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Abstract: Background: Early and accurate diagnosis is crucial for effective prevention and
treatment of severe mental illnesses, such as schizophrenia and bipolar disorder. However,
identifying these conditions in their early stages remains a significant challenge. Our goal
was to develop a method capable of detecting latent disease liability in healthy volunteers.
Methods: Using questionnaires examining affective temperament and schizotypal traits
among voluntary, healthy university students (N = 710), we created three groups. These
were a group characterized by an emphasis on positive schizotypal traits (N = 20), a group
showing cyclothymic temperament traits (N = 17), and a control group showing no suscep-
tibility in either direction (N = 21). We performed a resting-state EEG examination as part of
a complex psychological, electrophysiological, psychophysiological, and laboratory battery,
and we developed feature-selection machine-learning methods to differentiate the low-risk
groups. Results: Both low-risk groups could be reliably (with 90% accuracy) separated
from the control group. Conclusions: Models applied to the data allowed us to differentiate
between healthy university students with latent schizotypal or bipolar tendencies. Our
research may improve the sensitivity and specificity of risk-state identification, leading to
more effective and safer secondary prevention strategies for individuals in the prodromal
phases of these disorders.
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1. Introduction
With sophisticated and consistent prevention methods applied before the manifesta-

tion of schizophrenia–bipolar spectrum diseases of neurodevelopmental origin, typically in
young adulthood, the development can sometimes be directed in a neurotypical direction
to prevent the diseases. For this, we would need to reliably identify persons at risk. Resting-
state electroencephalogram (rsEEG) is a simple non-invasive diagnostic procedure widely
used in healthcare, but its traditional evaluation method does not help us to diagnose
advanced disease states. Could the additional information obtained with machine-learning
methods be enough to be widely used in the early detection and prevention of mental
disorders? Schizophrenia (SZ) and bipolar disorder (BD) are serious mental illnesses; their
combined lifetime prevalence exceeds 5% [1,2]. Both diseases severely affect quality of life,
ability to work, and participation in society and are associated with a very high risk of
suicide [3,4].

The diagnosis of psychiatric disorders typically relies on unstructured or semi-
structured interviews in both clinical practice and research settings since prodromal self-
experience disorders can be approached with a phenomenological interview that is different
from traditional psychiatric interviews and requires special training. However, this ap-
proach lacks precision due to the heterogeneous nature of symptoms and the overlap
between related neurodevelopmental disorders, while its scalability remains insufficient.
As a result, late or incorrect diagnoses are common, highlighting the need to enhance
traditional diagnostic procedures with objective, instrumental data. Such data can refine
the characterization of examined phenotypes and have the potential to help detect sub-
tle, early-stage changes that may precede the manifestation of overt clinical symptoms.
This early detection capability could improve the accuracy of current diagnostic practices,
enable timely interventions, and support personalized treatment strategies, ultimately
enhancing patient outcomes and disease management. Furthermore, these advancements
can contribute to a deeper understanding of certain mental illnesses [5–7].

Recognizing pre-disease conditions to effectively indicated preventive interventions
presents a significant challenge. Psychosis spectrum disorders (which encompass condi-
tions such as schizophrenia and bipolar disorder), which usually manifest during adoles-
cence or young adulthood as psychosis or major affective episodes, are generally lifelong,
chronic, and irreversible. However, these disorders are often preceded by prodromal states
that can last several years, during which targeted interventions may redirect neurodevelop-
ment towards typical pathways, thus preventing the full manifestation and progression of
the disease. Enhancing the detection of subtle and elusive changes in experience and be-
havior during the prodrome is crucial. This enhancement can be achieved by incorporating
instrumental diagnostic procedures that help identify these early changes. Therefore, defin-
ing biomarkers that facilitate the prompt and accurate identification of at-risk individuals
is essential [8–10].

Advances in neuroimaging and artificial intelligence (AI) are increasingly aiding our
understanding and diagnosis of these conditions. Among brain imaging procedures, EEG is
gaining wider acceptance in hospitals and outpatient clinics, as it is more cost-effective and
simpler to implement, which justifies its application and preference in research. Although
traditional EEG analysis has not been part of psychiatric diagnostics for decades, AI-driven
models, including machine-learning algorithms from data extracted via EEG, are now
providing essential support in detecting psychiatric diseases and differentiating them from
each other and healthy individuals [6,7,11,12].

EEG is useful for obtaining a more nuanced understanding of brain function by record-
ing brain surface electrical signals [13,14]. In clinical trials, EEG is typically applied in
three ways: frequency analysis, microstate (MS) analysis, and event-related potential (ERP)
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analysis. Brain activity can be categorized into frequency bands such as delta (below 4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma (above 30 Hz), which are
analyzed through frequency analysis [15,16]. Frequency analysis dominates the study
of psychiatric disorders, particularly schizophrenia; however, the research literature on
bipolar disorder within the psychosis spectrum is notably less extensive. Addressing the
inconsistencies among study results remains a challenge, with more effective standardiza-
tion of methodologies and multi-channel analyses across several brain regions providing
potential solutions [11]. MS involves short-term electrical state changes that span multiple
brain areas. This method offers a comprehensive view of the brain’s network system, and it
has significant potential in investigating both schizophrenia and bipolar disorder [14,17–21].
Both frequency and microstate analyses can be conducted using an rsEEG setup, in which
participants remain in a relaxed state with their eyes either open or closed, allowing the
device to measure spontaneous electrical activity. This setup is commonly used in the
investigation of psychiatric disorders, as it is easier to implement compared to task-based
paradigms typically required for ERP analysis [16]. Within rsEEG protocols, the eyes-closed
condition is the most frequently employed in psychiatric research. Additionally, the eyes-
closed condition results in less noisy data by minimizing external stimuli, which facilitates
the analysis of inherently complex rsEEG data. Furthermore, it provides an optimal frame-
work for enhanced alpha frequency activity, which is an important indicator of changes in
cognitive functioning, a key symptom in the early stages of both disorders [9,11,15,21,22].
Considering these factors, the present study utilizes the rsEEG eyes-closed condition and
works with data obtained through frequency and microstate analysis.

The analysis employs innovative machine-learning frameworks for feature selection
and model explainability, specifically Adaptive Hybrid Feature Selection (AHFS) [23]
and Clique Forming Feature Selection (CFFS) [24]. AHFS is a novel feature selection
algorithm that adaptively combines correlation-based and information-theoretic methods in
a single framework, outperforming traditional fixed-criterion approaches. By dynamically
exploring both feature and evaluation spaces, it delivers higher accuracy and robustness,
especially in high-dimensional, noisy datasets. Meanwhile, CFFS uniquely employs a
model-agnostic feature-importance calculation (Shapley values) aggregated across multiple
ML models. Those models’ feature sets were formed in a way to reduce inter-correlation
among features, countering a key weakness of Shapley values. Leveraging standard cross-
validation for noise minimization, CFFS identifies a broader set of globally important
features, complementing the more compact subsets found by AHFS for robust, efficient
feature selection.

In this study, we focus on the premorbid period that precedes the prodrome, where
only latent susceptibility characteristics are observable among healthy, symptom-free
young individuals. This cohort is very important as, in the case of psychiatric disorders,
there is a research gap in the development of identification methods for the premorbid
state [25]. Our objective was to distinguish between healthy university students who
exhibit a potential latent predisposition toward schizotypal or bipolar disorders and those
without such susceptibilities, utilizing rsEEG data for this analysis. In addition, it aims
to differentiate between the two groups of susceptibilities. The challenge of identifying
risk conditions of varying severity is significant. This challenge is further compounded by
the limited number of subjects typically available at general clinical and hospital research
sites. Consequently, our methodological development needed to ensure that the robust
machine-learning methods used for model explanation were also suitable for analyzing
small datasets, while being sensitive enough to accurately detect the target population.
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2. State of the Art
The application of AI in the research field provides a significant opportunity to aid the

analysis of EEG data. Typically, this involves transforming EEG frequency data into unique
characteristics through mathematical processes, which are then used to create models.
These models have the potential to assist in distinguishing different groups with greater
accuracy and help in diagnostic and differential diagnostic tasks [26–29]. The models
and features developed through AI methodologies provide a deeper and more complex
analysis of the electrophysiological markers of schizophrenia and bipolar disorder. How-
ever, challenges remain due to the lack of transparency [30], and also standardization in
methodologies and analyses [6,7,26].

Given that the literature offers a wide range of methods and approaches for inves-
tigating psychiatric disorders using AI and EEG, including the study of schizophrenia
and bipolar disorder, this introduction highlights a selection of examples that illustrate
commonly used tools and the accuracy achievable with these procedures, as well as the
number of participants in relevant studies (which is not uncommonly low). However,
more comprehensive information on numerous other examples can be found in review
articles, which provide detailed insights into current approaches and potential future
directions [6,7,27,28]. Table 1 presents relevant studies along with the methods applied.

Table 1. Methods and accuracy example.

Article Groups Methods Accuracy

[31] 18 BD I/20 BD II
MLP, Feature Selection

(MIM, CMIM, FCBF,
DISR)

82.68% (overall)
86.33% (MIM)
89.67% (CMIM)
84.61% (FCBF)
91.83% (DISR)

[32] 101 MDD/
82 BD/81 HC CNN 96.88%

[26] 2 datasets (age-based) VGG-16 (CNN) 95%, 97%

[33] 14 SZ/14 C ANFIS, SVM, ANN
100% (ANFIS)
98.89% (SVM)
95.59% (ANN)

[34] 14 SZ/14 C CNN, LR 90% (SB)
98% (NSB)

[35] 11 SZ/20 C kNN, LR, DT, RF, SVM

89% (SVM)
87% (RF)
86% (LR)
86% (kNN)
68% (DT)

Machine-learning (ML) and deep-learning (DL) techniques play a crucial role in
classification and prediction. Support Vector Machines (SVMs) are widely used for their
effectiveness in distinguishing psychiatric conditions, while Decision Trees and Random
Forests offer interpretability for clinical applications. Deep-learning approaches, such as
Convolutional Neural Networks (CNNs), excel in extracting complex EEG features but
require extensive data and computational resources [7,27]. The selection and variation
of approaches are influenced by the lack of standardization, as well as the need to tailor
methods to specific research objectives and experimental conditions [7]. The literature
suggests that schizophrenia is often associated with abnormalities in gamma frequency,
while bipolar disorder may be characterized by alterations in theta and delta frequency. In
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both disorders, the early detection of cognitive decline is critical, highlighting the potential
significance of alpha frequency deviations. Moreover, MS analysis has been proposed as a
potential marker. In schizophrenia, alterations in EEG microstates suggest cognitive and
emotional dysregulation, with their association to gamma oscillations providing a potential
diagnostic marker; in bipolar disorder, changes in microstate patterns are linked to mood
states [11,12,21,36]. Cognitive deficits are typically more pronounced in schizophrenia,
whereas mood instability is a key feature of bipolar disorder. In the latter, white matter
involvement necessitates more advanced data collection and analysis techniques. The
overlapping symptomatology of psychotic spectrum disorders and the asymptomatic
nature of the premorbid phase require complex and sensitive tools capable of detecting
subtle, early-stage changes, which are crucial for timely intervention and improved disease
management [9,22,37–39].

3. Materials and Methods
3.1. Subjects

Table 2 shows the selection criteria and Figure 1 illustrates the selection process. The
investigation was conducted in conjunction with a broader scheme of thought entities:
“An examination of neurobiological, cognitive, and neurophenomenological aspects of
healthy volunteer students’ susceptibilities to mood swings or unusual experiences”. All
the subjects gave written informed consent in accordance with the Declaration of Helsinki,
and they were informed of their right to withdraw from the study at any time without
providing any explanation. The selected participants received an expense allowance of HUF
15,000 for participation in the entire study, which was obtained through a grant application.

Figure 1. Flowchart of group formation.
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Table 2. Selection criteria for participant inclusion and exclusion. In the study, the PSF group
consisted of participants with O-LIFE ≥ 5, PDI-21 > 10, and TEMPS-A Cyclothymia scores < 12. This
group showed higher values on the O-LIFE and PDI scales, indicating increased psychopathological
risk, while the TEMPS-A scale remained within the normal range. In contrast, the CTF group had
O-LIFE < 6 and TEMPS-A Cyclothymia = 11, with lower O-LIFE and PDI scores and higher TEMPS-A
scores compared to the control group, suggesting emotional instability, but without a high level of
psychopathological risk. The control group showed no psychopathological deviations, and their
scores remained within the normal range.

Selection Criteria Details

Initial Inclusion University of Szeged first- and second-year students
without a diagnosed psychiatric disorder.

Screening Questionnaires TEMPS-A (Temperament), O-LIFE (Schizotypy), PDI-21
(Delusions), MDQ (Mood Disorder).

Inclusion Criteria 182 students met the screening criteria.

Exclusion Criteria 87 students excluded based on criteria, additional 2
excluded due to acute mental disorders (SCID-5).

Final Grouping

PSF Group: O-LIFE ≥ 5, PDI-21 > 10, TEMPS-A
Cyclothymia < 12 (N = 30).

CTF Group: O-LIFE < 6, TEMPS-A Cyclothymia total
score = 11 (N = 25).

Control Group: No significant psychopathology (N = 30).

Data Quality Control Removal of participants with excessively noisy or impaired
EEG data.

Final Sample Size

PSF: N = 20 (12 men, 8 women), mean age 27.66 (SD = 1.75).
CTF: N = 17 (6 men, 11 women), mean age 26.82

(SD = 1.85).
Control: N = 21 (9 men, 12 women), mean age 27.45

(SD = 1.89).

3.2. Assessments

The Temperament Evaluation of Memphis, Pisa, Paris, and San Diego Autoques-
tionnaire (TEMPS-A) [40] and the Hungarian version of the shortened Oxford-Liverpool
Inventory of Feelings and Experiences (O-LIFE) were employed to select participants [41].
In addition, the Clinic Version of the Structured Clinical Interview for DSM-5 (SCID-5) [42]
and Delusions Inventory (PDI) [43], the Mood Disorder Questionnaire (MDQ) [44], and
demographic information (including age, sex, education, persistent illness not impacting
neurocognitive functions, regularly prescribed medications, mental illnesses in the family,
and previous psychiatric treatment, were also included.

The study employed several questionnaires, including the Examination of Anoma-
lous Self-experiences (EASE) [45], Temperament and Character Inventory (TCI-R) [46],
Morningness Eveningness Questionnaire (MEQ-SA) [47], The Behavioral Inhibition and Ac-
tivation System Scales (BIS/BAS scale) [48], Leuven Affect and Pleasure Scale (LAPS) [49],
Raven test [50], and THINC [51]. Additional instrumental assessments complemented
these: eye-tracking antisaccade tests, instrumental self-aggression measures, actigraphy,
and laboratory-based allostatic load evaluation.

3.3. Recording Procedure

The data were captured using the 32-channel BioSemi Active Two AD boxing ADC-12
instrument of the SZTE Institute of Psychology (channels: ‘Fp1’, ‘AF3’, ‘F7’, ‘F3’, ‘FC1’,
‘FC5’, ‘T7’, ‘C3’, ‘CP1’, ‘CP5’, ‘P7’, ‘P3’, ‘Pz’, ‘PO3’, ‘O1’, ‘Oz’, ‘O2’, ‘PO4’, ‘P4’, ‘P8’, ‘CP6’,
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‘CP2’, ‘C4’, ‘T8’, ‘FC6’, ‘FC2’, ‘F4’, ‘F8’, ‘AF4’, ‘Fp2’, ‘Fz’, ‘Cz’). During the study, the subjects’
‘resting-stage’ [15] brain waves were recorded in two states, one with closed eyes and the
other with open eyes, in the rsEEG arrangement. In this study, we only examined the
eyes-closed state EEG records.

3.4. Data Preprocessing

The data preparation and analysis required a methodical and thorough process to
guarantee the integrity and usability of the EEG data. The dataset consisted of unprocessed
EEG recordings, which underwent preprocessing using MNE-Python [52], a widely ac-
knowledged library in neuroscience for analyzing electrophysiological data. The first step
involved establishing a montage for the EEG data.

The following preprocessing steps were performed: first, the data were resampled
from 8192 Hz to 128 Hz to improve processing efficiency. Next, a notch filter was applied
at 50 Hz to eliminate power line noise. Then, a bandpass filter was used to isolate the
frequency range of interest, specifically between 0.5 Hz and 60 Hz, while excluding high-
frequency noise and slow drifts. EEG data cleaning required a hands-on approach, as
confirmed by the manual intervention required to identify and interpolate faulty channels
and intervals.

As data preprocessing is an integral component of microstate analysis, further details
on this process can be found in the next section (Section 3.5.1), an external reference that
provides in-depth descriptions of all the steps and techniques employed, with all examples
of this GitHub repository: https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/
eeg, accessed on 6 February 2025.

3.5. Data Analysis
3.5.1. Microstate Analysis

Microstate analysis in EEG involves identifying and analyzing transient, stable to-
pographical patterns in brain electrical activity. These microstates provide insights into
brain function by examining their temporal sequences. Preparing data for microstate
analysis involves several critical steps: setting a montage, resampling, applying filters,
artifact removal, and calculating microstate maps. Each step involves specific methods
and parameters to ensure that the data are suitable for meaningful analysis. The analysis
followed the steps described in Michel et al. (2018) [18]. After the preprocessing steps,
artifact removal is performed by manually identifying bad intervals and channels. After
data cleaning, some channels have bad data segments and they are interpolated to esti-
mate their values based on surrounding signals if neighboring electrodes are functioning
correctly at that segment. If interpolation is not possible due to widespread deviations,
these segments are removed entirely. In some cases, entry channels were unusable. If
many channels were corrupted, the EEG from the patient was deleted. Further artifact
removal is performed using Independent Component Analysis (ICA) where necessary.
After applying re-referencing, ICA helps in identifying and removing artifacts that are not
easily correctable by simple filtering, such as eye blinks or muscle movements. This step
ensures that the data predominantly reflect brain activity rather than external noise. Nor-
malization is then performed to standardize the data. This involves scaling the signals to
have consistent amplitude ranges across different recordings, which is crucial for accurate
comparison and analysis. The segmented data are then clustered into distinct microstate
classes. This involves using a modified K-means clustering to group similar EEG segments.
The number of clusters, usually set to four, is predefined based on the expected variety of
microstates. The algorithm iteratively assigns each segment to a cluster, minimizing the
variance within each cluster. The resulting clusters represent different microstates, each

https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/eeg
https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/eeg
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characterized by a distinct topographical pattern. The analysis concentrates on the four
most prevalent microstates, calculated at the peaks of the Global Field Power (GFP). GFP
peaks are points in time where the spatial variance of the EEG signal is at its maximum,
indicating the most pronounced topographical configurations. Those participants’ data
that were unable to show the proper MS topological formation regardless of the rigorous
data cleaning and preparation steps were discarded. This step was inevitable to ensure the
data quality and the reliability of the final analysis. The clustered microstates are analyzed
to understand their temporal properties, such as duration, occurrence, and transition proba-
bilities. This involves calculating the average duration of each microstate, the probability of
each transition from one state to another, and many more statistics and metrics. A flowchart
illustrating the preprocessing steps can be found in Appendix A, Figure A5.

3.5.2. Frequency Domain Analysis

EEGlib is a Python library specifically developed for feature extraction from prepro-
cessed or raw EEG signals. EEGlib offers a comprehensive and standardized framework
for the analysis of EEG data, facilitating the retrieval of an extensive array of features.
By employing the default settings on our 32-channel, 128 Hz preprocessed EEG data, we
conducted every analysis at one-second intervals, thereby generating a secondary time
series. The dimensions of the outputs generated by this method are not optimal for machine
learning. To resolve this issue, four summary statistics—the mean, standard deviation,
upper quartile, and lower quartile—are computed for each time series during the feature
engineering phase. By capturing the distribution of the time series, these metrics guar-
antee the preservation of the most informative elements, which are then applicable to
machine-learning models. Consequently, a specific attribute is denoted by four numerical
values appended to its name: “_mean”, “_std”, “_upper_qrt”, and “_lower_qrt” (“_stat”).
A feature name consists of the following components: the sign of the implied statistic,
the name of the channel (“channel”), the frequency band (“_frequency”), if present, and
the name of the metric (“_stat”). Table A1 lists all the features and their corresponding
names, which are described in Appendix B.3. Due to the wide variation in scale, we first
implemented a standard normalization. Despite this, the scikit-learn Python library faced
difficulties when dealing with values that were extremely close to zero, and treated them
as zero. To tackle this issue, we implemented a logarithmic transformation on features that
had a standard deviation below 10−4 and subsequently applied standard normalization.

3.6. Machine Learning

In this section, we intend to introduce the novel ML-based feature selection and
analysis tools we employed in our research. Since those methods resemble some unique
perspectives, we aim to provide a comprehensive overview.

3.6.1. AHFS

The Adaptive, Hybrid Feature Selection (AHFS) algorithm offers an innovative ap-
proach to feature selection in machine learning [23]. It combines supervised feature selection
techniques, each with specific evaluation measures, to create a versatile solution. Utilizing
correlation and information-theoretic-based measures such as MMIFS, mRMR, LCFS, and
JMIM, among others, the algorithm evaluates the relationship between features and their
information content. This hybrid approach allows for integrating additional feature selec-
tion methods and metrics, ensuring adaptability to various scenarios and future research
findings. For feature selection, the AHFS algorithm (Figure 2) employs the widely adopted
Sequential Forward Selection (SFS) technique.

This technique incrementally expands the selected feature set by adding one feature
during each iteration based on their contribution to minimizing the estimation error or
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maximizing accuracy. Consequently, adaptivity is a fundamental aspect of the AHFS al-
gorithm, as it explores not only within the feature space but also in the realm of feature
selection techniques and evaluation measures simultaneously. This adaptivity enables the
algorithm to assess different feature selection methods at each step, offering a comprehen-
sive and effective approach. Its robustness and effectiveness in feature selection position
the algorithm as suitable for real-world applications, including the screening of mental
health conditions.

Figure 2. The AHFS algorithm is visualized through an operational graph, delineating two consecu-
tive steps. The functionality of the proposed algorithm is demonstrated using the Housing dataset
by Lichman et al. (2013) [53]. The nodes within the graph are annotated with feature indices repre-
sented as numerical values and enclosed in frames of diverse colors. These color distinctions denote
the status of the analyzed variables. Specifically, features with black frames signify the previously
selected feature set in the current state, while features with colored frames (red, green) are considered
candidate features within the set. The green-framed feature denotes the optimal choice, exhibiting
the smallest estimation error or the highest accuracy when compared with other potential variables
enclosed in red frames. The figure originated from Viharos et al. (2021) [23].

AHFS was executed on all calculated features. A single “run” of the algorithm begins
by selecting an initial feature, then proceeds up to 20 iterations, each time adding one new
feature and training a corresponding model (as illustrated in Figure 2). Because there is
some randomness in the choice of the “best” feature at each step—particularly in later
iterations—20 runs were performed to ensure feature stability. AHFS uses 3-fold cross-
validation and provides performance metrics averaging the 3 training sessions. The top
20 models had Shapely calculations to ensure comparable results with CFFS.

3.6.2. Clique Forming Feature Selection

The Clique Forming Feature Selection (CFFS) method, initially introduced by Nagy
et al. (2023) [24], was further enhanced and elaborated upon in this study. Similar to AHFS,
this approach also integrates machine-learning algorithms to select features, but in such a
way that the widest spectra of the available features have a chance to “compete” for a better
prediction. This approach is important in medical research, to balance model performance
with understanding the underlying mechanisms. In this investigation, we utilized Logistic
Regression (LR), Random Forest (RF), and one simple Artificial Neural Network (ANN),
which are discussed in detail in Appendix B.1.
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Figure 3 illustrates the steps of the CFFS algorithm and outlines a comprehensive
pipeline for feature selection and model training. This approach makes it possible to
minimize inter-correlation in feature set candidates.

Figure 3. Workflow of the Clique Forming Feature Selection (CFFS) algorithm. The process begins
with the full feature set (F1, F2, F3, . . . , Fn) (Fe1−em ). The filtered features are used to construct a
weighted feature graph, where edges represent pairwise Pearson correlations. For example, Fi1−i4 is a
4-element whole subgraph (clique) and will be a feature candidate; however, Fe5 was left out from
the analysis because it does not have enough low correlation features. Edges with absolute weights
above a threshold are removed, resulting in a general graph. Cliques (Fc1, Fc2, . . . , Fck), defined as fully
connected subgraphs, are identified as potential feature sets. If too many cliques result, a random
selection is made. These feature sets are used to train models with three machine-learning algorithms.
The models are evaluated using 3-fold cross-validation. Shapley values are computed for feature
importance, and aggregated Shapley tables provide robust rankings for the selected features.

Due to the enormous number of features, we prefiltered them based on the AHFS
findings. Those features are selected, which appear at least once in the 20 runs, ending
up with 35 features in both cases. Applying 0.4 (PSF) and 0.35 (CTF) thresholds to form
common graphs, approximately 5000 cliques are identified, and from these, 600 sets of
varying sizes (3–9 features) are randomly selected, ensuring broad coverage of the overall
feature space. These feature sets are used to train models with three machine-learning
algorithms (LR, RF, ANN). The models are evaluated using 3-fold cross-validation, and
the top 20 models per algorithm are selected based on accuracy. These accuracy values are
presented in the next section (see Figure 4).

Figure 4. Accuracy box plot of the top-performing models. The labels show which two groups
were separated.

Subsequently, we aggregate the Shapley values from these top-performing models,
which makes for a more reliable interpretation by increasing feature stability (truly globally
important features are selected) and filtering out inconsistent predictions. Also, due to
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the small inter-correlation, a huge drawback of Shapley value calculation is canceled
out; namely, this feature importance calculation method tends to distribute importance
among correlated features. Reducing the inter-correlation among feature sets leads to
more reliable results. Applying three different ML algorithms ensures that all kinds of
underlying connections are observed. LR tends to find linear connections, and RF is much
more sensitive to finding non-linear relations; on the other hand, ANN could pick up much
more complex structures. Those solutions make CFFS a unique method designed especially
for medical and similar data analyses, where not only model performance but also the
investigation of underlying mechanisms is paramount. Since we used cross-validation, each
fold’s predictions and Shapely values were saved and processed equally, so all data points
contributed to the analysis. Further details of the method are described in Appendix B.2.

With this procedure, we were able to select and evaluate models that exhibited satis-
factory accuracy levels, while utilizing the Shapley values to gain insights into the contri-
butions of different features toward the model predictions. This approach offers a more
comprehensive analysis of the group and helps provide a reliable framework for further
investigations. The aggregated Shapley values of the features are displayed in the SHAP
“Summary plot” (for example, see Figure 5), which depicts the aggregated Shapley values.
In each row (a particular feature), each point corresponds to a decision on a particular
participant. The x-axis position of the point represents its impact on the model (in this
context, the overall impact across all different, aggregated models) output, colored by the
particular feature’s relative value (high or low). Points further left indicate a higher contri-
bution to labeling as a risk factor, while points further right indicate a higher contribution
to labeling as control. The other types of plot are the comparative ones, where the mean
of the absolute values of the Shapley values (importance scores) are normalized. This
normalization ensures that the importance score adds up to one.

Figure 5. The SHAP summary plot of the LR models in the PSF group. The top 12 features were
ranked by the importance score.
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4. Results
4.1. Generated Models

The method used is based on training several simpler models and explaining them
one-by-one, then aggregating to obtain the importance scores; therefore, we represent our
results with box plots, shown in Figure 4. The analysis constructed from three binary
classifications, two cases where the control group gets separated from the PSD (C-PSF), and
then the CTF group (C-CTF), and a third case, where the two latent groups get separated
from each other (CTF-PSF). Since we utilized cross-validation, each fold, and consequently
each sample, was presented in both the training- and testing-datasets. Because of this, each
sample obtained and saved the prediction; therefore, the presented accuracy is composed
by using all data points. The best accuracy was achieved using the AHFS method (Table 3).
Owing to the use of different running environments and optimization procedures, the
outputs cannot be compared unambiguously, but the AHFS was able to separate PSF and
CTF groups, so we can move forward, relying on these models in the following.

Table 3. The maximum accuracy score was obtained for the different algorithms presented in groups.

C-CTF C-PSF CTF-PSF

ANN (AHFS) 0.89 0.92 0.91
ANN (CFFS) 0.79 0.71 0.62

LR 0.76 0.71 0.65
RF 0.79 0.80 0.65

4.2. PSF Group Findings

The LR algorithm is shown in Figure 5, while the other three algorithms are listed in
Appendix A, Figure A1b–d. The most interesting results are the first seven features of LR.
The standard deviation of PSD across the frequency range of 50–60 Hz at the CP5 electrode
is substantially larger. A similar result was noted in the ANN (AHFS) (Figure A1d), but the
mean of the PSD features were affected. Using Figure A3a, Appendix A, it is straightforward
to compare the relative importance scores of the features and also to see that certain features
appear in the other groups, but with different significance values. Figures 6–8 show the
importance scores from various aspects, and it confirms that most of the algorithms used the
features of the channel CP5 in the low (<7 Hz) or in the high (50–65 Hz) frequency range.

Figure 6. Separation of importance score ratios by feature type in the PSF group. The PSD row shows
the frequency-dependent score ratio. The algorithms are differentiated by the colors. The PSD-related
are the most important feature types, followed by the Lempel-Ziv complexity-related features.
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Figure 7. A scatter plot as a function of frequency range and importance scores in the PSF group.
The importance scores are clustered under 5 Hz and above 50 Hz. The algorithms are differentiated
by colors.

Figure 8. A spatial distribution of the relative importance scores in the PSF group, displayed on the
electrode scalp diagram. The majority of the importance scores are located at the CP5 electrode, and
some others on the frontal lobe. The algorithms are differentiated by colors.

4.3. CTF Group Findings

The Shapley values of the features judged important by the different algorithms are
shown in Figure 9 and Figure A2b–d in Appendix A. The relative importance scores for all
the features are shown in Appendix A, Figure A3b. The feature type (Figure 10), frequency
(Figure 11), and spacial distribution (Figure 12) are shown below. For LR, the first two
ranked features are the Lempel-Ziv complexity measure, for electrodes FC5 and T7, both
with reduced complexity for the susceptibility group. This algorithm used the FC5 electrode
by itself, while the other three models found this channel to be of little importance in any
form. “LZC_T7_upper_qrt” is also ranked second to the RF algorithm, with a similar
distribution, and a little bit lower ranked to the two ANN algorithms (Figure A2b–d). RF
produced balanced, well-distributed values. RF and ANN (CFFS) found the same feature
to be the most important; for the PSD of the 44–46 Hz frequency range of the CP5 electrode,
these values were elevated in the susceptible group. Similarly, LR feature 4, 5, and 6 showed
an increase in features (on CP5) in the lower range of the gamma for the observed group,
and similar results were observable for RF. Thirdly, the PSD of the 34–36 Hz frequency
range of Fp1 was the same for the three algorithms, with an increase in susceptibility.
Almost all features include “_upper_qrt” or “_lower_qrt” features. This tells us that there
are differences in the lower or upper quartile of the distributions of the scores counted on
a person’s data for control and bipolar predisposition. Hence, it is more likely to be the
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sparser values that appear in the scores that are different, rather than the whole distribution
being shifted or even spread out differently. These results also help us to better understand
our groups.

Figure 9. The SHAP summary plot of the LR models in the CTF group. The top 12 features are ranked
in order of importance scores.

Figure 10. Separation of importance score ratios by feature type in the CTF group. The PSD row
shows the frequency-dependent score ratio. The algorithms are differentiated by colors.
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Figure 11. A scatter plot as a function of frequency range and importance score in the CTF group.
The algorithms are differentiated by colors.

Figure 12. A spatial distribution of the relative importance scores, displayed on the electrode scalp
diagram in the CTF group. The colors differentiate the algorithms.

4.4. CTF-PSF Comparison Findings

Figure 4 indicates that none of the models, except the AHFS (ANN), performed well in
separating the two propensity groups, so only the results of using this method are discussed
here. Since the algorithms here do not predict the presence of susceptibility, positive Shapley
values do not indicate the presence but the susceptibility of schizotypy, while negative
ones indicate latent bipolarity (Figure 13). The whole feature set and their importance
scores are listed in Appendix A, Figure A4. Figure 14 display the types of important
features, showing the majority PSD and LZC features, while Figure 15 show the important
PSD frequencies. The electrode scale diagram (Figure 16) also clearly shows that the PO4
channel played a key role. PSD features in this channel covered the frequency ranges 36,
42, 46, and 48 Hz. The quartiles are shifted, so a slight separation in the distributions
occurred in the same feature groups, and a slight decrease in the PSF compared to the CTF
group was seen. Figure 15 reveals that the overall importance score distribution across the
frequency ranges was more spread. Also, there is a marked increase in LZC complexity in
favor of the PSF group on the PO4 channel. Overall, the other channels are not significant,
but it is interesting to note that the third feature (channel P4) displays an increase in LZC
complexity in the CTF group, in contrast to, and again for PO4 on T7.
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Figure 13. The SHAP summary plot of the ANN (AHFS) models’ top 12 features in CTF and PSF
group comparison.

Figure 14. Separation of importance score ratios by feature type in PSF and CTF group comparison.
The PSD row shows the frequency-dependent score ratio. The algorithms are differentiated by colors.
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Figure 15. A scatter plot as a function of frequency range and importance score in CTF and PSF
group comparison. The algorithms are differentiated by colors.

Figure 16. A spatial distribution of the relative importance scores, displayed on the electrode scalp
diagram in CTF and PSF group comparison. The algorithms are differentiated by colors.

5. Discussion
Here, we sought to differentiate between groups of healthy university students base-

don their latent liability of developing schizotypy or bipolar disorder using resting-state
EEG data. Utilizing machine-learning methods capable of delivering effective results even
with small samples, we attempted to segregate those with low risk from their peers who do
not exhibit these latent vulnerabilities, as well as from each other. The characteristics gener-
ated by the sophisticated artificial-intelligence models provided the means to effectively
distinguish the risk groups from the control group and, to a certain extent, from each other.
The models generated exhibited a number of important features based on the algorithms
employed. However, the novelty of the present research makes it challenging to ascertain
their precise role. In most cases, these results can be compared with those of participants at
high risk or with with manifested disease conditions [25].

5.1. Frequency Bands

The majority of the features identified as crucial in the PSF group by the models
derived from the frequency analysis (features names start with “PSD” (Power Spectral
Density)) were quantified within the gamma range. This indicates that the variation in
gamma frequency presence between groups was important according to the algorithms.
The majority of these features were associated with the CP5 channel (13 features), which was
also identified as the most significant channel in the model. Also, the following channels
were included: CP2 (three features), FC2 (two features), C4 (one feature), P4 (one feature),
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and O1 (one feature). The majority of features in the CTF group were also measured in
the gamma range. Once more, the majority of these features are associated with the CP5
channel (10 features), which is the most significant electrode in this group according to
the models. Furthermore, the gamma range is present for channels Fp1 (2 features), CP6
(2 features), PO3 (2 features), P7 (1 feature), AF3 (1 feature), and FC1 (1 feature). It can
be seen that the features in the PSF group are generated from frequencies between 52
and 64 Hz, while for the CTF group the range is between 30 and 56 Hz (considering all
the selected features based on Figure A3, not only the most significant ones highlighted
in Section 4). The importance of gamma frequency for psychosis spectrum disorders is
discussed in Reilly et al. (2018) [36], which provides a synthesis of previous literature
on the topic. The study enumerates several factors that must be considered to ascertain
the significance of the frequency range. However, the principal conclusion is that it is
hard to determine in the early stages of psychosis spectrum disorders. Consequently, it
is difficult to draw a precise conclusion from the literature based on the present results.
Other noteworthy frequency bands included delta, theta, alpha, and beta. It should also be
mentioned that the frequency analysis literature is inconsistent. However, it does highlight
some possible guidelines along which the issue is worth investigating [11,14]. In the PSF
group, the delta wave was important for the Fp1 channel (6 features) and the beta wave
for the Cz channel (1 feature). The extant literature suggests that deviation of the delta
wave at frontal regions may indicate the presence of reduced negative symptoms in first-
episode schizophrenic patients, with no reports for the premorbid phase, so even with the
importance of the frontal channels (FC5, Fp1, F8) in the model, it is hard to reach a definitive
conclusion for our results [16]. In the CTF group, the delta wave was important for channel
Fp1 (seven features), channel CP6 (two features), channel AF3 (one feature), channel C3
(one feature), the theta wave for channel Fp1 (one feature), channel C4 (one feature), and
the alpha wave for channel P8 (one feature). It is noteworthy that the literature does not
provide details regarding the localization of these differences. Consequently, the exact
interpretability of these findings for the premorbid phase remains to be elucidated [14,21].

5.2. Complexity

Another component of the feature set was the Lempel-Ziv complexity. Complexity
testing, adapted from computer science, is a common practice when examining data
generated by brain imaging in psychiatric disorders. This is due to its ability to measure
complex and dynamic events, which makes it suitable for application to EEG data in
schizophrenia and bipolar disorder [54–56]. The extant literature indicates that the results
are inconsistent in schizophrenia. Increased as well as decreased complexity is variably
reported, which may depend on the duration and phase of the disease as well as the affected
area [57–59]. A paucity of literature is available on bipolar disorder, with the available
results suggesting abnormally elevated complexity in the medial temporal gyrus and the
medial frontal gyrus as potential markers. This may be associated with symptoms of the
disorder and cognitive functioning. In the CTF group, the first and second features of
the FC5 and T7 electrodes were derived from Lempel-Ziv complexity. The results did
not demonstrate a clear direction along the axis of elevated and reduced complexity. The
significance of this result is difficult to determine from the literature [59].

5.3. Additional Features

Additional features included hjorthActivity, hjorthMobility, and SampEn. In the PSF
group, the feature hjorthActivity_FC5_mean was selected for the models, while in the
CTF group the features hjorthActivity_CP6_std, hjorthActivity_Cz_lower, hjorthMobil-
ity_Cz_upper, and sampEn_FC2_mean were selected for the models. The majority of
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existing literature on these statistical variables relates to schizophrenia, with no relevant
studies identified for bipolar disorder [60–62]. The available evidence suggests that the
use of these indicators of complexity may offer a promising avenue for further research.
It is not easy to ascertain the importance of the features derived from these indicators in
the context of the present study, as well as the relevance of including one feature from the
“hjorth” category and three from the “sampEn” category in the PSF group and one from the
“hjorth” category in the CTF group in one of the models.

5.4. Localization of the Features

The examination of schizophrenia and bipolar disorder is challenging due to their
varying and overlapping symptoms and the lack of a standardized approach in research. A
more comprehensive approach, considering multiple biomarkers and levels of neurological
alterations, is needed to better understand these disorders [63,64]. The discussion focuses
on factually describing the features generated by algorithms and the brain areas associated
with these features in both schizophrenia and bipolar disorder. It is important to note that
brain areas often have overlapping functions, so multiple electrodes may be associated
with the same brain area and be presented in groupings [65–67].

5.5. Features of the PSF Group

Figure A3a shows the features in the PSF group that are jointly considered important
by the different models. Figure 6 shows the feature type, Figure 7 the frequency, and
Figure 8 the location distribution of the important scores, and Figure A1 in Appendix A
shows the SHAP summary plots of all four algorithms. Table 4 summarizes the relevant
electrodes and the associated brain areas.

Table 4. In the PSF group, the electrodes deemed important by the models and the brain regions
associated with them are as follows: L. = Left, R. = Right, BA = Brodmann Area [66].

CP5 AF4 F8 Fp1 CP1 FC5 O2 P4
L. BA39 R. BA9 R. BA45 L. BA10 L. BA7 L. BA6 R. BA18 R. BA39

PO3 Cz PO4 AF3 C4 CP2 FC2 O1
L. BA19 R. BA4 R. BA19 L. BA9 R. BA1 R. BA7 R. BA6 L. BA18

The areas BA39, BA10, BA9, and BA7 (as electrodes CP5, Fp1, AF4, AF3, CP1, CP2, P4)
are responsible for cognitive and executive functions. CP5 (L. BA39) is a key area within this
grouping, as it is responsible for the localization of the majority of features. Furthermore, it
is associated with features of higher importance in the models, in addition to features of
lower importance in the models. The area is responsible for a number of functions, includ-
ing face recognition, reading (text detection), and visuomotor orientation [65]. The areas
BA45, BA6, BA4, and BA1 (F8, FC5, FC2, Cz, C4) are responsible for motor activation and
somatosensory functions. BA19 and BA18 (PO3, PO4, O2, O1) constitute part of the visual
cortex and are responsible for the recognition of movement, colors, faces, and objects [65].
It is well established that disturbances in most of these functions are readily detected and
measured in individuals with established schizophrenia (e.g., cognitive and executive
functions, motor activation, social cognition). In the premorbid phase, the principal symp-
toms observed include delayed motor development, attentional dysfunction, language
comprehension dysfunction, poor academic performance, social isolation, and disturbance
of emotional functioning. Also, findings are inconclusive regarding the involvement of
problems with processing speed, verbal learning and memory, executive functions, and
social cognition disorders, although some of the features (e.g., features of FC5 and Fp1
electrodes) fall within areas that may include these problems [39,68]. Potential disturbance
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of functions of the regions encompassed by the electrodes deemed important by the models
are analogous to the symptoms of schizophrenia. Given schizophrenia’s impact on neurode-
velopment [63], it is possible that non-detectable underlying abnormalities might already
exist. Furthermore, since our methodology successfully distinguished the research group
from the control group, our findings suggest that current methods in this research area
may be insufficient for detecting and identifying premorbid abnormalities with sufficient
precision. Further research is necessary to confirm our results and to identify specific brain
functions, areas, or networks that might be crucial for early disease detection.

5.6. Features of the CTF Group

Figure A3b shows all the features in the CTF group that were found to be important
by the different algorithms. Figure 10 shows the feature type, Figure 11 the frequency,
and Figure 12 the location distribution of the importance scores, and Figure A2 from
Appendix A shows the SHAP summary plots generated by the four algorithms. Table 5
summarizes the relevant electrodes and the associated brain areas.

Table 5. In the CTF group, the electrodes deemed important by the models and the brain regions
associated with them are as follows: L. = Left, R. = Right, BA = Brodmann Area [66].

CP5 FC5 CP6 T7 Fp1 P7 CP6 C4
L. BA39 L. BA6 R. BA39 L. BA21 L. BA10 L. BA19 R. BA39 R. BA1

FC2 F8 Cz Fz AF3 P8 PO3 P4
R. BA6 R. BA45 R. BA4 L. BA6 L. BA9 R. BA19 L. BA19 R. BA39

CP1 FC1 C3
L. BA7 L. BA6 L. BA1

The BA45, BA6, BA4, and BA1 (F8, FC2, FC5, Fz, FC1, Cz, C3, C4) areas are involved
in motor development. These areas also had importance in the PSF group, with a distinc-
tion being the higher significance attributed to the left BA6 (FC5) area in the CTF group
compared to the PSF group. The most prominent feature is at the CP5 electrode, which is
associated with the left BA39 area. The feature is observed to be more prominent in the PSF
group than in the CTF group, as it is also highly significant, but is a more frequent feature
in the PSF group compared to the CTF group (in the PSF group 13 PSD_CP5 feature, in the
CTF group 10 PSD_CP5). It is also notable that this feature appears first in the PSF group,
whereas in the CTF group it is fourth, following the LZC_FC4, LZC_T7, and PSD_Fp1
features. However, as in the PSF group, it is associated with features deemed more and also
less important by the models in the CTF group. Further investigation into the comparability
of these features between the two groups to differentiate the symptoms of deficits in these
areas may provide further insights into the functioning of the two disorders. The left side of
BA21 (T7) is another area associated with more important features, responsible for auditory
association, higher-order auditory processing, speech processing, and partly for visual
association. Another electrode with more important features is at the CP6 electrode, which
is associated with the right BA39 area. The BA39 region is implicated in the processes of face
recognition, reading (text perception), and visuomotor orientation [65]. The areas BA10,
BA9, and BA7 (Fp1, AF3, CP1) are responsible for cognitive and executive functions and
also appeared in the PSF group. Lastly, BA19 (P7, P8, PO3) is responsible for object and face
recognition [65]. The identification of early symptoms in bipolar disorder is a challenging
endeavor, particularly given the overlap between its symptoms and those associated with
schizophrenia or other psychosis spectrum disorders [37]. The findings of Payá et al. (2013)
and Chan et al. (2019) indicate that individuals diagnosed with schizophrenia exhibit more
pronounced cognitive deficits than those with bipolar disorder [22,38]. Both conditions
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are associated with substantial social adjustment challenges and impaired learning perfor-
mance. From a neuropsychological perspective, aberrantly elevated amygdala function and
impaired prefrontal working memory may serve as indicative markers of bipolarity [64].
However, the precise premorbid symptomatology of bipolarity remains uncharted territory,
and as a result the interpretation of these findings raises several questions [37]. Further
investigation is required to ascertain the significance of the involvement of these areas.
Furthermore, given that bipolar disorder is a disorder in which white matter involvement
is significant and considering that EEG is a tool for detecting brain surface signals, it is
evident that a combination of tools and approaches may be necessary to identify precisely
defined biomarkers [64]. Nevertheless, the investigation of deeper brain structures via EEG
is not an unresolved issue. There have been several attempts in the literature to use other
imaging modalities to gain deeper insights into how to define and correlate EEG function
with other tools, even for problems such as bipolarity, and it may therefore be supposed
that such data could potentially shed light on additional areas where it may be worthwhile
exploring (e.g., [69–76]).

5.7. PSF-CTF Comparison

Figure A4 shows the features in the PSF group that are jointly considered important
by the different models. Figures 14–16 show the feature type, frequency, and location
distribution of the important scores, and Figure 13 in shows the SHAP summary plots
of the ANN(AHFS) models. A comparative analysis of the two groups revealed a salient
feature localized at electrode PO4 (R. BA19), a brain region with a role in object and facial
recognition [65]. Lempel-Ziv complexity metrics exhibited an elevation in the PO4 channel
for the PFS group and the P4 channel for the CTF group. The functional implications
of these findings, associated with the roles of right BA39 (P4) and right BA19 (PO4),
suggest potential connections to the symptomatology of schizophrenia and bipolar disorder.
However, based on the current state of the literature, it is hard to determine the precise
possible interpretation of this result beyond this. Further data collection is necessary to
gain a deeper understanding [22,59].

5.8. Microstates

Since MS features were outperformed by both feature selection methods, we con-
ducted an additional analysis using only MS features with AHFS. The accuracy results
and AHFS feature rankings can be seen in Appendix A, Figure A6 and Table A2. The
accuracy of models created from these features was lower (70–75%) compared to the full
feature set results (most above 85%) with AHFS, suggesting that these features may show
some deviation from the control under these conditions, though not as strong as other
metrics. For comparison, a previous study using microstate analysis for feature extrac-
tion successfully distinguished schizophrenia patients from healthy individuals with 84%
accuracy [19]. According to the literature, bipolar disorder is characterized by a greater
presence of microstate B, while schizophrenia is associated with a decreased presence of
microstates A and B and a greater presence of microstate C [20,21]. Understanding the
trends observed in the extracted features requires further investigation to better assess
the potential applications of this methodology. Additional studies may also be needed to
understand the lower accuracy, to determine whether the methodology itself contributes to
the results, or if this approach has less significance in the premorbid state compared to the
developed clinical condition.

5.9. Comparison of Results

Based on the literature, several key points should be highlighted that may provide
potential directions for further investigations.
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Cognitive, social, and mood changes are significant in both schizophrenia and bipolar
disorder. As neurodevelopmental, chronic and in a significant proportion of cases, neu-
rodegenerative disorders, these impairments become increasingly evident and severe over
time, potentially serving as important markers, even in the premorbid stage. Most features
derived from frequency analysis fell within the gamma range, which is significant in the
early stages of psychotic spectrum disorders. The differentiations of gamma frequency in
areas such as the prefrontal cortex and the dorsolateral prefrontal cortex are associated
with higher-order cognitive functions, including inhibitory and executive functions, at-
tention regulation, and working memory. The deterioration of these functions is reflected
in gamma wave alterations and represents crucial early symptoms of psychotic spectrum
disorders [36]. In both groups, significant gamma frequency features were extracted from
the CP5 channel, which corresponds to BA39, specifically the angular gyrus [66]. Previ-
ous findings suggest that disruptions in the connectivity between the angular gyrus and
other brain regions can lead to the cognitive impairments observed in the early stages of
schizophrenia [16].

Another significant feature source was the LZC (Lempel-Ziv complexity), with a no-
table feature extracted from the FC5 channel in the CTF group, which is associated with
BA6. Its relevance to BA6, encompassing the supplementary and pre-supplementary motor
areas, is noteworthy, as this region plays a crucial role in motor control, cognitive planning,
and decision-making [54,55,66]. Research indicates that individuals with psychiatric condi-
tions such as schizophrenia often exhibit reduced LZC values, suggesting impaired neural
adaptability and processing efficiency [59]. Our finding highlights a potential avenue for
further investigation, offering a perspective for exploring whether or not similar deficits in
motor planning and cognitive functioning are also significant in bipolar disorder.

In distinguishing between the PSF and CTF groups, the most significant features were
derived from gamma frequency and Lempel-Ziv complexity in the PO4 and P4 channels,
linked to BA19 and BA39, regions near the angular gyrus. This aligns with findings that dif-
ferences in cognitive functioning between schizophrenia and bipolar disorder may indicate
the role of the angular gyrus in the distinct cognitive profiles observed in these disorders [9].
The significance of BA39 extends to its connectivity with other brain regions involved in
cognitive functions. For example, the angular gyrus is closely connected to the prefrontal
cortex, which is essential for executive functions and decision-making. Disruptions in
the connectivity between these regions can lead to the cognitive impairments observed in
the early stages of schizophrenia [16]. This suggests that the angular gyrus, through its
connections, may influence cognitive outcomes in individuals at risk for psychosis. Table 6
summarizes the literature relevance of our findings.

The potential utility of these findings is multifaceted. Firstly, the replication of the
methodology and the comparison of potentially significant brain regions, electrodes, and
features could provide long-term guidance on which brain areas might undergo criti-
cal changes during the premorbid phase and which symptoms should be prioritized for
diagnostic and differential diagnostic purposes [16]. Secondly, in the long term, exam-
ining individual variations within similar patterns could lead to a more personalized
approach to psychiatric diagnostics [6]. Further research could also offer deeper insights
into schizophrenia and bipolar disorder, enhancing our understanding of how large brain
networks and functionally interconnected brain regions interact. Investigating the correla-
tions between these findings and results from other neuroimaging techniques could further
refine and improve diagnostic tools, possibly making them more precise, cost-effective, and
accessible [16,67,70,76].
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Table 6. Key findings and their literature relevance (BA = Brodmann Area).

Key Findings PSF Group CTF Group Brain Regions
(Brodmann Areas)

Literature &
Observations

Gamma Frequency Features of CP5
channel

Features of CP5
channel

BA39 (Angular
Gyrus)

Gamma waves
linked to high-order

cognitive
functions [36].

Lempel-Ziv
Complexity - Feature of FC5

channel
BA6 (Supplementary

motor area)

LZC reduction in SZ
suggests impaired

neural
adaptability [54].

Based on our
findings, it may also

be relevant in BD.

PSF-CTF
differentiation

Features of PO4 and
P4 channels

Features of PO4 and
P4 channels BA19, BA39

Angular gyrus role
in cognitive

differences between
schizophrenia and

bipolar disorder [9].

6. Conclusions
Our study demonstrates that utilizing resting-state EEG-based algorithms to investi-

gate groups at low risk for schizotypal and bipolar disorders is a promising area of research.
The best models employed in our analysis achieved a remarkable 90% accuracy in distin-
guishing between susceptibility groups and the control group. This level of precision is
comparable to that seen in patient groups at more advanced stages of these disorders.

The methods used, namely Adaptive Hybrid Feature Selection (AHFS) and Clique
Forming Feature Selection (CFFS), not only enabled the selection of effective feature combi-
nations but also facilitated a detailed examination of the intricate relationships between
these characteristics. The spatial arrangement of characteristics around the electrodes
in our low-risk groups displayed patterns similar to those associated with known brain
impairments in advanced phases of schizophrenia and bipolar disorder.

Our approach’s effectiveness is further demonstrated by its ability to clarify the roles
and impacts of specific features. This clarity enables reliable differentiation between groups,
even with a limited dataset. This granular understanding of feature behavior enhances our
knowledge of the distinct risk profiles and aids our insight into the underlying mechanisms
of these disorders.

Given these promising results, it seems sensible to continue this line of research.
Further investigation using this method should improve our understanding of the elec-
trophysiological markers of early risk phases, potentially leading to the prevention of
schizophrenia–bipolar spectrum disorders. It should enhance the accuracy of early de-
velopmental stage detection and differentiation. The microstate analysis method also has
the potential to serve as an investigative tool in the study of both disorders; however, the
model developed in this study did not achieve the accuracy reported in the literature. Even
though our results are promising, we aim to enhance their generalizability by expanding
our investigation to a larger and younger population. Identifying young individuals with
premorbid cognitive dysfunctions that impact school performance is particularly important,
as these difficulties reduce their chances of improving quality of life, further emphasizing
the need for early detection.
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Limitations

While the small sample size raises concerns about reliability, we are confident that
the identified patterns emerged from genuine brain activities. Despite employing rigorous
cross-validation across all available data points, the analysis achieved high accuracy levels.
Our analysis methodology was specifically designed to deliver reliable feature interpretabil-
ity through noise-reduced importance scores, achieved by aggregating multiple models.
Importantly, both susceptible groups showed similar deviations from the control group, as
reported in the literature, based on continuous, coherent feature importance scores across
multiple types of algorithm and feature groups. Despite these promising results, further
validation with larger sample groups and potential longitudinal research could deliver
more established, broader generalizability of these findings.

We implemented three different ML algorithms to identify various types of relations
in the data. Including more alternatives could further enhance the quality of the analysis.

Data preprocessing steps included manual procedures that may introduce some level
of subjectivity into the analysis. Unfortunately, we could not apply a fully automated
preprocessing pipeline to deliver sufficient data quality for both microstate and frequency-
based analyses. We believe the majority of interpolated or discarded segments were
objectively affected by artifacts and noise. Furthermore, the ICA and resulting MS compo-
nents demonstrated the desired activity patterns, and along with the stable, continuously
distributed Shapley values across features (represented by a red-to-blue gradient in the
summary plot), provide strong evidence that the majority of the features are derived from
genuine brain signals.

Some affected regions and frequency ranges may be susceptible to muscle artifacts.
Although rigorous preprocessing, especially in the MS analysis, leaves little room for such
errors, it is worth mentioning this limitation.
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Appendix A. Additional Figures and Tables

(a) (c)

(b) (d)

Figure A1. (a) Summary plot of the Logistic Regression models’ Shapley values of the PSF.
(b) Summary plot of the Random Forest models’ Shapley values of the PSF. (c) Summary plot of
the ANN (CFFS) models’ Shapley values of the PSF. (d) Summary plot of the ANN (AHFS) models’
Shapley values of the PSF.
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(a) (c)

(b) (d)

Figure A2. (a) Summary plot of the Logistic Regression models’ Shapley values of the CTF.
(b) Summary plot of the Random Forest models’ Shapley values of the CTF. (c) Summary plot
of the ANN (CFFS) models’ Shapley values of the CTF. (d) Summary plot of the ANN (AHFS) models’
Shapley values of the CTF.
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Table A1. Table of the calculated features, including their type, number, and names, as used in the
machine-learning process. The microstate features are given in the first six rows, followed by the
EEGlib features. The brackets contain the numerical composition of the features. The composition of
the feature includes the number of feature types, the number of channels, frequency bands, and any
aggregation statistics if provided.

Feature Type Number of Features per Sample Feature Names

Transition Matrix 16

AA, AB, AC, AD,
BA, BB, BC, BD,
CA, CB, CC, CD,
DA, DB, DC, DD

Symmetry Test 1 symmetry_p

Markov Tests (Zero-, First-, and
Second-Order) 3 markov0_p, markov1_p,

markov2_p

DIT Calculations 6 prob_a, prob_b, prob_c, prob_d,
dit_extropy, dit_shannon_entropy

Conditional Homogeneity Test 9 homogenity_p_{l}

Hjorth Parameters 384 (3 × 32 × 4)
hjorthActivity_{channel}_{stat},
hjorthMobility_{channel}_{stat},

hjorthComplexity_{channel}_{stat}

Power Spectral Density (PSD) 4224 (32 × 33 × 4) PSD_{channel}_{frequency}_{stat}

Lempel-Ziv Complexity (LZC) 128 (32 × 4) LZC_{channel}_{stat}

Detrended Fluctuation Analysis (DFA) 128 (32 × 4) DFA_{channel}_{stat}

Engagement Level 4 engagementLevel_{stat}

Higuchi Fractal Dimension (HFD) 128 (32 × 4) HFD_{channel}_{stat}

Sample Entropy 128 (32 × 4) sampEn_{channel}_{stat}

(a) (b)

Figure A3. The values from the four algorithms distinguished with colors. (a) Relative importance
scores of PSF group. (b) Relative importance scores of CTF group.
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Figure A4. Relative importance scores of the PSF and CTF group separation, displaying only the
ANN (AHFS) models.

Figure A5. Preprocessing steps and mapping of each step’s utilized program code. The program
codes are contained in the GitHub repository.
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Table A2. Summary of the AHFS analysis using only microstate features. The “Count of feature
appearance” are composed of how many times the feature appeared in the top 20 models, showing
that the first dozen appear in almost all of the best models. The last column is composed of which
place the feature appeared; for first place the feature obtains 20 point, and for last place the feature
obtains 1, so there is a maximum of 400 (20 in each run).

Microstate Features Count of Feature Appearance Average Point of the Feature

BC 20 365
CB 20 360

markov1_p 20 324
AD 20 296

homogenity_p_70 19 295
prob_c 20 282
prob_e 20 269

CE 20 267
DA 20 266

Shannon_hk_3 20 249
AA 20 222

prob_a 20 193
EC 18 138

symmetry_p 19 114
CD 18 111
AC 18 108

homogenity_p_65 14 98
BD 14 51

homogenity_p_40 12 51
EE 12 49

homogenity_p_45 7 25
DC 9 23

Shannon_hk_2 8 18
homogenity_p_50 5 12

Shannon_hk_4 3 7
homogenity_p_55 2 5

DB 1 1
homogenity_p_60 1 1

Figure A6. Accuracy values resulted from AHFS analysis using only microstate features. Each class
has one top-performing outlier; the rest is between 70% and 75% accuracy.

Appendix B. Methodology Details
Appendix B.1. Utilized Learning Algorithms

Three algorithms were used for the analysis:

• Logistic Regression (LR), as described by Gasso et al. (2012) [78], is a popular algorithm
for binary classification tasks. In our study, we adopted LR for both feature selection
and classification purposes. This algorithm was set up with an “l2” penalty metric
alongside the “bilinear” solver. By fitting a linear regression model to our training
dataset and then applying a logistic function, LR is able to generate probability values
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that aid in the classification of instances. Logistic regression offers a dependable
approach for interpretable binary classification. Through the careful selection of
penalty metrics and solvers, LR was efficiently utilized for feature selection and
classification within our study. However, it should be mentioned that LR generally
performs well with fewer features, so in the analysis it tended to select small feature
sets as good ones.

• Random Forest (RF), described by Liaw et al. (2002) [79], embodies an ensemble
learning technique where classification is achieved through majority voting from a
collection of unpruned classification trees. These trees are developed from randomly
selected subsets of the dataset, and at each decision node a randomly selected predictor
determines the split, diverging from the conventional method of choosing the best
split. Our implementation of RF involved the creation of 50 trees, employing the “auto”
feature to cap the number of features evaluated at each split. We set the minimum
number of samples required to split a node to 2, without imposing limits on the tree’s
maximum depth or the maximum number of leaf nodes.

• Artificial Neural Network (ANN) sets the stage for a comparative analysis between
CFFS and AHFS. Given that AHFS operates within a MATLAB framework and offers
less flexibility, we endeavored to merge the neural network from AHFS into the CFFS
framework. This integration met with partial success due to the inherent differences
in the programming languages. The ANN is pivotal for our method comparison. The
data normalization process began with the application of a min–max scaler, adjusting
the dataset to a range between 0.1 and 0.9. The ANN’s structure included an input
layer, succeeded by a single hidden layer with 8 neurons, in a first evaluation round;
later, we found some overfitted models, so the neuron numbers were decreased to 3.
During training, the bach size was 8 and early stopping was applied. This featured the
sigmoid activation function and concluded with an output layer of two neurons using
the softmax activation function to represent the binary classes. While the original
AHFS method applied a specific optimizer, our Python adaptation used the Adam
optimizer, due to the original optimizer’s incompatibility with the Python ecosystem.

Since we had small datasets, to lower the chance of over-fitting we did not tune any
parameters of the models, only applying initial settings suitable for that size of data. Further
details about the machine-learning algorithms can be found in the project GitHub repository
“ML” folder: https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/eeg, accessed
on 6 February 2025.

Appendix B.2. Feature Selection Details

The CFFS has the following steps:

1. Prefiltering: Due to the enormous amount of EEGlib features, The criteria to include
a feature is to have at least one appear in the AHFS feature selection. Each run
of the AHFS selected 20 features, and we applied 20 runs, therefore 400; in both
cases, 35 unique features are selected in the process. All the microstate features were
included in the feature selection.

2. Weighed graph composition with Pearson correlation: From the remaining selected
features, pairwise comparisons were made to compute Pearson correlations. This
resulted in a complete weighted graph, with the removal of loop and double edges.

3. Threshold-based edge deletion: Edges with weights in absolute values above a certain
threshold were deleted from the graph. This threshold was 0.4 in the PSF group and
0.33 in the CTF group.

4. Clique identification: The remaining graph was analyzed to identify cliques, which
are complete sub-graphs where every node is connected to every other node. A large

https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/eeg
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number of cliques, approximately 5000 in both cases, were found. From these, a
random selection was made of up to 600 feature sets, choosing between 3 to 9 cliques
of varying sizes.

5. These cliques, identified through the feature selection process, served as the potential
optimal combinations of features for training the three learning algorithms. During
the learning process, Shapley values were computed, utilizing a 3-fold cross-validation
approach. The resulting models were ranked according to their accuracy scores and
the top 20 were selected for the next step.

6. For each model, a Shapley table was generated, consisting of columns representing the
features included in the model, rows representing the individual samples, and values
corresponding to the Shapley values. By aggregating the corresponding columns from
each selected model, a comprehensive understanding of the model’s performance
within the group was obtained. This aggregation process was conducted for models
trained with each ML algorithm separately, ensuring the elimination of individual
outliers and providing a robust depiction of the models’ functionality.

7. Calculation demand: Step 1 is based upon the other algorithm. Steps 2 and 3 have
minuscule computing and only need to be done once for each task. Step 4, searching
for cliques in the 35-node graph, takes 20–40 s (also needs to be done once). The
training of the 600 model with each three algorithms takes 400–450 min (depending
on the size of the feature sets)—the different algorithms take different amounts of
time to train. Shapely calculation and aggregation takes 20–30 min.

For further details about the method, with examples, visit the project GitHub repos-
itory: https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/eeg, accessed on 6
February 2025.

AHSF calculation demand:
The general runtime performance of AHFS has been illustrated in Figure 11 of Viharos

et al. (2021) [23]. The computational cost varies depending on the dataset size (number of
samples and features). The complete AHFS runtime, including measure precalculation,
search strategy, and training, generally scales with the complexity of the dataset. Larger
datasets, such as those used in wind turbine monitoring and situation detection during
special machining, require significantly more computational resources, as evidenced by
their placement on the figure.

For the specific runtime for the dataset utilized in this study, the AHFS framework
required 197 min on average (±5 min). This runtime includes all preprocessing steps, search
strategy execution, and model evaluations. These results demonstrate the feasibility of the
AHFS framework for datasets of similar scale and complexity.

Appendix B.3. Feature Type Details

The applied frequency and information theory based metrics on EEG data:

• Hjorth Parameters (Activity, Mobility, and Complexity) are computed in order to offer
valuable insights into the variance, frequency attributes, and complexity of an EEG
signal. Activity at Hjorth quantifies the variance, which indicates the overall strength
of the signal. Hjorth mobility provides information regarding the frequency dynamics
of a signal by measuring its mean frequency. Changes in frequency are utilized to
quantify Hjorth complexity, which indicates the irregularity and complexity of the
signal. After calculating these parameters for each of the 32 EEG channels, three
features are produced per channel per chunk.

• Power Spectral Density (PSD) estimates the frequency-dependent power distribution
of the EEG signal. PSD is computed within the interval of 0 to 64 Hz using a 2 Hz step
size in our analysis, yielding 33 frequency bins.

https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/eeg
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• Sample Entropy (sampEn) of the EEG signal quantifies its irregularity and complexity.
It measures the probability that analogous signal patterns will persist at a subsequent
juncture. This attribute is computed for every single one of the 32 EEG channels.

• Lempel-Ziv Complexity (LZC) is a metric that quantifies the complexity of an EEG
signal by assessing the quantity of unique patterns present in the signal. It is computed
for every one of the 32 EEG channels.

• Detrended Fluctuation Analysis (DFA) is utilized to detect long-range correlations in
the EEG signal. It is determined for every single one of the 32 EEG channels.

• Level of Engagement is an index that measures the degree of attention or engagement
in accordance with the EEG signal. In contrast to the remaining features, engagement
level generates a singular engagement score per interval by aggregating multiple
features from all channels.

• Higuchi Fractal Dimension (HFD) is a method utilized to approximate the fractal
dimension of an EEG signal, which serves as an indicator of the signal’s complexity.
This attribute is computed for every single one of the 32 EEG channels.

The project’s GitHub repository can provide further details about the exact feature
calculating codes: https://github.com/bilickiv/milabwp4/tree/akti_eeg_kodok/eeg, ac-
cessed on 6 February 2025.
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