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Abstract

In this paper, we propose a model-based shallow au-
toencoder structure to automatically extract features from
electrocardiogram (ECG) data. The encoding path in our
model employs parametrized orthogonal transformations
by means of rational function systems, and utilizes Vari-
able Projections (VP) to compute low-dimensional rep-
resentations of individual heartbeats. After the global
training of this rational VP autoencoder, we used the
linear coefficients of the projections in the encoding as
ECG heartbeat features. We evaluated the performance
of the proposed feature learning scheme on the standard
5-class AAMI heartbeat classification problem using the
benchmark MIT-BIH Arrhythmia Database, training sep-
arate support vector machine and random forest classifier
models on the extracted features. Employing the subject-
oriented (inter-patient) evaluation scheme, we achieved an
accuracy exceeding 94%. This performance is comparable
to other state-of-the-art ECG classification approaches,
while providing a computationally simple and explainable
method for learning features from raw ECG data.

1. Introduction

State-of-the-art deep learning methodologies offer
highly effective ways for extracting optimal representa-
tions from medical data. However, these are typically
model-agnostic, end-to-end methods that demand substan-
tial computational power. In this paper, we focus on
lightweight model-based learning approaches to automati-
cally extract features from electrocardiogram (ECG) data,
providing interpretable and explainable parameters besides
optimal representation.

Model performance is evaluated in the context of heart-
beat classification for arrhythmia detection, employing the
standard 5-class AAMI classification problem, following
the subject-oriented (inter-patient) evaluation scheme pro-
posed by de Chazal [1]. The recent developments in
this field is predominated by end-to-end deep learning ap-
proaches (like deep, convolutional, and recurrent neural
networks). For an overview we refer to [2, 3], but we note

that the results are challenging to objectively compare, be-
cause the involved number and type of arrhythmia classes
and also the evaluation schemes vary in the papers. Tra-
ditional machine learning approaches involve feature ex-
traction methods combined with separate classifiers. Here,
hand-crafted features might include both morphological
(waveform related) and dynamic (rhythm related) descrip-
tors of ECG heartbeats. Morphological features are typi-
cally extracted in a model-based manner, involving dimen-
sion reduction by means of mathematical transformations
(like statistical and shape descriptors, principal and inde-
pendent component analysis, wavelets, or variable projec-
tions), and dynamic descriptors are usually RR interval
features. We refer to [4] for an earlier survey.

We developed a model-based shallow autoencoder
structure, where the encoder employs parametrized orthog-
onal transformations by means of rational function sys-
tems: the so-called real valued Malmquist–Takenaka (MT)
basis. Utilizing the Variable Projections (VP) in the encod-
ing path, our approach computes low-dimensional repre-
sentations of individual heartbeats, incorporating both lin-
ear and non-linear parameters. The trainable non-linear
parameters comprise the poles of rational basis functions,
represented in hyperbolic geodetic polar coordinates. MT
systems are widely used in signal processing and control
theory (see e.g. [5]). Our approach is also inspired by
the recent success of adaptive orthogonal transformations
and VP in biomedical signal processing applications: as
model-driven methods [6, 7], and also in traditional ma-
chine learning [8–10] and model-based deep learning set-
tings [11–13]. To investigate the generalization ability of
the proposed feature learning method, the training was not
patient-specific; instead, non-linear parameters were glob-
ally trained and tested on patient-wise distinct subsets of
the entire dataset. After training the rational VP autoen-
coder, we used the linear coefficients of the projections
in the encoding as the features extracted from the ECG
measurements. Subsequently, separate support vector ma-
chine (SVM) and random forest (RF) classifier models
were trained on the extracted features to distinguish nor-
mal and abnormal heartbeat signals. The proposed method
provides an efficient and compact feature representation,
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where both the non-linear parameters and the linear coef-
ficients hold explainable interpretation related to heartbeat
morphology.

2. Rational variable projection

In the following, we briefly introduce the rational
Malmquist–Takenaka (MT) system and the corresponding
VP, along with its advantages for ECG signal processing.
The MT basis functions can be expressed as

Φn(z) :=

√
1− |bn|2

1− bnz

n−1∏
k=0

Bbk(z) (z ∈ T, n ∈ N) ,

where bn ∈ D (n ∈ N) are the so-called inverse poles that
serve as non-linear system parameters, T and D denotes
the complex unit circle and unit disk, respectively, and

Bb(z) :=
z − b

1− bz
(z ∈ T, b ∈ D)

denotes the Blaschke function of parameter b. The MT
functions forms an orthonormal system on the unit circle,
with respect to the usual scalar product

⟨F,G⟩ = 1

2π

∫ π

−π

F (eit)G(eit) dt (F,G ∈ L2(T)).

If b0 = 0, then a real valued orthonormal MT system can
be constructed as Ψ0 := 1 and

Ψ2n−1 :=
√
2ReΦn, Ψ2n :=

√
2 ImΦn (n ∈ N+).

For ECG heartbeat modeling purposes, consider a dis-
crete representation. Let M and P ∈ N+ be the number
of sampling points and the number of non-trivial inverse
poles, respectively, and θ := (0, b1, . . . , bP ) ∈ DP+1.
Denote the system matrix by Dθ ∈ RM×(2P+1), whose
columns consists of the MT basis functions uniformly
sampled over the unit circle, i.e. for j = 0, 1, . . . ,M − 1
and k = 0, 1, . . . , 2P :

[Dθ]jk = Ψk

(
ei(2πj/M−π)

)
.

Then the input signal x ∈ RM can be encoded by
linear parameters Eθx ∈ R2P+1 for the approximation
x ≈ DθEθx. If θ is fixed, the ordinary least squares opti-
mal encoding is given by Eθx = D+

θ x, where D+ denotes
the Moore–Penrose pseudoinverse of operator Dθ. Ap-
plying this encoding-decoding scheme, the matrix product
Pθx = DθEθx is an orthogonal projection of the original
signal x.

To address separable nonlinear least square problem, i.e.
finding the optimal nonlinear θ parameters, the Variable
Projection method – introduced in [14] – presents a general

framework. Using their results the problem can be reduced
to the optimization of only the nonlinear parameters:

min
θ,Eθ

∥x−DθEθx∥22 = min
θ

∥x− Pθx∥22,

for which a general formula for the Jacobian was provided
in [14].

Previous studies [6–9] have shown that rational func-
tions and MT systems in particular are well-suited for ECG
heartbeat modelling: the MT orthogonal projections pro-
vide an efficient low-dimensional representation of the sig-
nals, where both the linear and non-linear parameters have
an explainable interpretation corresponding to ECG mor-
phology. Namely, the inverse poles are related to the loca-
tion and general shape of ECG waveforms, while the linear
coefficients represent local variations.

3. Methodology

In this paper, we propose a shallow autoencoder involv-
ing rational VP to model ECG heartbeats. We considered
3 non-linear parameters a1, a2, a3 ∈ D with multiplicity
of (2, 3, 1), i.e. they are repeated 2, 3, and 1 times in the
inverse pole vector θ. We chose 3 parameters in order to
properly represent the main waveforms of the ECG heart-
beats (P, QRS, and T waves), similar to [6, 9]. The non-
linear parameters can be optimized heartbeat-wise, patient-
wise, or database-wise as well (see e.g. [6], [9], and [11],
respectively). Here however a different approach has been
chosen, where five different rational VP autoencoders were
trained by the optimization

min
θ

∑
x∈Y

∥x−DθEθx∥22,

where x ∈ Y ⊂ RM represents the heartbeat signals from
a predefined subset Y of the training set. Motivated by
the morphological differences between the 5 arrhythmia
classes, for each class a distinct set of poles was optimized
globally on the corresponding beats from the training set.
Then for the heartbeats the encoding operator was con-
structed as the direct sum of the optimized projection op-
erators, which can be formulated as follows:

F1(x) =
(
EN ⊕ ES ⊕ EV ⊕ EF ⊕ EQ

)
(x), (1)

where x ∈ RM is signal and EC is the encoding oper-
ator of the class C ∈ {N,S, V, F,Q}. Moreover this was
extended with two other explicitly calculated feature maps.
The first is the vector of distances from the subspaces op-
timized for the arrhythmia classes i.e.:

∆(x) =
(
∥PN (x)− x∥2, . . . , ∥PQ(x)− x∥2

)
,

and the second, denoted as RR(x), consists of the RR in-
terval length before and after the beat. Thus the extended
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Method Feature vectors Classifier Accuracy
de Chazal et al. 2004 [1] Waveform (fiducial points) + RR LD 86.1%
Llamedo et al. 2011 [15] Waveform (VCG, wavelet) + RR LD 93%

Ye et al. 2012 [16] Wavelet + ICA (PCA) + RR SVM 86%

Dózsa et al. 2019 [10]
LC (rational) + RR + PRD SVM 82.1%
LC (Hermite) + RR + PRD SVM 90.9%

LC (Hermite) + NLC + RR PRD SVM 93.6%
Bognár et al. 2020 [9] LC (rational) + NLC + RR SVM 94.5%

Rational VP Encoder
F0 : LC (rational) SVM 89.4%

Random Forest 91.3%

F1 : LC (rational) + DIST + RR SVM 94.6%
Random Forest 92.7%

Table 1: Comparison of the proposed method with earlier projection based classifiers and other state-of-the-art methods.
For the extracted features the following acronyms were used: LC: Linear coefficient from applying rational VP encoding on the data; NLC: Nonlinear
coefficients of VP encoding, when a different VP projection was trained for each patient; RR: The RR interval length before and after the beats [1, 16];

ICA: Independent romponent Analysis; DIST: Distance from the approximating subspace (absolute error of the approximation); PRD: Percent root
mean square difference (relative error of the approximation).

feature map can be written as:

F2(x) =
(
F1 ⊕∆⊕RR

)
(x). (2)

The classification scheme is built upon the above projec-
tion encoding operators and is performed via the following
steps:
1. Based on the recommendation by [1] for subject-
oriented (inter-patient) classification, the heartbeats were
separated into distinct training (DS1) and test (DS2) sets.
2. For each class in {N,S, V, F,Q} a Rational VP Au-
toencoder was trained.
3. The encoding map Fi (i = 1, 2) was calculated from
the Rational VP Autoencoders as defined in (1) and (2).
4. Both training and test datasets were transformed by Fi.
5. Classification models (SVM and RF) was trained on the
encoded data.

4. Dataset

We evaluated the proposed method on the MIT-BIH Ar-
rhythmia Database [17] from PhysioNet [18]. In accor-
dance to the AAMI recommendations, we excluded the
four paced records, and regrouped the annotations into 5
classes: normal (N), supraventricular ectopic (S), ventric-
ular ectopic (V), fusion (F), and unknown (Q) heartbeats.

The ECG signals are preprocessed and segmented fol-
lowing [9]: a wavelet-based baseline wandering removal,
and a lowpass filter at 35 Hz is applied, then fixed windows
of M = 300 samples are selected for each heartbeat (100
samples before and 200 samples after R peak annotations
of the database).

We employed the subject-oriented (inter-patient) evalu-
ation scheme, and divided the database into DS1 and DS2

for training and testing, as proposed by de Chazal [1], each
containing around 50,000 heartbeats. This scheme pro-
vides a realistic and comparable evaluation, since the sepa-
ration of the records in DS1 and DS2 prevents intra-patient
data leakage and unrealistic overfitting of the patients data.

5. Results

The conducted experimental results are summarized in
Table 1. The first block of the table contains the leading
state-of-art research results in ECG heartbeat classifica-
tion based on the experiment setting of [1]. The middle
part shows the results from research based on training a
VP operator for each heartbeat separately, while the last
block presents the results arising from our methodology
described in Section 3. The first column references the
compared research, the second lists the extracted features
used for the classification, the third names the applied clas-
sification algorithm, while the last presents the achieved
classification accuracy. As can be seen from Tab. 1, the
presented scheme outperforms both the state-of-art meth-
ods [1, 15] and the other variable projection based classi-
fication schemes [9, 10]. It is also worth mentioning that
in [9, 10] the variable projection operators was optimized
separately for every patient in both the training and and the
test dataset, in contrast to the recommended scheme pre-
sented in this article, where only five nonlinear parameter
optimization had to be done for the considered arrhyth-
mia classes. This makes the presented encoder structure
computationally inexpensive for both the test set and the
application to new data compared to the previous methods.

We also note that only objectively comparable state-
of-the-art results are considered, i.e. where the au-
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thors followed the AAMI recommendations for 5 classes,
employed the subject-oriented (inter-patient) evaluation
scheme, and reported overall accuracy.

6. Conclusions

In summary the presented shallow autoencoder structure
extracts ECG features using the direct sum of parametrized
orthogonal transformations. By training a rational VP
autoencoder globally and using the linear coefficients as
features, we achieved over 94% accuracy on the 5-class
AAMI heartbeat classification problem. This method
matches state-of-the-art performance while being compu-
tationally efficient, offering a lightweight alternative to
deep learning in medical data analysis.
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D. ECG-based heartbeat classification for arrhythmia de-
tection: A survey. Computer Methods and Programs in
Biomedicine 2016;127:144–164.

[5] Heuberger PSC, van den Hof PMJ, Wahlberg B (eds.).
Modelling and identification with rational orthogonal basis
functions. Springer-Verlag London Limited, 2005.
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