

ur
ac

y

mBERT
XLM-R
mBERT-char
XLM-R-char
mBERT-emb
XLM-R-emb
chLSTM
fastText

Figure 6.33: The performance of ablated BERT models grouped by POS.

6.6.6 Model ablations

In this section we focus on ablations specific to the BERT model architecture and its subword tok-
enizer. We perform three types of ablations.

char removes the tokenization aspect by replacing the subword tokenization with charac-
ter tokenization. Since the subword vocabularies of both mBERT and XLM-RoBERTa con-
tain all individual characters, we can artificially simulate character tokenization. For exam-
ple the normal mBERT tokenization of the word apple is [app + ##le] but we change this
into [a + ##p + ##p + ##l + ##e]. The XLM-RoBERTa tokenization of apple changes from
[_apple] to [_a + p + p + l + e]11. Using character tokenization instead of subword tokeniza-
tion substantially increases the sequence length so much so that it sometimes exceeds the maximum
input length (512) supported by PLMs. To avoid this limitation, we only use character tokenization
on the target word form and use subword tokenization on the rest of the sentence. As Figure 6.33
shows, the overall effect is less than 5% point but it varies by POS. Nouns and verbs are affected the
highest while pronouns and adjectives seem to have a small but positive effect. This suggests that
the left-ward greedy tokenization of subword tokenizers is often suboptimal from a morphosyntactic
viewpoint.

emb uses the output of the subword embedding layer alone and ignores the 12 Transformer layers.
The embedding itself is a static 2D matrix which assigns a 768 dimensional dense vector to each
subword in the subword vocabulary. This also means that the context is only incorporated at higher
layers. This ablation causes a 15 to 20% drop in all POS categories except verbs. Verbal morphology is
most often expressed on the word form itself, while adjectives have agreements with subject or the
object of the sentence, so it is unsurprising that we see a much larger gap in adjectives than in verbs.
emb is similar to fastText in that they are both static embeddings trained on sentences but fastText is

10l2 replaces two tokens before the target token with a mask symbol, r2 replaces two tokens after and b2 replaces
two tokens on both sides. permute shuffles the word order of the sentence. See Section 8.1 for the motivation of these
perturbations and examples.

11The Unicode lower eights block is replaced with an underscore in the example

105

6. Probing

better in every POS category than mBERT and XLM-RoBERTa used as traditional embeddings. emb
is the same as pooling the 0th layer in Section 6.6.2.

nocontext removes everything from the sentence except the target word but unlike emb it uses
the embedding and all Transformer layers. This is our first test on the importance of the context for
morphosyntactic probing. We greatly extend this study in Chapter 8. nocontext is fairly similar to
emb except for verbs, where nocontext is a better method.

Our model ablations show that PLMs rely on multiple components and removing one results in
significant loss in performance. They do not work well as static embeddings or without the sentence
context in their input. Disabling the subword tokenization also has a moderate negative effect on
morphosyntactic probing.

106

Chapter7

Language-specific Models

In Chapter 5 we introduced the BERT model family with its initial English and multilingual check-
points. The first non-English monolingual models1 appeared a few months after BERT’s release.
Within the next year most high resource languages had at least one language-specific BERT model
and the list was growing every day. The first Uralic-language BERT model was FinBERT (Virtanen
et al., 2019), a Finnish model.

In this chapter, we extend ourwide-scale evaluation efforts fromChapter 6 tomonolingualmodels,
particularly models for Hungarian and other Uralic languages.

7.1 Pre-trained models for Hungarian

In this section we present an evaluation of PLMs for Hungarian. We include all models that support
Hungarian and were available in the Hugging Face model repository as of September 2020.

Nemeskey (2020a) released the first BERT model for Hungarian named HuBERT trained on We-
bcorpus 2.0 (Nemeskey, 2020a, ch. 4). HuBERT uses the same BERT-base architecture as mBERT and
XLM-RoBERTa with a smaller subword vocabulary with 32k subwords. The total parameter count is
110M.

In this section we focus on evaluation for the Hungarian language. We compare HuBERT against
multilingual models using three tasks: morphosyntactic probing, POS tagging and NER.We show that
HuBERT outperforms all multilingual models, particularly in the lower layers, and often by a large
margin. We also show that subword tokens generated by HuBERT’s tokenizer are closer to Hungarian
morphemes than the ones generated by the other models.

We evaluate the models through three tasks: morphosyntactic probing, POS tagging and NER.
Hungarian has a rich inflectional morphology and largely free word order. Morphology plays a key
role in parsing Hungarian sentences.

This work was presented at the XVII. Conference on Hungarian Computational Linguistics
(MSZNY2021) (Ács et al., 2021). Our data, code and the full result tables are available on GitHub2.

7.1.1 Evaluation tasks and data

Hungarian is considered a medium resource language in terms of the availability of NLP resources as
described in Section 5.4.3.3. However, most of these high level tasks such as question answering were

1https://huggingface.co/google-bert/bert-base-german-cased
2https://github.com/juditacs/hubert_eval

107

https://huggingface.co/google-bert/bert-base-german-cased
https://github.com/juditacs/hubert_eval

7. Language-specific Models

not yet available at the time of these experiments (late 2020) so we instead focus on three low-level
tasks for which the data is readily available or can be automatically generated by high quality taggers.

Morphosyntactic probing Our lowest level task is morphosyntactic probing made possible by
high quality morphological analyzers. We use the setup and the dataset introduced in Section 6.2 with
some additions. We do not limit the selection of tags to the four tags used in multilingual probing,
instead we generate probing data for every possible tag that is frequent enough in Hungarian. This
results in 11 tasks listed in Table 7.1. 6 tasks are binary, 3 are 3-way, one is a 4-way and one is an 18-way
classification problem. Another change is that our source is not the Hungarian UD Treebank since it
is only 42k tokens and therefore not sufficient for our data sampling technique (cf. Section 6.2.2). We
use an automatically annotated version of Webcorpus 2.0 for sampling every possible morphological
probing task in Hungarian.3

Morph tag POS #classes Values

Case noun 18 Abl, Acc, . . . , Ter, Tra
Degree adj 3 Cmp, Pos, Sup
Mood verb 4 Cnd, Imp, Ind, Pot
Number[psor] noun 2 Sing, Plur
Number adj 2 Sing, Plur
Number noun 2 Sing, Plur
Number verb 2 Sing, Plur
Person[psor] noun 3 1, 2, 3
Person verb 3 1, 2, 3
Tense verb 2 Pres, Past
VerbForm verb 2 Inf, Fin

Table 7.1: List of Hungarian morphological probing tasks.

Sequence tagging tasks Our setup for the two sequence tagging tasks is similar to that of the
morphological probes except we train a shared classifier on top of all token representations. Since
multiple subwords may correspond to a single token (see Section 7.1.3 for more details), we need to
aggregate them in some manner: we pick either the first one or the last one. We also experimented
with other pooling methods such as elementwise max and sum but they did not make a significant dif-
ference. Our concurrent work in Section 6.4 found some justification for more sophisticated subword
pooling methods but due to resource constraints, we did not test all of them. We use two datasets for
POS tagging. One is the Szeged Universal Dependencies Treebank (Farkas et al., 2012; Nivre et al.,
2018) consisting of 910 train, 441 validation, and 449 test sentences. Our second, larger dataset is a
subsample of Webcorpus 2 tagged with emtsv (Indig et al., 2019) with 10,000 train, 2000 validation,
and 2000 test sentences. Our architecture for NER is identical to the POS tagging setup. We train it
on the Szeged NER corpus consisting of 8172 train, 503 validation, and 900 test sentences.

3We use morphosyntactic and morphological probing interchangeably since in the case of Hungarian, morphology is
almost solely marked on the word form and syntax plays a very limited role.

108

7.1. Pre-trained models for Hungarian

7.1.2 The models evaluated

At the time of this study (January 2021), there were 5 models available with Hungarian support in
the Hugging Face repository4. We compare these 5 models in the following experiments:

HuBERT the Hungarian BERT, is a BERT-base model with 12 Transformer layers, 12 atten-
tion heads, each with 768 hidden dimensions and a total of 110 million parameters. It was
trained on Webcorpus 2.0 (Nemeskey, 2020a), a 9-billion-token corpus compiled from the
Hungarian subset of Common Crawl5. Its string identifier in Hugging Face Transformers is
SZTAKI-HLT/hubert-base-cc.

mBERT the cased version of the multilingual BERT introduced in Section 5.2.2. Its string id is
bert-base-multilingual-cased.

XLM-RoBERTa the multilingual version of RoBERTa introduced in Section 5.2.3. Its string id is
xlm-roberta-base.

XLM-MLM-100 is a larger variant of XLM-RoBERTa with 16 instead of 12 layers. Its string id is
xlm-mlm-100-1280.

distilbert-base-multilingual-cased is a distilled version of mBERT. It cuts the parameter budget
and inference time by roughly 40% while retaining 97% of the tutor model’s NLU capabilities.
Its string id is distilbert-base-multilingual-cased.

7.1.3 Subword tokenization

Subword tokenization plays an important role in achieving good performance onmorphologically rich
languages such as Hungarian. Out of the 5 models we compare, HuBERT, mBERT and DistilmBERT
use the WordPiece algorithm (Schuster and Nakajima, 2012), XLM-RoBERTa and XLM-MLM-100 use
the SentencePiece algorithm (Kudo and Richardson, 2018) introduced in Section 5.3. The multilingual
models consist of about 100 languages, and the vocabularies per language are (not linearly) propor-
tional to the amount of training data available per language. Since HuBERT is trained on monolingual
data, it can retain less frequent subwords in its vocabulary, while mBERT, RoBERTa and MLM-100,
being multilingual models, have token information from many languages, so we anticipate that Hu-
BERT is more faithful to Hungarian morphology. DistilmBERT uses the tokenizer of mBERT, thus it
is not included in this section.

Table 7.2 lists statistics about each tokenizer. We use emtsv’s segmenter (last column) as an es-
timate of the ideal morphological segmentation. We hypothesize that a good tokenizer should reuse
subwords as much as possible particularly in an agglutinative language like Hungarian. We compute
the entropy of the distribution of subwords in the first and the last place of a token. The lower the
entropy, the more likely is the tokenizer to reuse subwords but this should be evaluated along with the
length of the subword in characters. The bottom three rows offer a direct comparison with emtsv’s
segmenter.

As shown in Table 7.2, there is a gap between the Hungarian and multilingual models in almost
every measure. mBERT’s shared vocabulary consists only of 120k subwords for all 100 languages
while HuBERT’s vocabulary contains 32k items and is uniquely for Hungarian. Given the very limited
inventory of mBERT, only the most frequent Hungarian words are represented as a single token,

4https://huggingface.co/models
5https://commoncrawl.org/

109

https://commoncrawl.org/
https://huggingface.co/models
https://commoncrawl.org/

7. Language-specific Models

HuBERT mBERT XLM-RoBERTa MLM-100 emtsv

Languages supported 1 104 100 100 1
Vocabulary size 32k 120k 250k 200k –

Entropy of first SW 8.99 6.64 6.33 7.56 8.26
Entropy of last SW 6.82 6.38 5.60 6.89 5.14
More than one SW 94.9% 96.9% 96.5% 97.0% 95.8%
Length in SW or fertility 2.8±1.4 3.9±1.8 3.2±1.4 3.5±1.5 3.1±1.1
Length of first SW 4.3±3.0 2.7±1.9 3.5±2.7 3.1±2.0 5.2±2.4
Length of last SW 3.8±2.9 2.6±1.8 3.1±2.2 2.8±1.8 2.7±1.7

Accuracy to emtsv 0.16 0.05 0.14 0.08 1.00
Accuracy to emtsv in first SW 0.41 0.26 0.44 0.33 1.00
Accuracy to emtsv in last SW 0.43 0.41 0.47 0.39 1.00

Table 7.2: Measures on the train data of the POS tasks. The length of first and last subword (SW) is
calculated in characters, while the word length is calculated in subwords.

while longer Hungarian words are segmented, often very poorly. The average number of subwords
a word is tokenized into is 2.77 in the case of HuBERT, while all the other models have significantly
higher mean length. This does not pose a problem in itself, since the tokenizers work with a given
dictionary size and frequent words need not to be segmented into subwords. But in case of words
with rarer subwords, the limits of smaller monolingual vocabulary can be observed, as shown in
the following example: szállítójárművekkel ‘with transport vehicles’; szállító-jármű-vek-kel ‘transport-
vehicle-pl-ins’ for HuBERT, sz-ál-lí-tó-já-rm-ű-vek-kel for mBERT, which found the affixes correctly
(since affixes are high in frequency), but have not found the root ‘transport vehicle’. Interestingly
HuBERT is often outperformed by XLM-RoBERTa which may be due to the very large vocabulary
(250k subwords) that XLM-RoBERTa uses.

Distributionally, HuBERT follows the Zipfian distribution more than any other model, as shown
in Figure 7.1. Frequency and subword length are in a linear relationship for the HuBERT model, while
in case of the other models, the subword lengths does not seem to be correlated with the log frequency
rank. The area of the violins also show that words typically consist of more than 3 subwords for the
multilingual models, contrary to the HuBERT, which segments the words typically into one or two
subwords.

7.1.4 Results

We find that HuBERT outperforms all models in all tasks, often by a large margin, particularly in the
lower layers. As for the choice of subword pooling (first or last) and the choice of layer, we note some
trends in the rest of this section.

Morphology The last subword is always better than the first subword except for a few cases for de-
gree ADJ. This is not surprising because superlative is marked with a circumfix and it is differentiated
from comparative by a prefix. The rest of the results in this subsection all use the last subword.

HuBERT is better than all models, especially in the lower layers in morphological tasks, as shown
in Figure 7.2. However, this tendency starts at the second layer and the first layer does not usu-
ally outperform the other models. In some morphological tasks HuBERT systematically outperforms

110

7.1. Pre-trained models for Hungarian

Figure 7.1: Distribution of length in subword vs. log frequency rank. The count of words for one
subword length is proportional to the size of the respective violin.

the other models: these are mostly the simpler noun and adjective-based probes. In possessor tasks
(tagged [psor] in Figure 7.2) XLM-RoBERTa models are comparable to HuBERT, while mBERT and
DistilmBERT generally perform worse then HuBERT. In verb tasks XLM-RoBERTa achieves similar
accuracy to HuBERT in the higher layers, while in the lower layers, HuBERT tends to have a higher
accuracy.

HuBERT is also better than all models in almost all tasks when we use the weighted average of all
layers as illustrated by Figure 7.3. The only exceptions are adjective degrees and the possessor tasks.
A possible explanation for the surprising effectiveness of XLM-MLM-100 is its higher layer count.

POS tagging Figure 7.4 shows the accuracy of different models on the gold-standard Szeged UD
and on the silver-standard data created with emtsv. Last subword pooling always performs better
than first subword pooling. As in the morphology tasks, the XLM models perform only a bit worse
than HuBERT. mBERT is very close in performance to HuBERT, unlike in the morphological tasks,
while DistilmBERT performs the worst, possibly due to its far lower parameter count.

We next examine the behavior of the layers by relative position.6 The embedding layer is a static
mapping of subwords to an embedding space with a simple positional encoding added. Contextual
information is not available until the first layer. The highest layer is generally used as the input for
downstream tasks. We also plot the performance of the middle layer. As Figure 7.5 shows, the em-
bedding layer is the worst for each model and, somewhat surprisingly, adding one contextual layer
only leads to a small improvement. The middle layer is actually better than the highest layer which
confirms the findings of Tenney et al. (2019a) that BERT rediscovers the NLP pipeline along its layers,
where POS tagging is a mid-level task. As for the choice of subword, the last one is generally better,
but the gap shrinks as we go higher in layers.

6We only do this on the smaller Szeged dataset due to resource limitations.

111

7. Language-specific Models

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.90

0.95

case, NOUN

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.6

0.8

degree, ADJ

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.7

0.8

0.9

mood, VERB

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.90

0.95

number[psor], NOUN

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.94

0.96

0.98

number, ADJ

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.8

0.9

1.0
number, NOUN

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.90

0.95

number, VERB

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.8

0.9

person[psor], NOUN

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.85

0.90

0.95

person, VERB

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.85

0.90

0.95

tense, VERB

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.95

1.00
verbform, VERB

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
huBERT
mBERT
XLM-RoBERTa
XLM-MLM-100
distil-mBERT

Figure 7.2: The layerwise accuracy of morphological probes using the last subword. Shaded areas
represent confidence intervals over 3 runs.

case_noun
degree_adj

mood_verb

number[psor]_noun

number_adj

number_noun

number_verb

person[psor]_noun

person_verb
tense_verb

verbform_verb
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

huBERT
mBERT
XLM-RoBERTa
XLM-MLM-100
distil-mBERT

Figure 7.3: Probing accuracy using the weighted sum of all layers.

112

7.1. Pre-trained models for Hungarian

0.90 0.92 0.94 0.96 0.98
first

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

la
st

Szeged UD POS

huBERT
mBERT
XLM-RoBERTa
XLM-MLM-100
distil-mBERT

0.90 0.92 0.94 0.96 0.98
first

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

la
st

Szeged UD POS
model

huBERT
mBERT
XLM-RoBERTa
XLM-MLM-100
distil-mBERT

Figure 7.4: POS tag accuracy on Szeged UD and on the Webcorpus 2.0 sample

first last
Subword

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

F 1

Embedding layer

huBERT
mBERT
XLM-RoBERTa
XLM-MLM-100
distil-mBERT

first last
Subword

First layer

first last
Subword

Middle layer

first last
Subword

Last layer

Figure 7.5: Szeged POS at 4 layers: embedding layer, first Transformer layer, middle layer, and highest
layer.

first last
Subword

0.4

0.5

0.6

0.7

0.8

0.9

F 1

Embedding layer
huBERT
mBERT
XLM-RoBERTa
XLM-MLM-100
distil-mBERT

first last
Subword

First layer

first last
Subword

Middle layer

first last
Subword

Last layer

Figure 7.6: NER F1 score at the lowest, middle and highest layers.

113

7. Language-specific Models

Named entity recognition In the NER task (Figure 7.6), all of the models perform very similarly
in the higher layers, except for DistilmBERT which has nearly 3 times the error of the best model,
HuBERT. The closer we get to the global optimum, the clearer HuBERT’s superiority becomes. Far
away from the optimum, when we use only the embedding layer, first subword is better than last,
but the closer we get to the optimum (middle and last layer), the clearer the superiority of the last
subword choice becomes.

7.1.5 Conclusion

In this section we showed that the current generation of PLMs have good support for Hungarian
on low and mid-level tasks. HuBERT, a BERT model specific to Hungarian, is the best contender,
especially at the lower layers, but XLM-RoBERTa is a close competitor and mBERT also performs
reasonably well. We also demonstrated that the subword tokenizer of HuBERT and to some extent
that of XLM-RoBERTa segment somewhat similarly to a high quality rule based morphological seg-
menter. Lastly, we found that using the last subword for token-level tasks is always the best choice
for Hungarian, except for cases where discontinuous morphology is involved, as in circumfixes and
infixed plural possessives (Antal, 1963; Mel’cuk, 1972).

7.2 Pre-trained models for Uralic languages

In this section we extend the evaluation method used for Hungarian (Section 7.1) to other members
of the Uralic languages. This work was presented at the Seventh International Workshop on Compu-
tational Linguistics of Uralic Languages (IWCLUL2021) (Ács et al., 2021b). The code, the data and the
full result tables are available on GitHub7.

Here we evaluate monolingual, multilingual, and randomly initialized language models from the
BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha,
Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern Sámi, and Skolt Sámi.

Uralic languages have received relatively moderate interest from the language modeling com-
munity. Aside from the three national languages, Estonian, Finnish and Hungarian, no other Uralic
language is supported by any of the multilingual models, nor does any have a monolingual model.
There are no Uralic languages among the 15 languages of XNLI. Wu and Dredze (2020) do explore all
100 languages that mBERT supports but do not go into monolingual details.

In this sectionwe evaluatemultilingual andmonolingual models on Uralic languages.We consider
the same three evaluation tasks as in Section 7.1: morphosyntactic probing, POS tagging and NER.
We also use the models in a crosslingual setting, in other words, we test how monolingual models
perform on related languages. We show that

• these language models are very good at all three tasks when fine-tuned on a small amount of
task specific data,

• formorphological tasks, when native BERTmodels are available (et, fi, hu), these outperform the
others on their native language, though the advantage over XLM-RoBERTa is not statistically
significant,

• for POS and NER, the use of native models from related, even closely related languages, rarely
brings improvement over the multilingual models or even English models,

7https://github.com/juditacs/uralic_eval

114

https://github.com/juditacs/uralic_eval

7.2. Pre-trained models for Uralic languages

• as long as the alphabet that the language uses is covered in the vocabulary of the model, we
can transfer mBERT (or RuBERT) to the NER and POS tasks with surprisingly little fine-tuning
data,

• our few-shot models for minority Uralic languages appear to be state of the art POS and NER
models without special efforts toward hyperparameter optimization if there is sufficient fine-
tuning data.

7.2.1 Data

Morphosyntactic probing We generate the probing data for Estonian and Finnish from the Uni-
versal Dependencies (UD) Treebanks and from the automatically tagged Webcorpus 2.0 for Hungar-
ian since the Hungarian UD is very small. Unfortunately we could not extend the list of languages
to other Uralic languages because their treebanks are too small to sample enough data with the sam-
pling method we introduced in 6.2.2. We were able to generate enough probing data for 11 Estonian,
16 Finnish and 11 Hungarian tasks, see Table 7.6 for the full list of these.

Sequence tagging tasks Our setup for the two sequence tagging tasks is similar to that of the
morphological probes except we train a shared classifier on top of all token representations. We use
the vector corresponding to the first subword in both tasks. Although this may be suboptimal in
morphology, Ács et al. (2021a) showed that the difference is smaller for POS and NER. We also fine-
tune the models which seems to close the gap between first and last subword pooling for morphology.
For sequence tagging tasks, unlike for morphology, we found that the weighted average of all layers
is suboptimal compared to simply using the top layer, so the experiments presented here all use the
top layer.

POS tagging We sample 2000 train, 200 validation and 200 test sentences as POS training data from
the largest UD treebank in Estonian and Finnish, and fromWebcorpus 2.0 for Hungarian. Aside from
these three, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern Sami, and Skolt
Sami have UD treebanks, but these are considerably smaller in size. Although none of these languages
are officially supported by any of the language models we evaluate, we train crosslingual models and
find that the models have remarkable crosslingual capabilities.

NER OurNER data is sampled fromWikiAnn (Pan et al., 2017).WikiAnn has data in Erzya, Estonian,
Finnish, Hungarian, Komi Permyak, Komi Zyrian, Moksha, and Northern Sami.8 Similarly to the POS
training data, we sample 2000 training, 200 validation and 200 test sentences when available, see
Table 7.3 for actual training set sizes.

7.2.2 The models evaluated

Our goal is twofold: we want to assess monolingual models against multilingual models, and we want
to evaluate the models on ’unsupported’ languages, both typologically related and unrelated.

We pick two multilingual models, mBERT and XLM-RoBERTa. Our choices for monolingual mod-
els are EstBERT for Estonian, FinBERT for Finnish and HuBERT for Hungarian. As a control, we also

8WikiAnn also has Udmurt data, but the transcription is problematic: Latin and Cyrillic are used inconsistently,
Wikipedia Markup is parsed incorrectly etc.

115

7. Language-specific Models

Language Code Script Morph POS NER

Hungarian [hu] Latin 26k 2000 2000
Finnish [fi] Latin 38k 2000 2000
Estonian [et] Latin 26k 2000 2000
Erzya [myv] Cyrillic 0 1680 1800
Moksha [mdf] Cyrillic 0 164 400
Karelian [krl] Latin 0 224 0
Livvi [olo] Latin 0 122 0
Komi Permyak [koi] Cyrillic 0 78 2000
Komi Zyrian [kpv] Cyrillic 0 562 1700
Northern Sami [sme] Latin 0 2000 1200
Skolt Sami [sms] Latin 0 101 0

Table 7.3: Size of training data for each language.

test the English BERT as a general test for cross-language transfer. Since many Uralic speaking com-
munities are in Russia and the languages are heavily influenced by Russian, we test RuBERT on these
languages. Finally, we also test a randomly initialized mBERT. We do this because the capacity of the
BERT-base models is so large that they may memorize the probing data alone (cf. Section 6.6.4). Many
models have cased and uncased version, the latter often removing diacritics along with lowercasing.
Since diacritics play an important role in many Uralic languages, we mainly use the cased models. We
return to this issue in 7.2.3. See Table 7.4 for more details on the models.

The evaluated models, all from the BERT/RoBERTa family, differ only in the choice of training
data and the training objective. Their subword vocabularies are also derived from the training data.
They all have 12 Transformer layers, with 12 heads, and 768 hidden dimensions, for a total of 108M–
177M parameters with the exception of XLM-RoBERTa which has a larger vocabulary and therefore
a much higher parameter count (278M). The models along with their string identifier are summarized
in Table 7.4.

Model Identifier Language(s) Reference

mBERT bert-base-multilingual-cased 100+ inc. et, fi, hu Devlin et al. (2019)
XLM-RoBERTa xlm-roberta-base 100 inc. et, fi, hu Liu et al. (2019b)
EstBERT tartuNLP/EstBERT Estonian Tanvir et al. (2021)
FinBERT TurkuNLP/bert-base-finnish-cased-v1 Finnish Virtanen et al. (2019)
HuBERT SZTAKI-HLT/hubert-base-cc Hungarian Nemeskey (2020a)
EngBERT bert-base-cased English Devlin et al. (2019)
RuBERT DeepPavlov/rubert-base-cased Russian Kuratov and Arkhipov (2019)
rand-mBERT mBERT with random weights any described in Section 7.2.2

Table 7.4: List of models we evaluate.

7.2.3 Subword tokenization

The native models, trained on monolingual data, have longer and more meaningful subwords (see
the bolded entries in Table 7.5). This greatly facilitates the sharing of train data, a matter of great
importance for Uralic languages where there is little text available to begin with.

116

7.2. Pre-trained models for Uralic languages

mBERT XLM-RoBERTa EstBERT FinBERT HuBERT RuBERT EngBERT

Vocabulary size 120k 250k 50k 50k 32k 120k 29k

Missing [et] (%) .0 .0 .2 .0 .5 .1 .2
Missing [fi] (%) .0 .0 .0 .0 .4 .0 .0
Missing [hu] (%) .1 .0 21.5 48.3 .1 2.7 .2
Missing [sme] (%) .2 .0 15.0 47.4 5.1 4.8 .2
Missing [myv] (%) .0 .0 97.5 97.5 97.5 .0 .0

Subword length [et] 3.7±1.4 4.2±1.7 5.8±2.6 3.7±1.4 3.1±1.2 3.1±1.2 3.5±1.4
Subword length [fi] 3.8±1.4 4.5±1.9 3.8±1.4 5.9±2.5 3.1±1.1 3.1±1.1 3.4±1.4
Subword length [hu] 3.5±1.5 4.2±2.0 3.3±1.2 3.1±1.1 5.0±2.4 3.0±1.1 3.3±1.4
Subword length [sme] 3.2±1.0 3.4±1.1 3.2±1.1 3.2±1.1 3.1±1.2 2.9±1.0 3.0±1.0
Subword length [myv] 3.1±1.2 3.2±1.0 1.0±0.0 1.0±0.0 1.0±0.0 3.4±1.2 1.1±0.4

Character length [et] 9.2 9.2 9.2 9.2 9.2 9.2 9.2
Character length [fi] 9.3 9.3 9.3 9.3 9.3 9.3 9.3
Character length [hu] 9.8 9.8 9.6 8.8 9.8 9.8 9.9
Character length [sme] 8.5 8.5 8.3 7.6 8.5 8.4 8.5
Character length [myv] 7.3 7.3 1.8 1.8 1.7 7.3 7.3

Fertility [et] 3.4 2.8 2.1 3.6 4.4 4.3 4.3
Fertility [fi] 3.3 2.7 3.5 1.9 4.6 4.4 4.5
Fertility [hu] 4.0 3.2 5.2 4.5 2.8 5.4 5.6
Fertility [sme] 3.7 3.6 4.1 3.3 4.5 4.6 4.7
Fertility [myv] 3.6 3.3 1.1 1.1 1.1 3.0 7.2

Table 7.5: Major characteristics of cross-language tokenization. Boldface font marks the correspond-
ing language-model pairs. For a language-language code correspondence, see Table 7.3.

Both BERT- and RoBERTa-based models first tokenize along whitespaces, but the handling of
missing characters differs significantly. In BERT-based models, if there is a character missing from
the tokenizer’s vocabulary, the model discards the whole segment between whitespaces, labeling it
[UNK]. In cross-lingual cases many words are lost since monolingual models’ vocabularies tend to
lack the extra characters of a different language. In contrast, XLM-RoBERTa deletes the unknown
characters, but the string that remains between whitespaces is segmented, so the loss of information
is not as severe.

Table 7.5 summarizes different measures in language-model pairs. As a general observation, Latin
script models (FinBERT, HuBERT, EstBERT) are unusable on Cyrillic text, as seen e.g. on Erzya, where
Latin script models produce [UNK] token for 97.5% of the word types. This is also seen for Northern
Sami and Hungarian, which have many non-ascii characters, see the Hungarian-EstBert/FinBERT
pairs and the Northern Sami-FinBERT/HuBERT pairs.

The mean subword length generally lies between 3.0 and 3.5 for most pairs - naturally, the corre-
sponding language-model pairs have much higher mean subword length, 5.0 to even 5.9. This range
is true not only for Latin script languages, but for Cyrillic script languages as well, as indicated by
Erzya, which has a mean subword length of 3.1 to 3.4 on the multilingual models and on RuBERT.

Fertility (Ács, 2019) is defined as the average number of BERT word pieces found in a single real
word type. EstBERT on Estonian and FinBERT on Finnish have very similar fertility values (2.1 and
1.9), but HuBERT on Hungarian has much higher fertility. This is mainly caused by the different
vocabulary sizes - the Finnic models have 50000 subwords in their vocabulary, HuBERT only con-
tains 32000 subwords. The rest of the fertility values are mostly over 3. In extreme cases, a word is
segmented into letters, which is the case for EngBERT on Erzya, but the non-Hungarian models on

117

7. Language-specific Models

Hungarian also produce very high fertility values.

mBERT XLM-RoBERTa EstBERT EstBERT-nodiacritic FinBERT FinBERT-nodiacritic HuBERT EngBERT rand-mBERT
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Estonian

mBERT XLM-RoBERTa EstBERT EstBERT-nodiacritic FinBERT FinBERT-nodiacritic HuBERT EngBERT rand-mBERT
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Finnish

mBERT XLM-RoBERTa EstBERT EstBERT-nodiacritic FinBERT FinBERT-nodiacritic HuBERT EngBERT rand-mBERT
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Hungarian

Figure 7.7: Mean accuracy of morphological tasks by language. The bars are grouped in two, the
left one is the result of probing the first subword, the right one is the results of probing the last
subword. Blue bars are without fine-tuning, green bars are with fine-tuning. Monolingual models are
highlighted.

7.2.4 Results

7.2.4.1 Morphology

Morphological tasks are generally easy formost models andwe see reasonable accuracy from crosslin-
gual models as illustrated by Figure 7.7. Mean accuracies, especially after fine-tuning, are generally
above 90%, except, unsurprisingly, for the randomly initialized models.

Subword choice We first start by examining the choice of subword on morphological tasks. We
try probing the first and the last subword and we find that there is a substantial gap in favor of the
last subword. This is unsurprising considering that Uralic languages are mainly suffixing. This gap
on average shrinks from 0.21 to 0.032 when we fine-tune the models on the probing data (Figure 7.7

118

7.2. Pre-trained models for Uralic languages

shows this gap in green). Similarly to our findings in Section 7.1.4, without fine-tuning there is only
one task, ⟨Hungarian, Degree, ADJ⟩, where probing the first subword is better than probing the last
one for some models. This is explained by the fact that the superlative in Hungarian is formed from
the comparative by a prefix.

Monolingual models are only slightly better than the two multilingual models, XLM-RoBERTa
in particular. We run paired t-tests on the accuracy of each model pair over the 11 (et, hu) or 16 (fi)
morphological tasks in a particular language and find that the difference between the monolingual
model and XLM-RoBERTa is never significant, and for Estonian, neither is the difference between
EstBERT and mBERT.

Cross-lingual transfer works only if we fine-tune the models. Interestingly, language relatedness
does not seem to play a role here. FinBERT transfers worse to Estonian than HuBERT, and EstBERT
transfers worse to Finnish than HuBERT. Interestingly, EngBERT transfers better to all three models
than the other native BERTs, and for Finnish and Hungarian it is actually on par with mBERT.

Diacritics. As seen from the first panel of Table 7.5, EstBERT and FinBERT replace words with
unknown characters with [UNK] to such an extent that a large proportion of types end up being
filtered.We try to mitigate this issue by preemptively removing all diacritics from the input (EstBERT-
nodiacritic and FinBERT-nodiacritic). It appears that this has little effect on the original language, but
cross-lingual transfer is improved for Finnish. In the sequence tagging tasks that we now turn to, we
remove the diacritics when we evaluate EstBERT or FinBERT in a cross-lingual setting.

7.2.4.2 POS and NER

We extend our studies to all Uralic languages with any training data (see Table 7.3) and we limit the
discussion to fine-tuned models since cross-lingual transfer does not work without fine-tuning. We
split the languages into two groups, Latin and Cyrillic, and we only test models with explicit support
for the script that the language uses. Multilingual models support both scripts. Figures 7.8 and 7.9
show the results by language.

National languages. We generally find the best performance in the three languages with native
support: Estonian, Finnish and Hungarian. Monolingual models perform the best in their respective
language but the two multilingual models are also very capable.

Cross-lingual transfer does not seem to benefit from language relatedness, EngBERT transfers
just as well as other monolingual models. Even extremely close relatives such as Livvi and Finnish do
not transfer better than XLM-RoBERTa to Livvi. On the other hand, FinBERT is the best for Karelian
POS, another close relative of Finnish. The writing system and shared vocabulary also seem to play an
important role, as seen from RuBERT’s usefulness on unrelated but Cyrillic-using Uralic languages,
illustrated in Figure 7.9.

XLM-RoBERTa is generally a strong model for cross-lingual transfer for all Uralic languages. We
suspect that this is due to its large subword vocabulary, which may provide a better generalization
basis for capturing the orthographic cues that are often highly indicative in agglutinative languages.

119

7. Language-specific Models

Hungarian Estonian Finnish Livvi Karelian North Sami Skolt Sami
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

POS tagging

Hungarian Estonian Finnish North Sami
0.0

0.2

0.4

0.6

0.8

F 1
 sc

or
e

NER

EngBERT
EstBERT
FinBERT
HuBERT
XLM-RoBERTa
mBERT
rand-mBERT

Figure 7.8: POS and NER results on languages that use the Latin alphabet.

North Sami Both POS and NER in North Sami are relatively easy as long as the orthographic cues
can be captured (i.e. the Latin script is supported). rand-mBERT is surprisingly successful at NER
in North Sami, suggesting that orthographic cues (rand-mBERT uses mBERT’s tokenizer) are highly
predictive of named entities in North Sami.

7.2.5 Conclusion

Altogether we find that it is possible, and relatively easy, to transfer models to new languages with
fine-tuning on very limited training data, though extremely limited data still hinders progress: com-
pare Erzya (1680 train sentences) to Moksha (164 train sentences) in Figure 7.9.

EngBERT and RuBERT, which we introduced as a control for language transfer among genetically
unrelated languages, transfer quite well: in particular the Latin-script EngBERT transfers better to
Hungarian than FinBERT or EstBERT.

We note that we did not perform monolingual hyperparameter search or any preprocessing, and
there is probably room for improvement for each of these languages. The biggest immediate gains
are expected from extending the UD and WikiAnn datasets, and from careful handling of low-level
characterset and subword tokenization issues. There are many Uralic languages that still lack basic
resources, in particular the entire Samoyedic branch, Mari, and Ob-Ugric languages, are currently out
of scope. Another avenue of research could be to work towards a stronger mBERT Interlingua, or
perhaps one for each script family, as the character set issues are clearly relevant.

120

7.2. Pre-trained models for Uralic languages

Erzya Moksha Komi Permyak Komi Zyrian
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

POS tagging

RuBERT
XLM-RoBERTa
mBERT
rand-mBERT

Erzya Moksha Komi Permyak Komi Zyrian
0.0

0.2

0.4

0.6

0.8

F 1
 sc

or
e

NER

Figure 7.9: POS and NER results on languages that use the Cyrillic alphabet.

121

7. Language-specific Models

Morph tag POS Estonian Finnish Hungarian

Case adj 8 classes 11 classes
Case noun 15 classes 12 classes 18 classes
Case propn 8 classes
Case verb 12 classes

Degree adj Cmp, Pos, Sup Cmp, Pos, Sup

Derivation adj Inen, Lainen, Llinen, Ton
Derivation noun Ja, Lainen, Minen, U, Vs

InfForm verb 1, 2, 3

Mood verb Cnd, Imp, Ind Cnd, Imp, Ind, Pot

Number psor noun Sing, Plur
Number a/n/v Sing, Plur Sing, Plur Sing, Plur

PartForm verb Pres, Past, Agt

Person psor noun 1, 2, 3
Person verb 1, 2, 3 1, 2, 3

Tense adj Pres, Past
Tense verb Pres, Past Pres, Past Pres, Past

VerbForm verb Conv, Fin, Inf, Part, Sup Inf, Fin, Part Inf, Fin

Voice adj Act, Pass
Voice verb Act, Pass Act, Pass

Table 7.6: List of morphological probing tasks.

122

Chapter8

Perturbations and Shapley values

In the previous chapters we showed that PLMs exhibit proficiency in morphosyntax and most mor-
phosyntactic tasks do not pose a serious challenge for PLMs. In this chapter we aim to find where
morphosyntactic information is available in the sentence. We do this by systematically removing
some information from the probing sentence and retraining the probe on the modified sentences. The
drop in performance is indicative of the importance of the information we removed.

We then further elaborate by assigning importance to the individual tokens of the sentence relative
to the target token. We treat the individual tokens as players of a game and compute the Shapley
values, an additive measure of importance of each player.

Althoughwe perform the experiments required for computing the Shapley values for bothmBERT
and XLM-RoBERTa as well as chLSTM, it turns out that most of our observations are similar for
mBERT and XLM-RoBERTa, and often for chLSTM, a non-pretrained character-level baseline. This
resemblance prompts us to believe that these are somehow characteristics of languages rather than
language models. Indeed we often find linguistic explanations for the most surprising results.

Throughout this chapter all methods we present require masking certain tokens, therefore we opt
to use the term masked language model rather than the broader term pre-trained language model. We
examine two multilingual models, mBERT and XLM-RoBERTa along with a non-pretrained baseline,
chLSTM, which we extend with an artificial mask token.

8.1 Perturbations

In Section 8.1.1 we analyze the MLMs’ knowledge of morphology in more detail through a set of
perturbations that remove some source of information from the probing sentence. We compare the
different perturbations to the unperturbed mBERT, but observe that perturbations often reduces per-
formance to the level of the contextual baseline (chLSTM) or even below. The effect of major pertur-
bations is unmistakable. Table 8.1 exemplifies each perturbation.

Target masking Languages with rich inflectional morphology tend to encode most, if not all, mor-
phological information in the word form alone. We test this by hiding the word form, while keeping
the rest of the sentence intact. Recall that BERT is trained with a cloze-style language modeling ob-
jective, i.e., 15% tokens are replaced with a [MASK] token and the goal is to predict these. We employ

123

8. Perturbations and Shapley values

Method Explanation Example

Original Then he ripped open Hermione ’s letter and read it out loud .
targ mask target word Then he ripped open Hermione ’s letter and [M] it out loud .
l2 mask previous 2 words Then he ripped open Hermione ’s [M] [M] read it out loud .
r2 mask next 2 words Then he ripped open Hermione ’s letter and read [M] [M] loud .
b2 mask 2 on each side Then he ripped open Hermione ’s [M] [M] read [M] [M] loud .
permute shuffle word order and open read Then letter . it out he ripped ’s Hermione loud

Table 8.1: List of perturbation methods with examples. The target word is in bold. The mask symbol
is abbreviated as [M].

this mask token to hide the target word (targ) from the auxiliary classifier. This means that all or-
thographic cues present in the word form are removed.1

Context masking Many languages encode morphology in short phrases that span a few words,
e.g., person/number agreement features on a verb that is immediately preceded by a subject. The
verb tense of read, while ambiguous on its own, can often be disambiguated by looking at a few
surrounding words, such as the presence of an auxiliary (didn’t), or a temporal expression. We use
the relative position of a token to the target word, left context refers to the part of the sentence before
the target word, while right context refers to the part after it. We try masking the left (lN), the right
(rN), and both sides (bN), where N refers to the number of masked tokens. We expand this analysis
using Shapley values in Section 8.2.

Permute Many languages have strict constraints on the order of words. A prime example is En-
glish, where little morphology is present at the word level, but reordering the words can change the
meaning of a sentence dramatically. Consider the examples Mary loves John versus John loves Mary:
in languages with case inflection the distinction is made by the cases rather than the word order. It
has been shown (Sinha et al., 2021; Ettinger, 2020) that BERT models are sensitive to word order in
a variety of English and Mandarin tasks. We quantify the importance of word order by shuffling the
words in the sentence.

8.1.1 Results

Perturbations change the input sequence in a way that removes information and should result in a
decrease in probing accuracy. Since the net changes caused by masking are often quite small2, partic-
ularly for verbs, we define the effect of perturbation p on task t when probing modelm as:

E(m, t, p) = 1− Acc(m, t, p)

Acc(m, t)
, (8.1)

where Acc(m, t) is the unperturbed probing accuracy on task t by model m. We present the effect
values as percentages of the original accuracy. 50% effect means that the probing accuracy is reduced
by half. Negative effect means that the probing accuracy improves due to a perturbation.

1We use a single mask token regardless of how many wordpieces the target word would contain, rather than masking
each wordpiece. Our early experiments showed negligible difference between the two choices.

2We run every experiment 10 times and the standard deviation of identical runs is small.

124

8.1. Perturbations

Perturbation

mBERT

accuracy

XLM-R

accuracy

chLSTM

accuracy

mBERT

effect

XLM-R

effect

chLSTM

effect

unperturbed 90.40 91.80 85.00 0.00% 0.00% 0.00%
targ 75.80 80.00 60.20 16.18% 12.74% 28.93%
permute 84.60 86.10 77.40 6.74% 6.42% 9.68%
L2 88.40 90.30 84.20 2.28% 1.63% 1.08%
R2 89.10 90.90 85.10 1.48% 1.01% –0.17%
B2 86.00 87.90 83.80 5.03% 4.42% 1.55%

Table 8.2: Perturbation results by model averaged over 247 tasks. Effect is defined in Equation 8.1.

ALL NOUN PROPN VERB ADJ
50

60

70

80

90

100

Te
st

 a
cc

ur
ac

y mBERT
XLM-R
mBERT-targ
XLM-targ
mBERT-permute
XLM-permute
mBERT-L2
XLM-L2
mBERT-R2
XLM-R2
mBERT-B2
XLM-B2
chLSTM

Figure 8.1: Test accuracy of the perturbed probes grouped by POS. The first group is the average of
all 247 tasks. The first two bars in each group are the unperturbed probes’ accuracy.

Given the large number of tasks and multiple perturbations, instead of listing all individual data
points, we average the results over POS, tags, and language families, and point out the main trends
and outliers. The overall average perturbation results are listed in Table 8.2.

Our main group of perturbations involves masking one or more words in the input sentence. Both
models have dedicated mask symbols, which we use to replace certain input words. In particular,
targ masks the target word, where most of the information is contained – precisely how much will
be discussed in Section 8.2. permute shuffles the entire context, leaving the target word fixed, l2
masks the two words preceding that target word, r2 masks the two words following the target and b2
masks both the preceding two and the following two words. Remarkably, permute and b2 are highly
correlated, a matter we shall return to in 8.1.1.2. Figure 8.1 shows the average test accuracy of the
probes by perturbation grouped by POS.

8.1.1.1 Context masking

Proper nouns seem to be affected the most by context masking perturbations. This is probably caused
by the lack of morphological information in the word form itself, at least in Slavic languages, where

125

8. Perturbations and Shapley values

case gender number tense
tag

5

0

5

10

15

20

ef
fe

ct

mBERT-L2
XLM-L2
mBERT-R2
XLM-R2
mBERT-B2
XLM-B2

Figure 8.2: The effect of context masking perturbations by tag. Error bars indicate the standard devi-
ation.

IE-Baltic IE-Germanic IE-Indic IE-Romance IE-Slavic IE-other Isolate Semitic Uralic
family

0

10

20

30

40

ef
fe

ct

mBERT-L2
XLM-L2
mBERT-R2
XLM-R2
mBERT-B2
XLM-B2

Figure 8.3: The effect of context masking on case tasks by language family. Error bars indicate the
standard deviation.

proper nouns are often indeclinable3. The models pick up much of the information from the context.
We shall examine this in more detail in Section 8.2.

Although the average effect is rather modest, there are some tasks that are affected significantly
by context masking perturbations. Figure 8.2 shows the effect (as defined in Equation 8.1) by tag.

Since case is affected the most, we examine it a little closer. Figure 8.3 shows the effect of con-
text masking on case tasks grouped by language family. Uralic results are barely affected by context
masking, which confirms that the target word alone is indicative of the case in Uralic languages. Ger-
manic, Semitic, and Slavic case probes are moderately affected by l2 and somewhat surprisingly, we
find a small improvement in probing accuracy, by r2. Indic probes are the opposite, r2 has over 20%
effect, while l2 is close to 0. Indic word order is quite complex, with a basic SOV word order affected
both by split ergativity and communicative dynamism (topic/focus) effects (Jawaid and Zeman, 2011).
Again we suspect that these complexities overwhelm the MLMs, which work best with mountains
of data, typically multi-gigaword corpora, 3-4 orders of magnitude more than what can reasonably
be expected from primary linguistic data, less than thirty million words during language acquisition
(Hart and Risley, 1995).

3Slavic tasks account for roughly one third of the probing tasks, see Figure 6.2.

126

8.1. Perturbations

8.1.1.2 Target masking and word order

We discuss targ and permute in conjunction since they often have inverse effect for certain lan-
guages and language families. Target masking or targ is by far the most destructive perturbation
with an average effect of 16.1% for mBERT and 12.7% for XLM-RoBERTa. permute is also a signif-
icant perturbation, particularly for case tasks and adjectives. As Figure 8.4 shows, the effects differ
widely among tasks but some trends are clearly visible. targ clearly plays an important role in many
if not all tasks. Verbal tasks rely almost exclusively on the target form and permute has little to no
effect. Verbal morphology is most often marked on the verb form itself, so this not surprising. Nouns
and proper nouns behave similarly with the exception of case tasks. Case tasks show a mixed picture
for all 4 parts of speech. targ and permute both have a moderate effect. This might be explained
by the fact that case is expressed in two distinct ways depending on the language. Agglutinative lan-
guages express case through suffixes, while analytic languages, such as English, express case with
prepositions. In other words, the context is unnecessary for the first group and indispensable for the
second.

Both targ and permute are markedly small for gender and number tasks in adjectives. This is
likely due to the fact that adjectives do not determine the gender or the number of the nominal head
but rather copy (agree with) it.

Figure 8.5 shows the effect of targ and permute by language family. Although the standard
deviations are often larger than the mean effects, the trends are clear for multiple language families.
The Uralic family is barely affected by permute while targ has over 20% effect for both models. targ
has a larger effect than permute for the Baltic and the Romance family and isolate languages. Indic
tasks on the other hand tend to have little change due to targ, while permute has the largest effect
for this family.

8.1.1.3 Relationship between perturbations

In the previous section we showed that targ and permute often have an inverse correlation. Here
we quantify their relationship as well as the relationship between all perturbations across the two
models. First, we show that the effects across models are highly correlated as evidenced by Figure 8.6,
which shows the pairwise Pearson correlation of the effects of each perturbation pair. The matrix
is almost symmetrical. The main diagonal is close to one, which means that the same perturbation
affects the two models in a very similar way. This suggests not just that the models are quite similar
(see also Figure 8.7 depicting the correlation between perturbations in each model side by side) but
also that the perturbations tell us more about morphology than about the models themselves.

8.1.2 Typology

While our dataset is too small for drawing far-reaching conclusions, we are beginning to see an
emerging typological pattern in the effects of perturbation as defined in Equation 8.1. We cluster
the languages by the effects of the perturbations on each task. There are 5 perturbations and 14 tasks,
available as input features for the clustering algorithm, but many are missing in most languages. We
use the column averages as imputation values. Since a single clustering run shows highly unstable
results, we aggregate over 100 runs of K-means clustering with K drawn uniformly between 3 and
8 clusters. We then count how many times each pair of languages were clustered into the same clus-
ter. Figure 8.8 illustrates the co-occurrence counts for XLM-RoBERTa. Since mBERT results are very
similar, we limit our analysis to XLM-RoBERTa for simplicity.

127

8. Perturbations and Shapley values

0

20

40

60

ca
se

adj verb noun propn

0

20

40

60

ge
nd

er

0

20

40

60

nu
m

be
r

0

20

40

60

te
ns

e

Figure 8.4: The effect of targ and permute. Error bars indicate the standard deviation.

IE-Baltic IE-Germanic IE-Indic IE-Romance IE-Slavic IE-other Isolate Semitic Uralic

0

10

20

30

40

ef
fe

ct

mBERT-targ
XLM-targ
mBERT-permute
XLM-permute

Figure 8.5: The effect of targ and permute by language family. Error bars indicate the standard
deviation.

128

8.2. Shapley values

L2 R2 B2 targ permute
mBERT

L 2
R 2

B 2
ta

rg
pe

rm
ut

e
XL

M
-R

0.83 -0.2 0.49 -0.24 0.55

-0.083 0.85 0.52 -0.2 0.47

0.64 0.46 0.91 -0.42 0.92

-0.24 -0.26 -0.41 0.93 -0.42

0.66 0.42 0.92 -0.43 0.96
0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 8.6: The pairwise Pearson correlation of perturbation effects between the two models.

L2 R2 B2 targ permute

L 2
R 2

B 2
ta

rg
pe

rm
ut

e

-0.02

0.67 0.58

-0.25 -0.17 -0.39

0.68 0.49 0.96 -0.41

mBERT

L2 R2 B2 targ permute

-0.15

0.61 0.53

-0.16 -0.23 -0.41

0.61 0.46 0.95 -0.41

XLM-R

0.4

0.2

0.0

0.2

0.4

0.6

0.8

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 8.7: The pairwise Pearson correlation of perturbation effects by model.

Language families tend to be clustered together with some notable exceptions. German is seldom
clustered together with other languages, including other members of the Germanic family. To a lesser
extent, Latin is an outlier in the Romance family – it clusters better with Romanian than withWestern
or Southern Romance. The two Indic languages are almost always in a single cluster without any other
languages, but the two Semitic languages are almost never in the same cluster. Arabic tends to be in its
own cluster, while Hebrew is often grouped with Indo European languages. The Uralic family forms
a strong cluster along with Basque and Turkish. These languages have highly complex agglutination
and they all lack gender, so this is not surprising.

8.2 Shapley values

Having measured the (generally harmful) effect of perturbations, our next goal is to assign responsi-
bility (blame) to the contributing factors. We use Shapley values for this purpose. For a general intro-

129

8. Perturbations and Shapley values

be bg pl ru uk hr cz sr sk sl lv lt af da nl en de is no nn sv ca fr it pt es ro la hi ur sq hy el ga fa he ar et fi hu eu tr

be
bg
pl
ru
uk
hr
cz
sr
sk
sl
lv
lt
af
da
nl

en
de
is

no
nn
sv
ca
fr
it

pt
es
ro
la
hi
ur
sq
hy
el

ga
fa
he
ar
et
fi

hu
eu
tr

20 40 60 80 100

IE-Slavic IE-Baltic IE-Germanic IE-Romance IE-Indic IE-other Semitic Uralic

IE-Slavic
IE-Baltic

IE-Germ
anic

IE-Rom
ance

IE-Indic
IE-other

Sem
itic

Uralic

Figure 8.8: Co-occurrence counts for each languages pair over 100 clustering runs. Languages are
sorted by family and a line is added between families.

130

8.2. Shapley values

duction, see Shapley (1951) and Lundberg and Lee (2017); for motivation of Shapley values in NLP, see
Ethayarajh and Jurafsky (2021). We consider a probe as a coalition game of the words of the sentence.
We treat each token position as a player in the game. The tokens are defined by their relative position
to the target token. A sentence is a sequence defined as Lk, Lk−1, . . . , L1, T,R1, R2, . . . , Rm, where
k is the number of words that precede that target word and m is the number of words that follow it.
The tokens far to the left are considered as belonging to a single position (−4−), those far to the right
to another position (4+), so we have a total of 9 players N = {−4−,−3,−2,−1, 0, 1, 2, 3, 4+}.

On a given task, we can remove the contribution of a player i by masking the word(s) in positions
corresponding to that player. The Shapley value φ(i) corresponding to this player is computed as

φ(i) =
1

n

∑
S⊆N\{i}

v(S ∪ {i})− v(S)(
n−1
|S|

) , (8.2)

where n is the total number of players, 9 in our case, and v(S) is the value of coalition S (a set
of players, here positions) on the given tasks. v(S) is a function of the accuracies (Acc) of the task’s
probe with coalition S, the full set of playersN , and the model. When all players are absent (masked),
Accall masked is very close to the accuracy of the trivial classifier that always picks the most common
label. As is clear from Eq. 8.2, the contribution of the ith player is established as a weighted sum of the
difference in the contributions of each coalition that contains i versus having i excluded. The weights
are chosen to guarantee that these contributions are always additive: bringing players i and j into a
coalition improves it exactly by φ(i)+φ(j). The value of the entire set of players is always 1 (we use
a multiplier 100 to report results in percentages), and we scale the contributions so that the value of
the empty coalition is 0:

v(S) = 100− 100 · AccS −Accall masked
AccmBERT −Accall masked

. (8.3)

Not only are the Shapley values defined by Equation 8.2 an additive measure of the contributions that
a particular player (in our case, the average word occurring in that position) makes to solving the
task, but they define the only such measure (Shapley, 1951).

8.2.1 Implementation

Both mBERT and XLM-RoBERTa have built-in mask tokens that are used for the masked language
modeling objective. We remove the contribution of certain tokens by replacing them with mask sym-
bols. Multiple tokens can be removed at a time and we use a single mask token in place of each token.
We designate an unused character as mask for the chLSTM experiments. When a token is masked,
we replace each of its characters with this mask token. Computing the Shapley values for 9 players
requires 29 = 512 experiments for each of the 247 tasks. This includes the unmasked sentence (all
players contribute) and the completely masked sentence (no players), where each token is replaced
with a mask symbol.

The overall number of experiments we ran is 460k. The average runtime of an experiment is 7
seconds and the total runtime is roughly 38 days on a single GPU. We used a GeForce RTX 2080 Ti
(12GB) and a Tesla V100 (16GB). The maximum number of epochs was set to 200 but in practice this
is only reached in 2% of the experiments. Early stopping based on the development loss ends the
experiments after 22 epochs on average.

131

8. Perturbations and Shapley values

model left right target context left/right left/context right/context

mBERT 24.3 16.7 58.9 41.1 1.455 0.591 0.406
XLM-R 27.0 18.6 54.4 45.6 1.452 0.592 0.408
chLSTM 15.7 5.3 79.0 21.0 2.962 0.748 0.252

Table 8.3: Summary of the Shapley values.

8.2.2 General results

Figure 8.11 shows the Shapley values averaged over the 247 tasks for eachmodel. Table 8.3 summarizes
the numerical results. The values extracted from the two MLMs are remarkably similar. We quantify
this similarity using L1 (Manhattan) distance, which is 0.09 between the average Shapley values of
all tasks.4 The Shapley distributions obtained by XLM-RoBERTa and mBERT move closely together:
the mean distance between Shapley values obtained from XLM-RoBERTa and mBERT is just 0.206,
and of the 247 pairwise comparisons only 5 are more than two standard deviations above the mean.
This means that in general Shapley values are more specific to the morphology of the language than
to the model we probe. To simplify our analysis, we only discuss the XLM-RoBERTa results in detail
since they show the same tendencies and are slightly better than the results achieved with mBERT.

The first observation is that the majority of the information, 54.9%, comes from the target words
themselves, with the context contributing on average only 45.1%. This is by no means uniform over
the different POS and tags. As illustrated by Figure 8.9 adjectives and proper nouns rely on the context
more than common nouns or verbs. We see similar trends when we look at the per-tag Shapley values
in Figure 8.10. Tense, an exclusively verbal tag, has the largest Shapley value for target out of the four
tags. chLSTM, our non-pretrained baseline, while more reliant on the target for every category, shows
the same trends, indicating that the explanation is, at least partially, linguistic.

Next, we observe that words farther away from the target contribute less, providing a window
weighting scheme (kernel density function) broadly analogous to the windowing schemes used in
speech processing (Harris, 1978).

Third, the low Shapley values at the two ends, summing to 11.2% in XLM-RoBERTa (11.0% in
mBERT) go someway toward vindicating the standard practice in KWIC indexing (Luhn, 1959), which
is to retain only three words on each side of the target. While the observation that this much context
is sufficient for most purposes, including disambiguation and machine translation, goes back to the
very beginnings of information retrieval (IR) and machine translation (MT) (Choueka and Lusignan,
1985), our findings provide the first quantifiable statement to this effect in MLMs (for HMMs, see
Sharan et al., 2018) and open the way for further systematic study directly on IR and MT downstream
tasks.

With this we are coming to our central observation, evident both from Figure 8.11 and from nu-
merical considerations (Table 8.3): the decline is noticeably faster to the right than to the left, in spite
of the fact that there is nothing in the model architecture to cause such an asymmetry. What is more,
not even our experiments with random weighted MLMs (presented in 6.6.4) show such asymmetry.

Whatever happens before a target word is about 40% more relevant than whatever happens after
it. In morphophonology ‘assimilation’ is standardly classified, depending on the direction of influence

4The Kullback-Leibler (KL) divergence is 0.014 bits, also very small, but we useL1 in these comparisons, since individual
Shapley values can be negative. L2 (Euclidean) distance values would be just as good (the Pearson correlation between L1

and L2 is 0.983), but since Shapley values sum to 1 L1 is easier to interpret. In what follows, “distance” always refers to L1

distance.

132

8.2. Shapley values

0

20

40

60

80
Sh

ap
le

y
ADJ

mBERT
XLM-R
chLSTM

NOUN
mBERT
XLM-R
chLSTM

L4 + L3 L2 L1 T R1 R2 R3 R4 +

0

20

40

60

80

Sh
ap

le
y

PROPN
mBERT
XLM-R
chLSTM

L4 + L3 L2 L1 T R1 R2 R3 R4 +

VERB
mBERT
XLM-R
chLSTM

Figure 8.9: Shapley values by POS and model.

0

20

40

60

80

100

Sh
ap

le
y

case
mBERT
XLM-R
chLSTM

gender
mBERT
XLM-R
chLSTM

L4 + L3 L2 L1 T R1 R2 R3 R4 +

0

20

40

60

80

100

Sh
ap

le
y

number
mBERT
XLM-R
chLSTM

L4 + L3 L2 L1 T R1 R2 R3 R4 +

tense
mBERT
XLM-R
chLSTM

Figure 8.10: Shapley values by morphosyntactic tag and model.

133

8. Perturbations and Shapley values

L4 + L3 L2 L1 T R1 R2 R3 R4 +

0

20

40

60

80

Sh
ap

le
y

va
lu

e

mBERT
XLM-R
chLSTM

Figure 8.11: Shapley values by relative position to the probed target word. The values are averaged
over the 247 tasks.

in a sequence, as progressive assimilation, in which a following element adapts itself to a preceding
one, and regressive (or anticipatory) assimilation, in which a preceding element takes on a feature
or features of a following one. What the Shapley values suggest for morphology is that progressive
assimilation (feature spreading) is more relevant than regressive.

This is not to say that regressive assimilation will be impossible, or even rare. One can perfectly
well imagine a language where adjectives precede the noun theymodify and agree to them in gender:5
this form of agreement is clearly anticipatory. Also, the direction of the spreadingmay dependmore on
structural position than linear order, cf. for example the ‘head marking’ versus ‘dependent marking’
distinction drawn by Nichols (1986). But when all is said and done, the Shapley values, having been
obtained from models that are perfectly directionless, speak for themselves: left context dominates
right 58.39% to 41.61% in XLM-RoBERTa (58.36% to 41.64% in mBERT) when context weights are
considered 100%. This makes clear that it is progressive, rather than anticipatory, feature sharing that
is the unmarked case. While our dataset is currently heavily skewed toward IE languages, so the result
may not hold on a typologically more balanced sample, it is worth noting that the IE family is very
broad typologically, and three of the four heaviest outliers (Hindi, Urdu, Irish) are from IE, only Arabic
is not.

8.2.3 Outliers

We next consider the outliers. The main outliers are listed in Figure 8.12. We compute the distance of
each task’s Shapley values from the mean. Over 91.5% of the tasks are very close (Manhattan distance
below one standard deviation, 0.264 to the mean of the distribution, and there are only 5 tasks (2%
of the total) where the distance exceeds two standard deviations above the mean. The first row of
Figure 8.12 shows the mean distribution and the 5 tasks that are closest to it, such as ⟨Polish, N,
number⟩ (1st row 2nd panel, distance from mean (DFM) 0.053) or ⟨Lithuanian, N, case⟩ (1st row 3rd
panel, DFM = 0.132). These exemplify the typologically least marked, simplest cases, and thus require
no special explanation.

What does require explanation are the outliers, Shapley patterns far away from the norm. By
distance from the mean, the biggest outliers are tasks from the Indic family: ⟨Hindi, PROPN, case⟩,
⟨Hindi, ADJ, case⟩, ⟨Urdu, NOUN, case⟩ and ⟨Urdu, PROPN, case⟩. For these proper noun and noun

5Indeed, there are several such languages in our sample such as German and most Slavic languages.

134

8.2. Shapley values

tasks, the greatest Shapley contribution, about 72–73%, is on the word following the proper noun.
In Hindi not knowing the target is actually better than knowing it, the target’s own contribution is
negative 12% and its contribution is close to 0 in Urdu. For the casemarked onHindi adjectives (⟨Hindi,
ADJ, case⟩), the most important is the second to its right, 59%; followed by the 3rd to the right, 15%;
the target itself, 13%; and the first to the right, 12%. The Indic noun case patterns, unsurprisingly,
follow closely the proper noun patterns. For both Hindi and Urdu there are good typological reasons
such as SOV word order, for this to be so.6 A closer look at all tasks from the Indic family (Figure 8.13)
shows that only half of them are dominated by the target Shapley value.

The next biggest outliers are ⟨Arabic, NOUN, case⟩ and ⟨Irish, NOUN, case⟩, where the preceding
word ismore informative than the target itself. These are similarly explainable, this time by VSO order.
It also stands to reason that the preceding word, typically an article, will be more informative about
⟨German, NOUN, case⟩ than the word itself. The same can be said about ⟨German, ADJ, gender⟩ and
⟨German, ADJ, number⟩, or the fact that ⟨Czech, ADJ, gender⟩ is determined by the following word,
generally the head noun.

If we arrange Shapley distributions by decreasing distance from the mean, we see that dfm is
roughly normally distributed (mean 0.492, std 0.264). Only 21 tasks are more than one standard devi-
ation above the mean, the last two rows of Figure 8.12, present the top 12 of these. Altogether, there
was a single case whereR2 dominated, ⟨Hindi, ADJ, case⟩, 16 cases when L1 dominates, and 11 cases
where R1 dominates, everywhere else it is the target that is the most informative. The typologically
unusual patterns, all clearly related to the grammar of the language in question, are transparently de-
picted in the Shapley patterns. For example, as noted in Section 6.5.5, the article preceding the noun
in German often is the only indication of the noun’s case. The Shapley values we obtained simply
quantify this information dependence. Similarly, Arabic cases are determined in part by the preced-
ing verb and/or preposition. Quite often, Shapley values confirm what we know anyway, e.g., that
verbal tasks rely more on the target word than nominal tasks.

To the extent that similar rule-based explanations can be ascertained for all cases listed in Fig-
ure 8.12, we can attribute XLM-RoBERTa’s success to an impressive sensitivity to grammatical reg-
ularities. Though the mechanisms are clearly different, such a finding places XLM-RoBERTa in the
same broad tradition as other works seeking to discover rules and constraints (e.g., Brill, 1993).

Finally, we opted to mention the curious case of German tasks depicted in Figure 8.14. German is
clearly the biggest outlier from the Germanic family. In fact, it is dissimilar to every other language as
illustrated by our clustering experiments (cf. Figure 8.8). Multiple German tasks appear in the main
Shapley outliers (Figure 8.12) and among the tasks with the least uniform layer weights (Figure 6.30).
When looking at the individual tasks’ Shapley values, only 4 of the 10 German tasks are dominated
by the target. Case tasks are left dominant, while adjective gender and number rely on R1 the most.

8.2.4 The difficulties of generalization

Our Shapley data can be summarized as a 9-dimensional vector for each ⟨i, j, k⟩. In other words,
the Shapley distributions come naturally arranged in a 3D tensor. Unfortunately, many of the values
are missing, either because the language does not combine a particular POS with a particular tag,
or because we do not have enough data for training on the task. With a much larger dataset (recall
from Section 6.3.1) that we use essentially all currently available uniformly coded data) experiment-
ing with 3D tensor decomposition techniques (Kolda and Bader, 2009) may make sense, but for now
the outcome depends too much on the imputation method. That said, we have obtained one robust

6We thank Paul Kiparsky for pointing this out.

135

8. Perturbations and Shapley values

0

50

No
rm

al

Mean pl, N, number (0.053) lt, N, case (0.132) fa, N, number (0.132) pl, P, gender (0.138) fi, V, number (0.14)

0

50

At
yp

ica
l

hi, P, case (1.971) ur, N, case (1.75) ur, P, case (1.639) hi, A, case (1.552) ar, N, case (1.504) ga, N, case (1.398)

L4 + L3 L2 L1 T R1 R2 R3R4 +

0

50

hi, N, case (1.299)

L4 + L3 L2 L1 T R1 R2 R3R4 +

de, N, case (1.297)

L4 + L3 L2 L1 T R1 R2 R3R4 +

de, A, gender (1.053)

L4 + L3 L2 L1 T R1 R2 R3R4 +

cz, A, gender (1.02)

L4 + L3 L2 L1 T R1 R2 R3R4 +

de, A, number (0.942)

L4 + L3 L2 L1 T R1 R2 R3R4 +

ar, A, case (0.935)

Figure 8.12: Least and most anomalous Shapley distributions. The first row are the mean Shapley
values of the 247 tasks and the 5 tasks closest to the mean distribution, i.e. the least anomalous as
measured by the dfm distance from the average Shapley values. The rest of the rows are the most
anomalous Shapley values in descending order. For each particular task, its distance from the mean
(dfm) is listed in parentheses above the graphs.

L4 + L3 L2 L1 T R1 R2 R3 R4 +

0

20

40

60

80

Sh
ap

le
y

va
lu

e

Hindi, A, case
Hindi, N, case
Hindi, N, gender
Hindi, N, number
Hindi, P, case
Hindi, P, gender
Urdu, N, case
Urdu, N, gender
Urdu, N, number
Urdu, P, case

Figure 8.13: Shapley values in Indic tasks.

conclusion, independent of how we fill the missing values: it is harder to generalize by language than
by POS or tag. It would be tempting to look at languages as units of generalization, but we found that
trends rarely apply to individual languages!

For the totality of tasks ⟨i, j, k⟩ we can keep one of i, j, or k fixed, and compute the average
Shapley distributions Sj,k(i), Si,k(j), and Si,j(k). Given the average distributions, say Sj,k(Polish)
we can ask how far Shapley distributions for all available Polish tasks are from it, and compute the
average of these distances from the mean in the selected direction (in this case, language). We find
that the average distance from the language averages is 0.37, while the distance from tag averages
is 0.25 and the distance from POS averages is 0.26. In other words, aggregating tasks by language
results in considerably larger variability than aggregating by POS or tag. The POS and tag results
are similar since POS and tag are highly predictive of each other across languages: typically nouns
will have case, verbs will have tense, and conversely, tenses are found on verbs, cases on nouns. This
makes data aggregated on POS and tag jointly, as in Figure 8.4, much easier to make sense than data

136

8.3. Conclusion

L4 + L3 L2 L1 T R1 R2 R3 R4 +

0

10

20

30

40

50

60

70

Sh
ap

le
y

va
lu

e

German, A, case
German, A, gender
German, A, number
German, N, case
German, N, gender
German, N, number
German, P, case
German, P, gender
German, V, number
German, V, tense

Figure 8.14: Shapley values in German tasks.

aggregated by language.

8.3 Conclusion

In this chapter we showed that perturbations or the systematic removal of information from a sen-
tence and probing the incomplete sentence is a suitable tool for analyzing both the languages and
the models. Since our conclusions show high agreement across models including a non-pretrained
baseline, we attribute them to the languages rather than the models.

We further refined our analysis using Shapley values as a direct measure of token importance
relative to the target token. We find general trends over the different tags, POS and language families,
the most interesting outliers have linguistic explanations.

Finally we showed that generalizing over languages is difficult and it offers less of an explanation
than generalizing over tags and POS.

137

Conclusion and Future Outlook

Summary of key contributions

The first part of my dissertation examines pre-Transformer deep learning models for morphology.
Thesemodels are smaller andmost often trained solely on the particular taskwithout any pre-training.
I showed that low level morphosyntactic tasks such as morphological inflection, analysis and lemma-
tization can be tackled with smaller deep learning models with high level accuracy. I compared dif-
ferent versions of encoder-decoder models with attention (Thesis 1). The most unique model is SoPa,
a restricted finite state model implemented as a fully trainable neural network. Schwartz et al. (2018)
created SoPa and applied it on sequence classification tasks which I extended with a decoder and
used it on sequence-to-sequence tasks such as morphological analysis and lemmatization. Although
the results were below the LSTM baselines, the additional interpretability made these experiments
worthwhile (Thesis 2).

I turned towards pre-trained language models (PLMs) in the second part of this dissertation. PLMs
revolutionized the field and are now omnipresent in our daily lives. My main research goal was to
evaluate how good they are for morphology. I examined this question for 247 languages from 42
language families via probing and I showed that the multilingual models from BERT model family are
indeed very good at morphology if we choose the subword pooling method carefully (Thesis 3).

I then turned tomonolingual models for Uralic languages and compared them against multilingual
models. I showed that monolingual models are usually better but the difference is small. Additionally
I showed that BERT models can easily be transferred to unsupported languages for POS and NER
tagging with modest amounts of annotated data (Thesis 4).

Finally I introduced a set of perturbations that remove certain sources of information from a
sentence and I showed that probing performance is affected in ways that we often anticipate based on
linguistic properties particularly the role of context. To further analyze this I computed the Shapley
values of each token in the context. Aside from general trends, I often found linguistic explanation
for the main outliers (Thesis 5).

Limitations and challenges

Part I. of this dissertation dates back to the time of smaller task-specific neural models which are
less widely used nowadays especially for building new applications. The limitations at the time were
mainly the availability of annotated training data or a rule-based morphological analyzer.

139

8. Perturbations and Shapley values

The main limitations of Part II. pertain to the nature of the tasks I examined. Morphosyntactic
tasks are low-level tasks and the performance of certain models on these tasks may not give a lot of
insight about what we can expect on high level tasks which are generally accepted as benchmarks
when available. Unfortunately the large majority of languages, even ones with sufficient amounts of
raw text data for LLM training, lack such benchmarks and I had to work with what was available.
UD is one of the few standardized resources available in a large number of languages but it still only
available in less than 10% of all languages. Thanks to the standard format of UD, I was able to do
cross-lingual comparisons.

The second important limitation of Part II. is data quality. One source of data errors is UD itself.
Although generally a high quality resource, it is composed of diverse treebanks, even within the same
language, and it is bound to have errors and inconsistencies. The high number of languages I studied
made it impossible to do specialized quality control. The second source of errors is the result of the
sampling method itself. It considers every token as a candidate for target token but many tokens are
parts of multiword expressions.

The third major limitation of Part II. is the lack of fine-tuning aside from a small ablation study
(Section 6.6.3) and the evaluation of Uralic languages (Section 7.2). The main reason for this is effi-
ciency. Fine-tuning would have resulted in an 80-fold increase in training time and an even larger
increase in evaluation time due to the necessity of reloading the fine-tuned BERT models each time.
Other technical difficulties of fine-tuning include a more sensitive batch size choice due to VRAM
limitations and a much higher need for disk space. A case can be made for feature extraction as a
better estimation of model knowledge than full scale fine-tuning.

Future research directions

The research questions I examined in Part I. are becoming less and less relevant nowadays since
LLMs seem to pick up morphosyntax during training and high-level problems such as hallucination
are more crucial. There is a sharp decline in morphology-related papers at major conferences and the
SIGMORPHON workshop is unfortunately getting smaller every year. Still, morphosyntax remains
relevant for low-resource languages where data collection is often hindered by the lack of human
resources and high quality morphological analyzers can help linguists in data curation.

My studies in Part II. mainly targeted models with hundreds of millions of parameters rather than
billion parameter LLMs popular today. Aside from the fact that most of those experiments predate
newer LLMs, medium sized models are easier to study, particularly when fine-tuning is involved. An
obvious extension of my work is the probing of large open-source LLMs. Some LLMs such as the
GPT-3 and GPT-4 family are only available through APIs which makes probing impossible due to the
inaccessibility of output tensors. Prompting can be used as a workaround but it has its own challenges
as I pointed out in Section 6.5.6. An unexplored future direction of my work is improving the prompts.

Another angle to explore is the few shot training of LLMs before prompting or probing. LLMs are
famously good at picking up new tasks after just a few well chosen training samples. The difficulty
lies in the choice of training samples in this case. Since morphosyntactic probing is generally easy for
both PLMs and the best baselines, the choice of those few samples has to be made carefully to include
both typical and challenging cases.

Finally, expanding the dataset is a straightforward continuation of my work. I artificially limited
the selection of morphosyntactic tags to 4 common tags in Chapter 6 to make cross-lingual compar-
isons possible but using a wider selection of tags brings additional insight as shown in Chapter 7. The
choice of languages was limited by both UD and the models we studied but UD has expanded since

140

8.3. Conclusion

then and the models are often applicable to unsupported languages with some fine-tuning as shown
in Section 7.2.

Final thoughts

As deep learning models were gaining popularity around 2014, I set out to prove that rule-based com-
putational morphology still had its hard-earned place in NLP. NLP conferences were getting bigger
every year and the sheer amount of high quality papers keeps growing to this day. Morphology, due
to its minimal role in English, always constituted a niche field. Still, I believe that although modern
LLMs handle morphology with near perfect accuracy, the remaining issues are interesting and we can
derive useful information from these particularly in a multilingual setting.

141

Publications related to this dissertation

Judit Ács. 2018. BME-HAS system for CoNLL–SIGMORPHON 2018 shared task: Universal morpholog-
ical reinflection. Proceedings of the CoNLL SIGMORPHON 2018 Shared Task: Universal Morphological
Reinflection, pages 121–126.

Judit Ács. 2019. Exploring BERT’s vocabulary. http://juditacs.github.io/2019/02/19/
bert-tokenization-stats.html. Accessed: 2021-05-14.

Judit Ács, Endre Hamerlik, Roy Schwartz, Noah A. Smith, and Andras Kornai. 2023. Morphosyntactic
probing of multilingual BERT models. Natural Language Engineering, page 1–40.

Judit Ács, Ákos Kádár, and Andras Kornai. 2021a. Subword pooling makes a difference. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pages 2284–2295, Online. Association for Computational Linguistics.

Judit Ács and András Kornai. 2020. The role of interpretable patterns in deep learning for morphology.
In XVI. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY2020), pages 171–179, Szeged.

Judit Ács, Dániel Lévai, and Andras Kornai. 2021b. Evaluating transferability of BERT models on
Uralic languages. In Proceedings of the Seventh International Workshop on Computational Linguis-
tics of Uralic Languages, pages 8–17, Syktyvkar, Russia (Online). Association for Computational
Linguistics.

Judit Ács, Dániel Lévai, Dávid Márk Nemeskey, and András Kornai. 2021. Evaluating contextu-
alized language models for Hungarian. In XVII. Magyar Számítógépes Nyelvészeti Konferencia
(MSZNY2020), Szeged.

Ádám Kovács, Judit Ács, András Kornai, and Gábor Recski. 2020. Better together: Modern methods
plus traditional thinking in NP alignment. In Proc. LREC 2020, pages 3635—-3639.

Ádám Kovács, Evelin Ács, Judit Ács, András Kornai, and Gábor Recski. 2019. BME-UW at SRST-2019:
Surface realization with interpreted regular tree grammars. In Proceedings of the 2nd Workshop
on Multilingual Surface Realisation (MSR 2019), pages 35–40, Hong Kong, China. Association for
Computational Linguistics.

Attila Nagy, Bence Bial, and Judit Ács. 2021. Automatic punctuation restoration with BERT models.
In XVIII. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY2021).

143

http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html
http://juditacs.github.io/2019/02/19/bert-tokenization-stats.html
https://doi.org/10.1017/S1351324923000190
https://doi.org/10.1017/S1351324923000190
https://www.aclweb.org/anthology/2021.eacl-main.194
https://aclanthology.org/2021.iwclul-1.2/
https://aclanthology.org/2021.iwclul-1.2/
https://www.aclweb.org/anthology/2020.lrec-1.448/
https://www.aclweb.org/anthology/2020.lrec-1.448/
https://doi.org/10.18653/v1/D19-6304
https://doi.org/10.18653/v1/D19-6304

Publications related to this dissertation

Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke, Shijie Wu, Eleanor Chodroff, Brian Leonard, Gar-
rett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa, Nizar Habash, Charbel El-Khaissi, Omer Gold-
man, Michael Gasser, William Lane, Matt Coler, Arturo Oncevay, Jaime Rafael Montoya Samame,
Gema Celeste Silva Villegas, Adam Ek, Jean-Philippe Bernardy, Andrey Shcherbakov, Aziyana
Bayyr-ool, Karina Sheifer, Sofya Ganieva, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Andrew
Krizhanovsky, Natalia Krizhanovsky, Clara Vania, Sardana Ivanova, Aelita Salchak, Christopher
Straughn, Zoey Liu, Jonathan North Washington, Duygu Ataman, Witold Kieraś, Marcin Woliński,
Totok Suhardijanto, Niklas Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M.
Ponti, Grant Aiton, Richard J. Hatcher, Emily Prud’hommeaux, Ritesh Kumar, Mans Hulden, Botond
Barta, Dorina Lakatos, Gábor Szolnok, Judit Ács, Mohit Raj, David Yarowsky, Ryan Cotterell, Ben
Ambridge, and Ekaterina Vylomova. 2021. SIGMORPHON 2021 shared task on morphological re-
inflection: Generalization across languages. In Proceedings of the 18th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology, and Morphology, pages 229–259, Online. Associa-
tion for Computational Linguistics.

Gábor Recski, Ádám Kovács, Kinga Gémes, Judit Ács, and Andras Kornai. 2020. BME-TUW at SR’20:
Lexical grammar induction for surface realization. In Proceedings of the Third Workshop on Multi-
lingual Surface Realisation, pages 21–29, Barcelona, Spain (Online). Association for Computational
Linguistics.

Gábor Szolnok, Botond Barta, Dorina Lakatos, and Judit Ács. 2021. BME submission for SIGMOR-
PHON 2021 shared task 0. A three step training approach with data augmentation for morpho-
logical inflection. In Proceedings of the 18th SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 268–273, Online. Association for Computational
Linguistics.

144

https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://doi.org/10.18653/v1/2021.sigmorphon-1.25
https://www.aclweb.org/anthology/2020.msr-1.2
https://www.aclweb.org/anthology/2020.msr-1.2
https://doi.org/10.18653/v1/2021.sigmorphon-1.27
https://doi.org/10.18653/v1/2021.sigmorphon-1.27
https://doi.org/10.18653/v1/2021.sigmorphon-1.27

Other publications

Judit Ács. 2014. Pivot-based multilingual dictionary building using Wiktionary. In The 9th edition of
the Language Resources and Evaluation Conference.

Judit Ács. 2015. Synonym acquisition from translation graph. In XI. Magyar Számítógépes Nyelvészeti
Konferencia (MSZNY 2015), pages 14–21. Szegedi Tudományegyetem Informatikai Tanszékcsoport.

Judit Ács, Gábor Borbély, Márton Makrai, Dávid Nemeskey, Gábor Recski, and András Kornai. 2018.
Hibrid nyelvtechnológiák. Magyar Tudomány, 6.

Judit Ács, László Grad-Gyenge, and Thiago Bruno Rodrigues de Rezende Oliveira. 2015. A two-level
classifier for discriminating similar languages. In Proceedings of the Joint Workshop on Language
Technology for Closely Related Languages, Varieties and Dialects, pages 73–77, Hissar, Bulgaria. As-
sociation for Computational Linguistics.

Judit Ács and József Halmi. 2016a. Comparing diacritic restorationmethods for Hungarian. In Proceed-
ings of the Automation and Applied Computer Science Workshop 2016 : AACS’16. Budapest University
of Technology and Economics.

Judit Ács and József Halmi. 2016b. Hunaccent: Small footprint diacritic restoration for social media. In
Proceedings of the First Workshop on Normalisation and Analysis of Social Media Texts (NormSoMe).

Judit Ács and Ágota Illyés. 2015. Language detection and generation. In Proceedings of the Automation
and Applied Computer Science Workshop 2015 : AACS’15. Budapest University of Technology and
Economics.

Judit Ács and András Kornai. 2016. Evaluating embeddings on dictionary-based similarity. In Pro-
ceedings of the First Workshop on Evaluating Vector-Space Representations for NLP (RepEval), pages
78–82.

Judit Ács, Dávid Nemeskey, and András Kornai. 2017. Identification of disaster-implicated named en-
tities. In Proceedings of the First InternationalWorkshop on Exploitation of Social Media for Emergency
Relief and Preparedness.

Judit Ács, Dávid Márk Nemeskey, and Gábor Recski. 2017. Building word embeddings from dictionary
definitions. In Katalin Mády Beáta Gyuris and Gábor Recski, editors, K + K = 120: Papers dedicated
to László Kálmán and András Kornai on the occasion of their 60th birthdays. Research Institute for
Linguistics, Hungarian Academy of Sciences (RIL HAS).

145

https://aclanthology.org/W15-5412/
https://aclanthology.org/W15-5412/
http://ceur-ws.org/Vol-1832/SMERP_2017_peer_review_paper_2.pdf
http://ceur-ws.org/Vol-1832/SMERP_2017_peer_review_paper_2.pdf

Other publications

Judit Ács, Katalin Pajkossy, and András Kornai. 2013. Building basic vocabulary across 40 languages.
In Proceedings of the Sixth Workshop on Building and Using Comparable Corpora, pages 52–58, Sofia,
Bulgaria. Association for Computational Linguistics.

Judit Ács and Géza Velkey. 2017. Comparing word segmentation algorithms. In Proceedings of the
Automation and Applied Computer Science Workshop 2017 : AACS’17. Budapest University of Tech-
nology and Economics.

Botond Barta, Endre Hamerlik, Milán Konor Nyist, and Judit Ács. 2025. HuAMR: A Hungarian AMR
parser and dataset. In XXI. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2025), pages 185–
196. Szegedi Tudományegyetem Informatikai Tanszékcsoport.

Botond Barta, Dorina Lakatos, Attila Nagy, Milán Konor Nyist, and Judit Ács. 2023. HunSum-1: an
abstractive summarization dataset for Hungarian. In XIX. Magyar Számítógépes Nyelvészeti Kon-
ferencia (MSZNY 2023), pages 231–243. Szegedi Tudományegyetem Informatikai Tanszékcsoport.

Botond Barta, Dorina Lakatos, Attila Nagy, Milán Konor Nyist, and Judit Ács. 2024. From news to
summaries: Building a Hungarian corpus for extractive and abstractive summarization. In Proceed-
ings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pages 7503–7509, Torino, Italia. ELRA and ICCL.

Dániel Huszti and Judit Ács. 2017. Entitásorientált véleménykinyerés magyar nyelven. InXIII. Magyar
Számítógépes Nyelvészeti Konferencia (MSZNY 2017), pages 240–250. Szegedi Tudományegyetem
Informatikai Tanszékcsoport.

András Kornai, Judit Ács, MártonMakrai, Dávid Márk Nemeskey, Katalin Pajkossy, and Gábor Recski.
2015. Competence in lexical semantics. In Proceedings of the Fourth Joint Conference on Lexical
and Computational Semantics, pages 165–175, Denver, Colorado. Association for Computational
Linguistics.

Attila Nagy, Dorina Lakatos, Botond Barta, and Judit Ács. 2023a. TreeSwap: Data augmentation for
machine translation via dependency subtree swapping. In Proceedings of the 14th International
Conference on Recent Advances in Natural Language Processing, pages 759–768, Varna, Bulgaria.
INCOMA Ltd., Shoumen, Bulgaria.

Attila Nagy, Dorina Petra Lakatos, Botond Barta, Patrick Nanys, and Judit Ács. 2023b. Data augmen-
tation for machine translation via dependency subtree swapping. In XIX. Magyar Számítógépes
Nyelvészeti Konferencia (MSZNY 2023). Szegedi Tudományegyetem Informatikai Tanszékcsoport.

Attila Nagy, Patrick Nanys, Konrád Balázs Frey, Bence Bial, and Judit Ács. 2022. Syntax-based
data augmentation for Hungarian-English machine translation. In XVIII. Magyar Számítógépes
Nyelvészeti Konferencia (MSZNY 2022). Szegedi Tudományegyetem Informatikai Tanszékcsoport.

Gergely Dániel Németh and Judit Ács. 2018. Hyphenation using deep neural networks. In XIV. Mag-
yar Számítógépes Nyelvészeti Konferencia (MSZNY 2018). Szegedi Tudományegyetem Informatikai
Tanszékcsoport.

Gábor Recski and Judit Ács. 2015. MathLingBudapest: Concept networks for semantic similarity. In
Proceedings of the 9th InternationalWorkshop on Semantic Evaluation (SemEval 2015), pages 138–142,
Denver, Colorado. Association for Computational Linguistics.

146

https://aclanthology.org/2024.lrec-main.662/
https://aclanthology.org/2024.lrec-main.662/
https://doi.org/10.18653/v1/S15-1019
https://aclanthology.org/2023.ranlp-1.82/
https://aclanthology.org/2023.ranlp-1.82/
https://doi.org/10.18653/v1/S15-2025

Bibliography

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary prediction tasks. In Proceedings of International Con-
ference on Learning Representations.

Roee Aharoni and Yoav Goldberg. 2016. Morphological inflection generation with hard monotonic
attention. arXiv preprint arXiv:1611.01487.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov. 2016. Improving sequence to sequence learning
for morphological inflection generation: The BIU-MIT systems for the SIGMORPHON 2016 shared
task for morphological reinflection. In Proceedings of the 14th SIGMORPHONWorkshop on Computa-
tional Research in Phonetics, Phonology, and Morphology, pages 41–48, Berlin, Germany. Association
for Computational Linguistics.

László Antal. 1963. The possessive form of the Hungarian noun. Linguistics, 3:50–61.

Mikhail Arkhipov, Maria Trofimova, Yuri Kuratov, and Alexey Sorokin. 2019. Tuning multilingual
transformers for language-specific named entity recognition. In Proceedings of the 7th Workshop
on Balto-Slavic Natural Language Processing, pages 89–93, Florence, Italy. Association for Compu-
tational Linguistics.

Þórunn Arnardóttir, Hinrik Hafsteinsson, Einar Freyr Sigurðsson, Kristín Bjarnadóttir, Anton Karl
Ingason, Hildur Jónsdóttir, and Steinþór Steingrímsson. 2020. A Universal Dependencies conver-
sion pipeline for a Penn-format constituency treebank. In Proceedings of the Fourth Workshop on
Universal Dependencies (UDW 2020), pages 16–25, Barcelona, Spain (Online). Association for Com-
putational Linguistics.

BIG bench authors. 2023. Beyond the imitation game: Quantifying and extrapolating the capabilities
of language models. Transactions on Machine Learning Research.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations (ICLR 2015).

Yonatan Belinkov. 2021. Probing Classifiers: Promises, Shortcomings, and Advances. arXiv:2102.12452
[cs]. ArXiv: 2102.12452.

147

https://doi.org/10.18653/v1/W16-2007
https://doi.org/10.18653/v1/W16-2007
https://doi.org/10.18653/v1/W16-2007
https://doi.org/10.18653/v1/W19-3712
https://doi.org/10.18653/v1/W19-3712
https://www.aclweb.org/anthology/2020.udw-1.3
https://www.aclweb.org/anthology/2020.udw-1.3
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
http://arxiv.org/abs/2102.12452

Bibliography

Yonatan Belinkov, Nadir Durrani, FahimDalvi, Hassan Sajjad, and James Glass. 2017a. What do neural
machine translation models learn about morphology? In Proc. of ACL.

Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass. 2017b.
Evaluating layers of representation in neural machine translation on part-of-speech and semantic
tagging tasks. In IJCNLP. ArXiv preprint arXiv:1801.07772.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 2022. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages 1–9, Dublin, Ireland.
Association for Computational Linguistics.

Fadi Biadsy, Nizar Habash, and Julia Hirschberg. 2009. Improving the Arabic pronunciation dictionary
for phone and word recognition with linguistically-based pronunciation rules. In Proceedings of
human language technologies: The 2009 annual conference of NAACL, pages 397–405.

Gábor Borbély, Márton Makrai, Dávid Márk Nemeskey, and András Kornai. 2016. Evaluating multi-
sense embeddings for semantic resolution monolingually and in word translation. In Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for NLP, pages 83–89. Association
for Computational Linguistics.

Eric Brill. 1993. Automatic grammar induction and parsing free text: A transformation-based ap-
proach. In 31st Annual Meeting of the Association for Computational Linguistics, pages 259–265,
Columbus, Ohio, USA. Association for Computational Linguistics.

TomBrown, BenjaminMann, Nick Ryder, Melanie Subbiah, Jared DKaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
ClemensWinter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Languagemodels are few-shot learners. InAdvances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc.

Jose Camacho-Collados and Mohammad Taher Pilehvar. 2018. From word to sense embeddings: A
survey on vector representations of meaning. J. Artif. Int. Res., 63(1):743–788.

Kris Cao andMarek Rei. 2016. A joint model for word embedding and word morphology. In Repl4NLP.

Kyunghyun Cho, Bart van Merriëenboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1724–1734, Doha, Qatar.

Yaacov Choueka and Serge Lusignan. 1985. Disambiguation by short contexts. Computers and the
Humanities, 19(3):147–157.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-
cisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsuper-
vised Cross-lingual Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computa-
tional Linguistics.

148

https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/W16-2515
https://doi.org/10.18653/v1/W16-2515
https://doi.org/10.3115/981574.981609
https://doi.org/10.3115/981574.981609
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1613/jair.1.11259
https://doi.org/10.1613/jair.1.11259
http://arxiv.org/abs/1606.02601
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747

Bibliography

Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. 2018a.
What you can cram into a single \$&!#* vector: Probing sentence embeddings for linguistic prop-
erties. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2126–2136. Association for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages 7057–7067.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv preprint arXiv:1710.04087.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. 2018b. XNLI: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, GéraldineWalther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Garrett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–SIGMORPHON 2018 shared task: Universal
morphological reinflection. In Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal
Morphological Reinflection, Brussels, Belgium. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. 2017. The
CoNLL-SIGMORPHON 2017 shared task: Universal morphological reinflection in 52 languages.
In Proceedings of the CoNLL-SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection,
Vancouver, Canada. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, andMans Hulden.
2016. The SIGMORPHON 2016 shared task—morphological reinflection. In Proceedings of the 2016
Meeting of SIGMORPHON, Berlin, Germany. Association for Computational Linguistics.

Ryan Cotterell and Hinrich Schütze. 2015. Morphological word-embeddings. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1287–1292.

Gözde Gül Şahin, Clara Vania, Ilia Kuznetsov, and Iryna Gurevych. 2019. LINSPECTOR: Multilingual
probing tasks for word representations. arXiv:1903.09442.

Balázs Csanád Csáji. 2001. Approximation with Artificial Neural Networks. MSc Thesis, Dept. Science,
Eötvös Loránd University, Budapest, Hungary.

Dóra Csendes, János Csirik, Tibor Gyimóthy, and András Kocsor. 2005. The Szeged Treebank. In
Lecture Notes in Computer Science: Text, Speech and Dialogue, pages 123–131. Springer.

George Cybenko. 1989. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the

149

https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Bibliography

North American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association
for Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning.

Philipp Dufter and Hinrich Schütze. 2020. Identifying elements essential for BERT’s multilinguality.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 4423–4437, Online. Association for Computational Linguistics.

Stefan Dumitrescu, Petru Rebeja, Beata Lorincz, Mihaela Gaman, Andrei Avram, Mihai Ilie, An-
drei Pruteanu, Adriana Stan, Lorena Rosia, Cristina Iacobescu, Luciana Morogan, George Dima,
Gabriel Marchidan, Traian Rebedea, Madalina Chitez, Dani Yogatama, Sebastian Ruder, Radu Tu-
dor Ionescu, Razvan Pascanu, and Viorica Patraucean. 2021. LiRo: Benchmark and leaderboard for
Romanian language tasks. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, volume 1.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. 2020. Amnesic probing: Behavioral
explanation with amnesic counterfactuals. Transactions of the Association for Computational Lin-
guistics, 9:160–175.

Kawin Ethayarajh and Dan Jurafsky. 2021. Attention flows are shapley value explanations. In Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 49–
54, Online. Association for Computational Linguistics.

Allyson Ettinger. 2020. What bert is not: Lessons from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association for Computational Linguistics, 8:34–48.

Richárd Farkas, Veronika Vincze, and Helmut Schmid. 2012. Dependency parsing of Hungarian: Base-
line results and challenges. In Proceedings of the 13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, EACL ’12, pages 55–65, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Philip Gage. 1994. A new algorithm for data compression. The C Users Journal, 12(2):23–38.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and TomasMikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of the International Conference on Language Resources
and Evaluation (LREC 2018).

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and Sebastian Padó. 2015. Distributional vectors en-
code referential attributes. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 12–21, Lisbon, Portugal. Association for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural language inference data. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), pages 107–112, NewOrleans, Louisiana. Association
for Computational Linguistics.

150

http://arxiv.org/abs/1702.08608
https://www.aclweb.org/anthology/2020.emnlp-main.358
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/5f93f983524def3dca464469d2cf9f3e-Paper-round1.pdf
https://doi.org/10.18653/v1/2021.acl-short.8
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
http://dl.acm.org/citation.cfm?id=2380816.2380826
http://dl.acm.org/citation.cfm?id=2380816.2380826
https://www.aclweb.org/anthology/L18-1550
https://www.aclweb.org/anthology/L18-1550
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/N18-2017

Bibliography

Frederic J. Harris. 1978. On the use of windows for harmonic analysis with the dft. Proc. IEEE,
66(1):51–83.

Zellig S. Harris. 1954. Distributional structure. Word, 10(23):146–162.

Betty Hart and Todd R. Risley. 1995. Meaningful Differences in the Everyday Experience of Young
American Children. Brookes Publishing Company, Inc.

John Hewitt, Kawin Ethayarajh, Percy Liang, and Christopher Manning. 2021. Conditional probing:
measuring usable information beyond a baseline. In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages 1626–1639, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and interpreting probes with control tasks. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2733–2743,
Hong Kong, China. Association for Computational Linguistics.

John Hewitt and Christopher D Manning. 2019. A structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation,
9(8):1735–1780.

Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis, and Douglas B. Kell. 2017. What do we
need to build explainable ai systems for the medical domain?

Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. 1989. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799. PMLR.

Phu Mon Htut, Jason Phang, Shikha Bordia, and Samuel R. Bowman. 2019. Do attention heads in
BERT track syntactic dependencies?

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson. 2020.
XTREME: A massively multilingual multi-task benchmark for evaluating cross-lingual generaliza-
tion. CoRR, abs/2003.11080.

Balázs Indig, Bálint Sass, Eszter Simon, Iván Mittelholcz, Péter Kundráth, and Noémi Vadász. 2019.
emtsv – Egy formátum mind felett [emtsv – One format to rule them all]. In XV. Magyar
Számítógépes Nyelvészeti Konferencia (MSZNY 2019), pages 235–247. Szegedi Tudományegyetem
Informatikai Tanszékcsoport.

Bushra Jawaid and Daniel Zeman. 2011. Word-order issues in English-to-Urdu statistical machine
translation. The Prague Bulletin of Mathematical Linguistics, 95(95):87–106.

151

https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.18653/v1/2021.emnlp-main.122
https://doi.org/10.18653/v1/2021.emnlp-main.122
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1712.09923
http://arxiv.org/abs/1712.09923
https://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080

Bibliography

Katharina Kann, Ryan Cotterell, and Hinrich Schütze. 2016. Neural morphological analysis: Encoding-
decoding canonical segments. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 961–967, Austin, Texas. Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2016a. MED: The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. ACL 2016, page 62.

Katharina Kann and Hinrich Schütze. 2016b. MED: The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In Kann and Schütze (2016a), page 62.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-Thought Vectors. In Neural Information Processing Systems.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sebastian Mielke, Arya D. McCarthy, Sandra Kübler, David Yarowsky, Jason
Eisner, andMans Hulden. 2018. Unimorph 2.0: Universal morphology. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA).

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multilingual constituency parsing with self-attention
and pre-training. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3499–3505, Florence, Italy. Association for Computational Linguistics.

Arne Köhn. 2015. What’s in an embedding? analyzing word embeddings through multilingual eval-
uation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 2067–2073, Lisbon, Portugal. Association for Computational Linguistics.

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications. SIAM review,
51(3):455–500.

Dan Kondratyuk and Milan Straka. 2019. 75 languages, 1 model: Parsing universal dependencies uni-
versally. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
2779–2795, Hong Kong, China. Association for Computational Linguistics.

Nelda Kote, Marenglen Biba, Jenna Kanerva, Samuel Rönnqvist, and Filip Ginter. 2019. Morphological
tagging and lemmatization of Albanian: A manually annotated corpus and neural models.

Taku Kudo. 2018. Subword regularization: Improving neural network translation models with mul-
tiple subword candidates. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 66–75, Melbourne, Australia. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71, Brussels,
Belgium. Association for Computational Linguistics.

152

https://doi.org/10.18653/v1/D16-1097
https://doi.org/10.18653/v1/D16-1097
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:9126867
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.1137/07070111X
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
http://arxiv.org/abs/1912.00991
http://arxiv.org/abs/1912.00991
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012

Bibliography

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation of deep bidirectional multilingual transformers
for russian language.

Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model pretraining. Advances
in Neural Information Processing Systems (NeurIPS).

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
4582–4597, Online. Association for Computational Linguistics.

N. Ligeti-Nagy, G. Ferenczi, E. Héja, K. Jelencsik-Mátyus, L. J. Laki, N. Vadász, Z. Gy. Yang, and
T. Váradi. 2022. Hulu: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek
kiértékelése céljából. InXVIII. Magyar Számítógépes Nyelvészeti Konferencia, pages 431–446, Szeged.
Szegedi Tudományegyetem, Informatikai Intézet.

Krister Lindén, Erik Axelson, Sam Hardwick, Flammie A. Pirinen, and Miikka Silfverberg. 2011. Hfst
- framework for compiling and applying morphologies. In International Workshop on Systems and
Frameworks for Computational Morphology.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual representations. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b. RoBERTa: A robustly optimized bert pretraining
approach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In International
Conference on Learning Representations.

H. P. Luhn. 1959. Keyword-in-Context Index for Technical Literature (KWIC Index). American Docu-
mentation, 11(4):288–295.

Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems, volume 30, pages 4765–4774. Curran Associates,
Inc.

Siwen Luo, Hamish Ivison, Soyeon Caren Han, and Josiah Poon. 2021. Local interpretations for ex-
plainable natural language processing: A survey. ACM Computing Surveys, 56:1 – 36.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Association for Computational Linguistics.

Aniek F. Markus, Jan A. Kors, and Peter R. Rijnbeek. 2021. The role of explainability in creating trust-
worthy artificial intelligence for health care: A comprehensive survey of the terminology, design
choices, and evaluation strategies. Journal of Biomedical Informatics, 113:103655.

153

http://arxiv.org/abs/1905.07213
http://arxiv.org/abs/1905.07213
https://doi.org/10.18653/v1/2021.acl-long.353
https://api.semanticscholar.org/CorpusID:14427286
https://api.semanticscholar.org/CorpusID:14427286
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://api.semanticscholar.org/CorpusID:232307813
https://api.semanticscholar.org/CorpusID:232307813
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/https://doi.org/10.1016/j.jbi.2020.103655

Bibliography

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017. Learned in translation:
Contextualized word vectors. In Advances in Neural Information Processing Systems, pages 6294–
6305.

W.S. McCulloch and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity.
Bulletin of mathematical biophysics, 5:115–133.

Igor A.Mel’cuk. 1972. On the possessive forms of theHungarian noun. In Ferenc Kiefer andN. Rouwet,
editors, Generative grammar in Europe, pages 315–332. Reidel, Dordrecht.

Márton Miháltz. 2013. OpinHuBank: szabadon hozzáférhető annotált korpusz magyar nyelvű
véleményelemzéshez. In IX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY2013), pages 343–
345, Szeged.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed represen-
tations of words and phrases and their compositionality. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Marvin Minsky and Seymour Papert. 1969. Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, USA.

Dávid Márk Nemeskey. 2020a. Natural Language Processing Methods for Language Modeling. Ph.D.
thesis, Eötvös Loránd University.

Dávid Márk Nemeskey. 2020b. Webcorpus 2.0.

Dávid Márk Nemeskey. 2021. Introducing huBERT. In XVII. Magyar Számítógépes Nyelvészeti Konfe-
rencia (MSZNY 2021), pages 3–14, Szeged.

Johanna Nichols. 1986. Head-marking and dependent-marking grammar. Language, 62:56–119.

JoakimNivre,Mitchell Abrams, ŽeljkoAgić, et al. 2018. Universal Dependencies 2.3. LINDAT/CLARIN
digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034–4043, Marseille, France. European Language Resources As-
sociation.

Attila Novák, Péter Rebrus, and Zsófia Ludányi. 2017. Az emMorph morfológiai elemző annotációs
formalizmusa. In XIII. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY2017), Szeged.

Attila Novák, Borbála Siklósi, and Csaba Oravecz. 2016. A new integrated open-source morphological
analyzer for Hungarian. In Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France. European Language Resources Association (ELRA).

OpenAI. 2023. Gpt-4 technical report.

154

https://bit.ly/39HikH8
https://bit.ly/39HikH8
http://hdl.handle.net/11234/1-2895
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://doi.org/10.30716/RSZ/2017/1/1
https://doi.org/10.30716/RSZ/2017/1/1
http://arxiv.org/abs/2303.08774

Bibliography

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Sungjoon Park, JihyungMoon, Sungdong Kim,Won Ik Cho, JiyoonHan, Jangwon Park, Chisung Song,
Junseong Kim, Yongsook Song, Taehwan Oh, Joohong Lee, Juhyun Oh, Sungwon Lyu, Younghoon
Jeong, Inkwon Lee, Sangwoo Seo, Dongjun Lee, Hyunwoo Kim, Myeonghwa Lee, Seongbo Jang,
Seungwon Do, Sunkyoung Kim, Kyungtae Lim, Jongwon Lee, Kyumin Park, Jamin Shin, Seonghyun
Kim, Lucy Park, Alice Oh, Jungwoo Ha, and Kyunghyun Cho. 2021. Klue: Korean language under-
standing evaluation.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Association for Computational Linguistics.

Matthew Peters, Mark Neumann,Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–2237. Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learners. https://github.com/openai/gpt-2.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383–2392, Austin, Texas. Association for Computational
Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text chunking using transformation-based learning. In Pro-
ceedings of the Third Workshop on Very Large Corpora, pages 82–94, Cambridge, MA. SIGDAT/ACL.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. 2021. Probing the probing paradigm:
Does probing accuracy entail task relevance? In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pages 3363–3377, Online.
Association for Computational Linguistics.

Péter Rebrus, András Kornai, and Dániel Varga. 2012. Egy általános célú morfológiai annotáció. Ál-
talános Nyelvészeti Tanulmányok, 24.

Frank Rosenblatt. 1957. The perceptron: a perceiving and recognizing automaton. Technical Report
85-460-1, Cornell Aeronautical Laboratory.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge? In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers), pages 726–730, Beijing, China. Association for
Computational Linguistics.

155

https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
http://arxiv.org/abs/2105.09680
http://arxiv.org/abs/2105.09680
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://github.com/openai/gpt-2
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.3115/v1/P15-2119
https://doi.org/10.3115/v1/P15-2119

Bibliography

Bálint Sass, MártonMiháltz, and Péter Kundráth. 2017. Az e-magyar rendszer gate környezetbe integ-
rált magyar szövegfeldolgozó eszközlánca. In XIII. Magyar Számítógépes Nyelvészeti Konferencia
(MSZNY2017), page (this volume), Szeged.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese and Korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5149–5152. IEEE.

Roy Schwartz, Sam Thomson, and Noah A. Smith. 2018. SoPa: Bridging CNNs, RNNs, and Weighted
Finite-State Machines. In Proc. 56th ACL Annual Meeting, pages 295–305, Melbourne, Australia.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Lloyd S Shapley. 1951. Notes on the n-person game – ii: The value of an n-person game. Technical
report, RAND Corporation.

Vatsal Sharan, SamKhakade, Percy Liang, and Gregory Valiant. 2018. Prediction with a short memory.
In Proc. STOC 2018, pages 1074–1087.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin. 2018. Baseline needs more love: On simple word-
embedding-based models and associated pooling mechanisms. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 440–450.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does string-based neural MT learn source syntax? In
Proc. of EMNLP.

Eszter Simon and Noémi Vadász. 2021. Introducing nytk-nerkor, A gold standard hungarian named
entity annotated corpus. In Text, Speech, and Dialogue - 24th International Conference, TSD 2021, Olo-
mouc, Czech Republic, September 6-9, 2021, Proceedings, volume 12848 of Lecture Notes in Computer
Science, pages 222–234. Springer.

Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, and AdinaWilliams. 2021. UnNatural Language
Inference. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 7329–7346, Online. Association for Computational Linguistics.

Péter Siptár and Miklós Törkenczy. 2007. The Phonology of Hungarian. Oxford University Press.

Hedvig Skirgård, Hannah J. Haynie, Damián E. Blasi, Harald Hammarström, Jeremy Collins, Jay J.
Latarche, Jakob Lesage, Tobias Weber, Alena Witzlack-Makarevich, Sam Passmore, Angela Chira,
Luke Maurits, Russell Dinnage, Michael Dunn, Ger Reesink, Ruth Singer, Claire Bowern, Patience
Epps, Jane Hill, Outi Vesakoski, Martine Robbeets, Noor Karolin Abbas, Daniel Auer, Nancy A.
Bakker, Giulia Barbos, Robert D. Borges, Swintha Danielsen, Luise Dorenbusch, Ella Dorn, John
Elliott, Giada Falcone, Jana Fischer, Yustinus Ghanggo Ate, Hannah Gibson, Hans-Philipp Gö-
bel, Jemima A. Goodall, Victoria Gruner, Andrew Harvey, Rebekah Hayes, Leonard Heer, Roberto
E. Herrera Miranda, Nataliia Hübler, Biu Huntington-Rainey, Jessica K. Ivani, Marilen Johns, Erika
Just, Eri Kashima, Carolina Kipf, Janina V. Klingenberg, Nikita König, Aikaterina Koti, Richard
G. A. Kowalik, Olga Krasnoukhova, Nora L. M. Lindvall, Mandy Lorenzen, Hannah Lutzenberger,

156

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1145/3188745.3188954
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.1007/978-3-030-83527-9_19
https://doi.org/10.1007/978-3-030-83527-9_19
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.18653/v1/2021.acl-long.569

Bibliography

Tânia R. A. Martins, Celia Mata German, Suzanne van der Meer, Jaime Montoya Samamé, Michael
Müller, SalihaMuradoglu, Kelsey Neely, Johanna Nickel, Miina Norvik, Cheryl Akinyi Oluoch, Jesse
Peacock, India O. C. Pearey, Naomi Peck, Stephanie Petit, Sören Pieper, Mariana Poblete, Daniel
Prestipino, Linda Raabe, Amna Raja, Janis Reimringer, Sydney C. Rey, Julia Rizaew, Eloisa Rup-
pert, Kim K. Salmon, Jill Sammet, Rhiannon Schembri, Lars Schlabbach, Frederick W. P. Schmidt,
Amalia Skilton, Wikaliler Daniel Smith, Hilário de Sousa, Kristin Sverredal, Daniel Valle, Javier
Vera, Judith Voß, Tim Witte, Henry Wu, Stephanie Yam, Jingting Ye, Maisie Yong, Tessa Yuditha,
Roberto Zariquiey, Robert Forkel, Nicholas Evans, Stephen C. Levinson, Martin Haspelmath, Si-
mon J. Greenhill, Quentin D. Atkinson, and Russell D. Gray. 2023. Grambank reveals the impor-
tance of genealogical constraints on linguistic diversity and highlights the impact of language loss.
Science Advances, 9(16):eadg6175.

Pia Sommerauer and Antske Fokkens. 2018. Firearms and tigers are dangerous, kitchen knives and
zebras are not: Testing whether word embeddings can tell. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 276–286, Brussels,
Belgium. Association for Computational Linguistics.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Training very deep networks.
In Neural Information Processing Systems, pages 2377–2385.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural net-
works. In Proc. NIPS, pages 3104–3112, Montreal, CA.

John Sylak-Glassman. 2016. The composition and use of the universal morphological feature schema
(unimorph schema). Technical report, Center for Language and Speech Processing, Johns Hopkins
University.

Zhen Tan, Lu Cheng, Song Wang, Yuan Bo, Jundong Li, and Huan Liu. 2023. Interpreting pretrained
language models via concept bottlenecks.

Hasan Tanvir, Claudia Kittask, Sandra Eiche, and Kairit Sirts. 2021. EstBERT: A pretrained language-
specific BERT for Estonian.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a. BERT rediscovers the classical NLP pipeline.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
4593–4601, Florence, Italy. Association for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. 2019b. What do you learn
from context? Probing for sentence structure in contextualized word representations. In Proc. of
ICLR.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor

157

https://doi.org/10.1126/sciadv.adg6175
https://doi.org/10.1126/sciadv.adg6175
https://doi.org/10.18653/v1/W18-5430
https://doi.org/10.18653/v1/W18-5430
https://api.semanticscholar.org/CorpusID:2722012
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/2311.05014
http://arxiv.org/abs/2311.05014
http://arxiv.org/abs/2011.04784
http://arxiv.org/abs/2011.04784
https://doi.org/10.18653/v1/P19-1452
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX

Bibliography

Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. 2023. Llama 2: Open foundation and fine-tuned chat models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Wolfgang Veenker. 1968. Verzeichnis der ungarische suffixe und suffixkombinationen.

Veronika Vincze, Dóra Szauter, Attila Almási, György Móra, Zoltán Alexin, and János Csirik. 2010.
Hungarian dependency treebank. In Proceedings of the Seventh conference on International Lan-
guage Resources and Evaluation (LREC’10), Valletta, Malta. European Language Resources Associa-
tion (ELRA).

A. Virtanen, J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and S. Pyysalo. 2019.
Multilingual is not enough: BERT for Finnish.

Elena Voita and Ivan Titov. 2020. Information-theoretic probing with minimum description length. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 183–196, Online. Association for Computational Linguistics.

Wietse de Vries, Andreas vanCranenburgh, andMalvinaNissim. 2020. What’s so special about BERT’s
layers? a closer look at the NLP pipeline in monolingual and multilingual models. In Findings of
the Association for Computational Linguistics: EMNLP 2020, pages 4339–4350, Online. Association
for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. SuperGLUE: A stickier benchmark for general-purpose language
understanding systems. In Proceedings of NeurIPS 32, pages 3261–3275. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Hagen Blix, Yining Nie, Anna Alsop, Shikha Bor-
dia, Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason Phang, Anhad Mohananey, Phu Mon Htut,
Paloma Jeretic, and Samuel R. Bowman. 2019. Investigating BERT’s knowledge of language: Five
analysis methods with NPIs. In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2877–2887, Hong Kong, China. Association for Computational Linguistics.

Chuhan Wu, Fangzhao Wu, Tao Qi, Xiaohui Cui, and Yongfeng Huang. 2020. Attentive pooling with
learnable norms for text representation. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2961–2970.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

158

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1912.07076
https://www.aclweb.org/anthology/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.findings-emnlp.389
https://doi.org/10.18653/v1/2020.findings-emnlp.389
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://arxiv.org/abs/1804.07461
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077

Bibliography

and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Computational Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages created equal in multilingual BERT? In Proceed-
ings of the 5th Workshop on Representation Learning for NLP, pages 120–130, Online. Association for
Computational Linguistics.

Linting Xue, Noah Constant, AdamRoberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 483–498, Online. Association for Computational
Linguistics.

Kelly Zhang and Samuel Bowman. 2018. Language modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task analysis. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 359–361. Association
for Computational Linguistics.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. 2018.
Personalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Long Papers), pages 2204–2213. Association
for Computational Linguistics.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, ShuaiqiangWang, Dawei
Yin, and Mengnan Du. 2024. Explainability for large language models: A survey. ACM Trans. Intell.
Syst. Technol., 15(2).

159

https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2021.naacl-main.41
http://aclweb.org/anthology/W18-5448
http://aclweb.org/anthology/W18-5448
http://aclweb.org/anthology/P18-1205
https://doi.org/10.1145/3639372

	1 Introduction
	2 Background
	2.1 Natural language processing
	2.1.1 High-level NLP applications
	2.1.2 Sentence level NLP tasks
	2.1.3 Word level NLP tasks

	2.2 Neural networks
	2.2.1 Feed-forward neural networks
	2.2.2 Training neural networks
	2.2.3 Sequence modeling

	2.3 Introduction to morphology
	2.3.1 Morphological typology
	2.3.2 Hungarian morphology

	I Deep Learning for Morphology
	3 Morphological Inflection and Analysis
	3.1 Hungarian morphological analysis
	3.1.1 Data
	3.1.2 Models
	3.1.3 Results
	3.1.4 Analyzing out-of-vocabulary words

	3.2 The Universal Morphological Reinflection Shared Task
	3.2.1 Task formulation
	3.2.2 Task1 model: two-headed attention
	3.2.3 Task2: Inflection in Context
	3.2.4 Conclusion

	4 Neural Pattern Matching
	4.1 SoPa: A Weighted Finite-State Automaton RNN
	4.2 Data
	4.3 Tasks
	4.4 Models
	4.5 Model similarity
	4.6 Results and analysis
	4.7 Conclusion

	II Evaluating Pre-trained Language Models
	5 Background
	5.1 History of meaning representation
	5.1.1 Word embeddings
	5.1.2 Pre-trained contextual embeddings
	5.1.3 Terminology

	5.2 BERT
	5.2.1 Multilingual models
	5.2.2 Multilingual BERT
	5.2.3 XLM-RoBERTa
	5.2.4 Other multilingual models
	5.2.5 Monolingual models

	5.3 Subword tokenization
	5.3.1 Multilingual subword tokenization
	5.3.2 Cased and uncased models
	5.3.3 The tokenizers of mBERT and XLM-RoBERTa

	5.4 Evaluating PLMs
	5.4.1 Intrinsic measures
	5.4.2 Downstream performance
	5.4.3 Benchmarks
	5.4.4 Part of speech tagging
	5.4.5 Named entity recognition

	5.5 Large language models

	6 Probing
	6.1 Related work
	6.2 Morphosyntactic probing
	6.2.1 Formulation
	6.2.2 Data sampling
	6.2.3 Training details

	6.3 Multilingual probing dataset
	6.3.1 Choice of languages and tags
	6.3.2 Dataset statistics

	6.4 Subword pooling
	6.4.1 Pooling methods
	6.4.2 Layer pooling effects
	6.4.3 Experimental setup
	6.4.4 Results
	6.4.5 Discussion

	6.5 Morphology in pre-trained language models
	6.5.1 Baselines
	6.5.2 Results
	6.5.3 mBERT and XLM-RoBERTa against chLSTM
	6.5.4 Comparison between mBERT and XLM-RoBERTa
	6.5.5 Difficult tasks
	6.5.6 GPT-4o

	6.6 Ablations
	6.6.1 Linear probing and MLP variations
	6.6.2 Layer pooling
	6.6.3 Fine-tuning
	6.6.4 Randomly initialized PLMs
	6.6.5 Training data size
	6.6.6 Model ablations

	7 Language-specific Models
	7.1 Pre-trained models for Hungarian
	7.1.1 Evaluation tasks and data
	7.1.2 The models evaluated
	7.1.3 Subword tokenization
	7.1.4 Results
	7.1.5 Conclusion

	7.2 Pre-trained models for Uralic languages
	7.2.1 Data
	7.2.2 The models evaluated
	7.2.3 Subword tokenization
	7.2.4 Results
	7.2.5 Conclusion

	8 Perturbations and Shapley values
	8.1 Perturbations
	8.1.1 Results
	8.1.2 Typology

	8.2 Shapley values
	8.2.1 Implementation
	8.2.2 General results
	8.2.3 Outliers
	8.2.4 The difficulties of generalization

	8.3 Conclusion

	Conclusion and Future Outlook
	Publications related to this dissertation
	Other publications
	Bibliography

