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A B S T R A C T

In this paper we demonstrate a practical post-hoc approach for explainable reinforcement learning (RL) in
vehicle powertrain control. The goal is to exploit the advantages of RL yet obtain a solution that is feasible to
implement in safety-critical control engineering problems. This means finding a solution that balances optimal
product design with the required engineering effort, while maintaining the transparency necessary for safety-
critical applications. Our method is based on initially training a neural network based RL policy and converting
it into a look-up table, using a decision tree (DT) as an intermediary. The DT is limited to a certain depth,
resulting in a look-up table of manageable size that can be directly tested, implemented and evaluated by
control engineers. In order to evaluate this approach, a set of RL expert policies were used to train DTs with
increasing depth, showing the regions where the DT solution can outperform benchmarks while still remaining
small enough to translate to a manageable look-up table. Our approach involves standard Python libraries,
lowering the barrier for implementation. This approach is not just relevant to powertrain control, but offers a
practical approach for all regulated domains which could benefit from application of RL.
1. Introduction

The conventional approach to automotive embedded software de-
velopment remains very time-consuming, necessitating a high level
of expertise from software developers and control engineers (Koch
et al., 2023). This is particularly true within the domain of automotive
powertrain control systems where the calibration process for such sys-
tems is becoming increasingly challenging due to increasing complexity
and stricter emissions regulations (Garg et al., 2023). Current control
methodologies involve extensive fine-tuning of numerous look-up ta-
bles and model parameters. While Reinforcement Learning (RL) holds
promise as a solution to these challenges, its adoption has been limited,
with few implementations beyond prototype stages. One reason for this
lack of widespread acceptance is the opacity and lack of interpretability
inherent in decision-making policies generated by RL, often stored as
deep neural networks. In the automotive branch this is particularly
challenging, as the international standard ISO 26262 (International
Organization for Standardization, 2018) regulates the software de-
velopment process and this standard does not account for machine
learning applications (Dominka et al., 2024; Henriksson et al., 2018;
Tabani et al., 2019). As a result, the current practice continues to
rely on the use of look-up tables, which, despite being inefficient to
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optimise, offer simplicity, transparency, require minimal computing
resources when implemented and align with regulatory processes.

In this paper we address this discrepancy by considering a post-hoc
method for explainable RL that exploits the benefits RL offers, yet is
feasible to implement in control engineering problems. We achieve this
by first optimising a neural network based policy via an RL algorithm,
then train a decision tree (DT) to imitate its behaviour. This DT can
then be transformed directly into a look-up table. While the look-
up table immediately offers transparency and interpretability (Silva
et al., 2019), the following questions remain: First, can a look-up table
maintain the performance of the associated RL policy and what size
does it need to be for this to be the case? Second, can the look-up table
maintain the ability to generalise beyond the training data?

Here, we consider these questions for a specific powertrain control
use case: the gear shifting logic for automatic transmissions. Our goal
is to optimise the target gear based on system state variables using RL,
but implement the final logic as a simple look-up table format. To do
this, we train neural network policies, from which we train a set of
DT solutions within increasing size. These DTs can be converted into
look-up tables. Each table is tested and the performance is compared
to the original neural network based logic, allowing us to understand
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how big the table needs to be to have comparable performance. We
se a standard driving cycle (FTP 75) for training. We will test the
rained RL and DTs for robustness on other standard driving cycles
NYC, HWFET, J1015, US06, UN/ECE, UDDS, WLTC) that were used
n other studies (e.g., Zhou et al., 2021; Hu et al., 2023; Kerbel et al.,

2023; Zhang et al., 2023). The software pipeline is built out of standard
Python libraries (Gymnasium Towers et al., 2023, Stable Baselines 3
SB3) Antonin Raffin et al., 2021, and scikit-learn Pedregosa et al.,

2011) which offer stable and reliable ‘‘out of the box’’ algorithms. This
inimises the hurdle for implementation in an industrial setting, where

he goal is finding an optimal balance between increased performance
and the amount of engineering effort required to obtain it. While the
use case here is focused on the automotive branch, where software
s regulated by the international ISO 26262-6, this approach can be
sed for any regulated domain, where improvements can be made
hrough the application of RL, but standards have prohibited its direct
mplementation.

2. Related work

In the field of automotive control, there has been considerable work
one on applying RL to a variety of different use cases, the most com-
on being for autonomous driving (Aradi, 2022; Badr Ben Elallid et al.,

2022; Kiran et al., 2022; Lindsey Kerbel et al., 2023; Tóth et al., 2024).
In the case of powertrain control, RL has been applied to combustion
ngines, hybrid and electric vehicles to improve efficiency, reduce
missions and improve performance (for recent literature reviews on
his topic see Norouzi et al., 2023; Lin et al., 2023; He et al., 2024;

Louback et al., 2024).
With regards to combustion engines RL is mostly used to increase

he fuel economy and decrease the emissions, where Kerbel et al.
(2023) use an adaptive policy learning algorithm and Koch et al. (2023)
se the Proximal Policy Optimization algorithm. Furthermore, Hu and
i (2021) develop a curiosity based exploration method for RL to

control the boost pressure of a diesel engine. For hybrid vehicles, most
papers use RL to optimise energy management strategies (EMS) to de-
crease fuel consumption and emissions and to keep the state of charge
SOC) of the battery on a predefined trajectory or reduce hydrogen
onsumption for fuel cell electronic vehicles. For these tasks, mainly
our RL algorithms are used in literature: (i) deep Q-learning (e.g.,

Zhang et al., 2021; Chen et al., 2019), (ii) double deep Q-learning (e.g.,
Estrada et al., 2023), (iii) deep deterministic policy gradient (DDPG)
lgorithms (e.g., Li et al., 2019b,a; Tian et al., 2024; Tao et al., 2023)
nd (iv) multi agent RL algorithms (e.g., Khalatbarisoltani et al., 2022;

Wang et al., 2023) are used. Finally, several papers also compare
hese learning algorithms with each other and develop extensions
hereof (Zhou et al., 2021, 2022b; Qi et al., 2021; Hu et al., 2023).

With regards to the control of powertrain systems of purely electric
vehicles, the objective of the used algorithms is to reduce energy
consumption, battery loss and ageing. In Jia et al. (2020b) a Q-learning
lgorithm is used to train an agent for powertrain control to optimise
he vehicle’s speed chasing ability and power management. An imi-
ation Q-learning algorithm is used in the study of Ye et al. (2023)
here they optimise the energy management of an electric vehicle.
inally, Liang et al. (2024) and Zhang et al. (2023) analyse the perfor-
ance of a DDPG algorithm to the energy management of a dual-motor
owertrain of an electric bus.

While many of these works find improved performance through
the application of RL, all policies are contained as neural networks. A
method to make these policies explainable were not investigated. To
this end, we also consider the field of Explainable AI.

Explainable AI is widely acknowledged as a crucial feature for the
ractical deployment of AI models, leading to many different proposed
ethods, in particular in the case of machine learning (Alejandro
arredo Arrieta et al., 2020). In general, these methods can be grouped

into two categories: Intrinsic and Post-hoc (Andrews et al., 1995;
2 
Milani et al., 2024). While intrinsic methods develop models which
themselves are directly interpretable, post-hoc methods create an ad-
ditional model to explain an existing one. In the context of supervised
learning, two heavily featured XAI methods are Linear Interpretable
Model-agnostic Explanations (LIME; Ribeiro et al., 2016) and SHap-
eyAdditive exPlanations (SHAP; Lundberg et al., 2020). The former

represents a model-agnostic method that creates locally interpretable
explanations for single data points. By making these perturbations in
the dataset, the importance of a feature can be deduced, as was used
by Munkhdalai et al. (2019) to explain neural network models in credit
scoring applications. Shapley values measure how much an individual
feature in the neural net affects the output. For instance, SHAP has
been used to interpret ensemble machine learning models in identifying
risk factors during general anaesthesia (Lundberg et al., 2018) and in
predicting driver fatigue, revealing hidden patterns between fatigue
levels and various physiological measures in the used machine learning
model (Zhou et al., 2022a). These explanations not only highlight key
variables in the model but also enhance user trust in practical applica-
tions (Ayoub et al., 2021). Compared to LIME, SHAP provides superior
explanations, particularly in terms of local accuracy and consistency,
making it a more reliable choice for interpreting machine learning
models (Lundberg et al., 2020).

While SHAP and LIME can help provide insight into the feature
mportance in a supervised learning context, they cannot be used to
xtract an explainable model that can be implemented in the place
f e.g., a neural network. To this end, several approaches have been
sed to extract rules from a trained neural network. In Towell and

Shavlik (1993) an analytical method is developed to extract rules from
weights of the neural network. In Lal and Mithal (2022) an algorithm
NN2Rules is developed which converts a trained neural network into a
rule list. In Müller et al. (2022) a graph neural network is trained using
gradient descent with multi-layer perceptrons. Then, each perceptron is
eplaced with a decision tree while keeping the original GNN message

passing structure. In Jia et al. (2020a) a convolutional neural network
is decomposed into a feature extractor and a classifier, and a DT is
extracted from only the classifier.

One main challenge in many XAI applications is the trade-off be-
tween interpretability and performance, relevant in any use case where
performance is coupled with model complexity (Arrieta et al., 2020).

hat determines this trade-off, however is dependent on the end-users
who can accurately analyse the potential risks of, e.g., misclassification
with an interpretable model (Ahmad et al., 2018).

The subfield of explainable RL is focused on gaining insight into
the agent’s decision-making process. While this has been done with

any different techniques,1 including fuzzy control systems (Bautista-
Montesano et al., 2020), neuro-fuzzy solutions (Viharos and Kis, 2015)
and programmatic policies (Verma et al., 2018), a very common

ethod, and the one focused on here, is DTs, as they epitomise
nterpretability (Wan et al., 2020). In Roth et al. (2019) the algorithm

Conservative Q-Improvement is introduced, which results in a DT
which represents the Q-values directly. This method is additive, and
is not focused on reducing the number of total nodes. In Silva et al.
(2020), the authors use a differentiable DT as the function approxi-
mator for a policy gradient algorithm. In this work tests are done on
two test environments and a user study is conducted to evaluate the
interpretability of the resulting DTs.

In addition to methods which train the DT directly, several methods
are based on imitation learning — learning from an expert policy. For
example, Bastani et al. (2018) introduces the VIPER algorithm which
earns DTs based on the imitation learning algorithm, DAGGER (Ross
t al., 2011). It extends this algorithm by training a sequence of DTs

on data points sampled based on how ‘‘critical’’ they are measured to

1 Please see Vouros (2022) and Hickling et al. (2023) or Milani et al. (2024)
for recent literature reviews on this topic.
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Fig. 1. A schematic of the method used. An RL agent is trained by interacting with the system environment, resulting in an optimised neural network based policy. From this
neural network, a DT is trained with a fixed, maximum number of nodes. Finally, a look-up table is generated directly from the DT.
Fig. 2. Matlab conventional vehicle reference application.
be. In Vinícius G. Costa et al. (2024), the authors go a step further
and use an evolutionary approach to evolve the DTs resulting from
imitation learning with a fitness metric that prioritises interpretability
and consistent high performance. In Coppens et al. (2019) soft deci-
sion trees are distilled from RL policies which have been originally
trained with a PPO algorithm. Soft decision trees (Frosst and Hinton,
2017) are hybrids between NN and DTs and thus are not able to be
implemented in the control software directly as a look-up table. Zhang
et al. (2020) use genetic programming to extract control policy from
the neural network, including a method to simplify the resulting policy.
Finally, Dai et al. (2022) extracts oblique decision trees (Yang et al.,
2019) from data generated from the control policy of the agent for
power system emergency control where they argue it could be directly
implemented in edge devices where computing resources are limited.
Another, continuously growing, dynamic Q-table based RL method is
given in Viharos and Jakab (2021).

Although there is a substantial body of research in XAI, practical
methods to implement RL in safety-critical contexts remain underex-
plored. Our approach addresses this gap with three key points that
distinguish it from previous work: First, we convert the RL policy into
a lookup table, enabling straightforward integration into control soft-
ware. Second, our method is designed to be implemented entirely using
standard python libraries, reducing the complexity of adoption. Finally,
we assess and quantify the practical tradeoff between performance and
interpretability, providing a balanced approach tailored for real-world
applications.

3. Methods

The method used in this paper has three steps: First, train a neural
network based policy using an RL algorithm. Second, train a DT based
on this (optimised) policy by sampling the policy in the state space.
Finally, we translate the resulting DT (which has been limited to a given
number of parameters) into a look-up table.

This three step process is shown in Fig. 1. Here, we demonstrate
these steps for a powertrain control use case: Optimising the gear
shifting logic for an automatic transmission. This particular use case
is chosen as it is a well established problem, regulated with various
standards and allows us to focus on a feasibility study of a real life
3 
application. The goal is that this demonstration can then be applied to
newer, less established and higher risk use cases. In this gear shifting
use case, the target gear is selected based on system state variables:
engine speed, accelerator pedal position, which correlates to the desired
engine torque, and velocity of the vehicle.

We note that we initially attempted to train a Q-table solution
directly with a Q-learning algorithm. However, this approach suffers
several major drawbacks. One, the sampling required for a table to
converge is greater than for a neural network, as each table entry must
converge independently. Second, the discretisation of the Q-table must
be done by hand in advance. This, coupled with the long convergence
times means that a manual optimisation of the discretisation is not
optimal. Lastly, the Q-table lacks the ability to generalise to situations
that are not seen in training.

3.1. Simulation

The use case is implemented with a modified version of the ‘‘Con-
ventional Vehicle Reference Application’’ simulation which is part of
the Simulink Powertrain Blockset library (Simulink, 2024a). These
simulations, created by MathWorks, are an accurate representation of
the models used in the software engineering process in practice. In the
simulation a driver controls the acceleration and brake pedals of the
vehicle, trying to follow a given velocity curve. Based on the selected
gear, the accelerator pedal position determines the resulting engine
torque, which ultimately leads to a certain engine speed and vehicle
speed. As implemented in Matlab, the control unit has a shifting map
which contains the logic of which gear is selected (based on the accel-
erator pedal position, current gear and current vehicle speed) and has
been optimised for fuel economy (Simulink, 2024b). The simulation,
including all input and output variables is shown in Fig. 2.

Our goal is to improve this control unit using RL, without having
to directly implement a neural network (where the policy is originally
stored). Rather our goal is to implement the policy via a look-up
table which has been trained to mimic its behaviour (but with fewer
parameters). The optimised Matlab control unit logic is used as the
benchmark.

In order to take advantage of the benefits of Python, which includes
many standard libraries for RL, the Matlab simulation is compiled to
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Fig. 3. The Federal Test Procedure 75 (United States Environmental Protection Agency, 2023).
Fig. 4. Speed trace tolerance. Upper limit: 2 km/h higher than the highest point of the trace within ±1 s of the given point in time; Lower limit: 2 km/h lower than the lowest
point of the trace within ±1 s of the given time. Deviations that exceed 1s are defined as one speed fault. No more than ten faults per test cycles are tolerated.
Source: Figure taken directly from The European Commission (2017).
generate a shared library .dll (using the Embedded Coder toolbox)
which can be loaded and carried out stepwise in Python, where, at each
step, the state parameters are given as output and the new gear can be
given as an input (at a specific time point by a specific driving cycle).
A given policy is evaluated based on two properties: One, the final fuel
economy (the ratio of the integrated distance and fuel consumption
throughout the entire cycle) and two, the ability of the vehicle to
follow the given reference velocity curve. This reference velocity curve
is given to the simulation as input, and can be chosen as one of various
standardised driving cycles. The driving cycle used for training is the
‘‘EPA Federal Test Procedure’’ cycle, shown in Fig. 3.

3.2. Reinforcement learning implementation

Given the simulation as described in the previous subsection, we
now set it up for a practical implementation of RL. Using the shared
library .dll as the simulation base, we integrate it in a gymnasium
environment (Towers et al., 2023) which ensures the structure for the
application of RL, and the ability to use standard algorithms from
e.g., SB3 (Antonin Raffin et al., 2021). In our simulation the state space
is defined by three simulation parameters: Vehicle speed, engine speed
and accelerator pedal position, and the action space is the discrete
space of possible gears ([0, 8]). Our reward at each RL update step 𝑅(𝑡)
4 
is defined as a combination of the fuel flow (integrated from the last
RL update step, which in our implementation is much larger than the
simulation step-size) and the absolute deviation between the reference
velocity and the actual vehicle velocity:

𝑅(𝑡) = −𝛼|𝑣r ef (𝑡) − 𝑣act (𝑡)| −
𝑡=𝑡
∑

𝑡=𝑡−𝛥𝑡
𝑓 (𝑡), (1)

where 𝛥𝑡 = 0.5 s is the time since the last RL update (larger than the
simulation step size of 2 ms), 𝑣r ef ∕act (𝑡) is the reference/actual vehicle
velocity, respectively, at time 𝑡, and 𝑓 (𝑡) is the amount of fuel intake
per second at time 𝑡. The parameter 𝛼 represents the weight between
the two reward factors and is a free parameter.

While the reward function 𝑅(𝑡) is used for training, for the final
evaluation of trained policies we use two standard measures: the total
fuel economy and the number of faults, as defined by the Worldwide
Harmonised Light Test Procedure (WLTP) (The European Commission,
2017). The first measure, the fuel economy, is defined as the distance
travelled divided by the fuel intake over the entire driving cycle, and
given in miles per gallon.2 The second measure, the number of WLTP

2 The choice of non metric units is due to its use in e.g., the Matlab
evaluation.
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Table 1
Summary of RL experiment parameters, where 𝛼 is the reward weight as defined
in Eq. (1), 𝑁episodes is the number of episodes used for training, and the other
parameters are those of the SB3 implementation of the PPO algorithm. Hyper-parameter
optimisation is done within the given parameter range using the software Weights and
Biases (Biewald, 2020).

Parameter Value

Simulation step size 2 ms
RL update step size 500 ms
Algorithm PPO (SB3)
Batch size {16,32,64,128}
N steps {512,1024,2048,3072}
Learning rate (lr) [10−5 , 10−3]
𝛼 [0.1, 1]
𝛾 [0.5,0.99]
𝑁episodes 50

faults, is a measure of the velocity following. While the ability to follow
the velocity curve can be measured in a number of different ways, the
WLTP tests verifies if the vehicle speed is outside of the allowable range
or a given reference time. If so, a fault condition is set. For the WLTP,
he fault conditions are given in Fig. 4. While the number of faults
s the standard way of measuring the velocity following, the absolute
eviation of the velocity curve is part of the reward function given in
q. (1), as it includes more information, and leads to more efficient

learning.
While this reward function takes into account two technical aspects

(the fuel economy and the ability to follow the reference velocity
curve) it does not include aspects that impact the driver’s comfort
(e.g., noise from high engine speeds) or that account for vehicle wear-
nd-tear (e.g., high frequency of shifting). Quantifying these aspects,

and including them in the reward function would lead to a more
balanced policy and is the subject of future work.

With the state space, action space and reward defined, the envi-
ronment is then used for training, employing the PPO algorithm as
implemented in SB3 (Antonin Raffin et al., 2021) and tuning hyper-
arameters using the program Weights and Biases (Biewald, 2020). For

training, the FTP cycle (see Fig. 3) is used, as this is the cycle used
or training the benchmark policy. A summary of the RL experiment

parameters is given in Table 1.
Due to the high redundancy of the solution space (even for a fixed

alue of 𝛼, by trading velocity following for fuel economy a new
olution can be found with similar reward) many different (optimal)
olicies are found, each with a slightly different trade off between fuel
conomy and velocity following. The parameter 𝛼 is limited to a range
f values ([0.1,1]) which ensures the optimal policies have a better fuel
conomy than the benchmark. At this point, if neural networks could
e implemented easily in the control software, any of these solutions
ould be implemented for improved performance from the benchmark.
owever, the goal of this paper is to consider how we implement an
xplainable, rule-based policy, which benefits from the RL policy. To
his end, the set of trained optimal policies is then used for the further
teps.

3.3. Decision tree

Using the set of trained, neural-network based policies obtained
from the PPO algorithm, our next step is to derive a DT, which mimics
the policy of the neural network. If the performance of the DT is
sufficient, then it has the advantage that it can be easily translated into
a look-up table which can be directly implemented in embedded control
units. This ensures the explainability of the safety-critical control and
allows decisions to be tracked and justified directly. Given the size
of our state space, in order to create the look-up table we begin by
ampling the entire state space uniformly to create a static data set
rom the policy. This sampling is done uniformly as the state space is
mall enough for this to be feasible, and uniform sampling helps avoid
5 
overfitting to the training data (e.g., as would be the case if we sampled
nly points that were visited during training). In cases where this is no
onger feasible due to the state space dimension, different methods are
vailable to sample the state space (Bastani et al., 2018; Ross et al.,

2011). Then, based on this data set, a decision tree is trained using
standard supervised learning algorithms given in the Python library
scikit-learn (Pedregosa et al., 2011). The DT depth is fixed, to obtain a
set of DTs with increasing size for each RL agent. Note that this training
s done with the goal of maximising the accuracy of reproducing the

dataset, however the decision tree policies will be evaluated by their
fuel economy and number of faults when implemented directly in the
simulation.

3.4. Look-up table

Finally, once a DT is obtained which imitates the behaviour of the
RL policy, it can be translated into a look-up table. Look-up tables have
the advantage that they are used ubiquitously in control engineering
problems, they are immediately transparent and once implemented can
be verified through expert knowledge, building trust of the policy for
the responsible engineers.

The look-up table is built from the DT in the following way: For
each node of the DT, a decision is made based on a threshold of one
state space variable. By considering every node, a set of thresholds for
each variable is obtained. The look-up table is then built out of these
hreshold values and is filled with the values given in the final leaves
f the DT. The resulting size (number of entries) of the look-up table is
iven by

𝑆 =
𝑀
∏

𝑖=1
(𝑁𝑖 + 1) (2)

where 𝑆 is the resulting size of the table, 𝑀 is the number of di-
ensions of the state space and 𝑁𝑖 is the number of thresholds for

that dimension. Thus, the number of entries of the look-up table
increases with the depth of the DT, and both measures can be used as
a quantitative measure of interpretability and explainability (Breiman
et al., 1984; Guidotti et al., 2018). While many approaches exist for
quantifying interpretability (see Milani et al. (2024) for a comprehen-
sive review) the number of entries of the look-up table gives us a
measure encapsulating the points important for direct implementation.
Specifically, in this study, we focus on two critical aspects: the ease
f software implementation, which is directly linked to table size, and

the ease with which a test engineer can review the table. Although
there is no strict threshold for when a look-up table becomes non-
explainable, each use case requires a balance between performance and
explainability, as demonstrated in the gear-shifting example below.

4. Results and discussion

4.1. RL agent solutions

We begin by training a set of RL agents, and these results are
shown in Fig. 5, which highlights the trade-off between fuel economy
and the number of faults. Each of these solutions represents a neural
etwork based policy that outperforms the benchmark policy either
ith significant improvement in the fuel economy while maintaining

he same number of velocity faults or a slightly better fuel economy
ith no velocity faults. If implementing a neural network policy into

ontrol software were realistic, then the task would be finished. The
L solution could be chosen to fit the trade-off between fuel economy
nd velocity faults desired (e.g., a higher fuel economy solution could
e implemented as ‘‘eco’’ mode, or the lower fuel economy solution
s ‘‘sport’’ mode) and implement that policy directly. However, as a

neural network based policy is prohibited by the automobile software
regulations, here our focus is deriving a look-up table from these
policies, which is done in the following sections.
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Fig. 5. Fuel economy and number of faults for different RL agent solutions. Results are compared to the Matlab benchmark solution.
Fig. 6. Violin plot of the fuel economy of the DT with a given depth, given as the ratio to the fuel economy of the associated neural network policy. Note that ratios > 1 are
possible, as the error of the DT can, by chance, increase the performance. A set of 34 RL neural network policies are used, resulting in 34 different DT policies for each depth.
Note that DT policies with > 10 faults are excluded from the plot, as their fuel economy can then be misleading. The complete set of results, including those with > 10 faults is
given in the supplementary material.
4.2. Decision tree solutions

In order to learn from the policy of the neural network, we create
a sampled data set of state action pairs. This sampling is done with
uniform sampling in the (sufficiently small) state space with 100 points
taken for each dimension of the state space. For larger state spaces
where this is no longer feasible a more efficient sampling strategy
must be used (Bastani et al., 2018; Ross et al., 2011). A more in-
depth analysis of different sampling and cross-validation for the DTs is
given in the supplementary material. If the neural network is sampled
sufficiently, and the DT has a sufficient number of nodes (comparable
to the number of parameters of the neural network) it is clear that the
DT will reproduce the results that the neural network gives. However,
such a large DT would offer no benefits in explainability, and with so
many parameters, it would not be realistic to implement it as a look-
up table. Rather, the goal is to find the smallest possible DT for a given
performance. To this end, for each RL policy we train a set of DTs, each
with a different set depth.

The resulting policies are then tested independently on the FTP
cycle, and the resulting fuel economy of each test run is shown in Fig. 6.
The fuel economy is given as the ratio to the fuel economy resulting
from implementing the associated neural network policy, allowing the
different policies to be compared to one another. In this plot we can
see the convergence of the DT policies to that of the RL policy with
a depth of around 9. Smaller decision trees do have cases where the
performance is comparable (or exceeding) to the RL policy. These well
performing models could be selected, but one needs to be aware of the
higher variance within these trained solutions.

This figure shows the tradeoff between performance and inter-
pretability directly. While the deeper trees have a more stable perfor-
mance when compared to the optimal RL policy, their higher depth
6 
necessarily means they will translate to a look-up table with a higher
number of entries. Each use case needs to be considered individually to
decide where the cutoff between performance and interpretability lies,
depending on the particular requirements.

4.3. Evaluation on all driving cycles

In the previous section the evaluation of the RL and DT policies
was done on the FTP cycle, which was also used for the training of
the RL policy. In this section, we evaluate how well these policies can
generalise to independent driving cycles, without any further training.
These further cycles are shown in Table 2 and are seen as the standard
cycles for automobile design. While these cycles have been constructed
to mimic real-world conditions as well as possible (Ericsson, 2001;
Fontaras et al., 2017), a final test of how well the policies perform
in real-world conditions must be done be implementing them in real
vehicles, which is the subject of future work.

The results of the benchmark policy, each RL policy and their
associated DTs (with depth 3 and 6) are shown in Fig. 7. There, we
see that the DT behaviour mimics the general behaviour of the RL
agent closely. The smaller DT has generally a lower fuel economy
and higher variance, indicating that a smaller DT is not capable of
generalising to other driving cycles as well as a larger DT or the original
neural network policy. However, by DT of depth 6, it seems that the
generalisability mimics that of the RL policy. We also see that the
two driving cycles that are most different to that used in training
(i.e., US06 and WLTC class 3, which focus on high speed driving, vs
FTP which is focused on accelerating and decelerating) have the poorest
performance, as would be expected.
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Fig. 7. Above: The FE of the Matlab benchmark, the set of RL Agents and their associated DTs of depth 3 and 6 when tested on the complete set of driving cycles. All policies
have been trained on the FTP cycle, and have received no further training. While the RL agents and the larger DT show good performance across all cycles, showing their ability
to generalise, the smaller DT has generally a lower fuel economy and higher variance. The set of RL Agents is selected from Fig. 5. DT depths of 3 and 6 are chosen as a
representation of increasing depth, and to avoid a crowded plot. The complete table of results for all depths is given in the supplementary material. Below: The faults associated
with the above policies. Similar to the FE, the smaller DTs, in general, have a higher variance in the number of faults, indicating that the smaller depths risk decreased performance
on new cycles that were not seen during training.

Fig. 8. Above: The velocity as a function of time for the FTP cycle. The reference velocity is given in green, with a trained RL policy shown in orange and the policy of a depth
3 DT in blue. The performance of these policies is shown in Table 3. Below: The associated shifting policies as a function of time. While the velocity differences between the
policies are barely visible with this resolution, in the shifting maps of each policy we can clearly see that the RL Agent and the associated DT policy clearly stay in a higher gear
at intermediate velocities. This is the source of the increase in FE. An artefact of the low DT depth is shown just before 300 s, where the DT shifts down to gear 5, where the
benchmark and the RL Agent remain in gear 8. This can also be seen visually in the look-up table shown in.

Engineering Applications of Artiϧcial Intelligence 146 (2025) 110135 

7 



C. Laflamme et al.

a

a
a
f

t

t

p
i

3

e
D
s
u
s
v
s
u
f
n
l
f

t

b

o
t
t
g
c

A

Engineering Applications of Artiϧcial Intelligence 146 (2025) 110135 
Table 2
The set of driving cycles used in the evaluation of the different policies. The cycles are
vailable online at United States Environmental Protection Agency (2023) and United

Nations Economic Commission for Europe (2015).
Cycle name Attributes

NYC Low speed stop-and-go traffic conditions
HWFET Highway driving conditions under 60 mph
J1015COL Japanese exhaust emission and fuel economy driving schedule
US06 High acceleration aggressive driving schedule
ECE_P1 Economic Commission for Europe

Part 1: Elementary Urban Cycle
ECE_P2 Economic Commission for Europe

Part 2: Extra-Urban Driving Cycle
FTP Federal Test Procedure, composed of the UDDS cycle
UDDS City driving conditions
WLTC_class_1 Worldwide harmonised Light vehicles Test Procedure

Low and medium speeds
WLTC_class_2 Worldwide harmonised Light vehicles Test Procedure

Low, medium and high speeds
WLTC_class_3 Worldwide harmonised Light vehicles Test Procedure

Low, medium, high and extra high speeds

Table 3
Example solution. Three agents are considered: a neural network based RL policy, the
ssociated DT of depth 3, and the Matlab benchmark. The values of fuel economy (FE)
nd the number of faults are given when the agent is evaluated on the FTP cycle (used
or training).
Agent FE Faults

RL 46.50 8
DT depth 3 40.88 0
Matlab 38.76 8

4.4. Single policy for FTP cycle

Having looked at the general behaviour of different RL and DT
policies in the previous sections, here we consider one policy explicitly
o compare the resulting shifting policies in more detail. The chosen

policy is taken from the set of solutions shown in Fig. 6 and we choose
he smallest DT (depth 3) which outperformed the original, MATLAB

based benchmark on the FTP cycle. The evaluation of the chosen DT
olicy, in comparison to the associated RL policy and benchmark policy
s given in Table 3.

The resulting RL neural network policy, the DT policy with depth
, and the Matlab benchmark policy, are shown in Fig. 8. There,

we compare the vehicle velocity of the three agents as well as look
xplicitly at the shifting policy of the agent. It is clear that the RL and
T policies are much more highly concentrated on higher gears, and

hift gears much more frequently than the benchmark. This targeted
p and down shifting allows for the increase in fuel economy without
acrificing the velocity following — the DT agent in this case has zero
elocity faults. The high frequency shifting policy is a result that our
imulation and reward function doesn’t include any information about
ser comfort, something which most likely favours a lower shifting
requency. This feedback could be added indirectly (with a maximum
umber of shifts allowed in a given time window) or directly (by
earning with direct human feedback), however this was not included
or the purpose of this research.

To further derive explainability from these models, we can calculate
he Shapley Additive Explanations (SHAP) for the resulting DT using

the algorithm in Lundberg et al. (2020) and the InterpML package for
Python (Nori et al., 2019). This value shows how each feature (velocity,
engine speed and acceleration) contributes to the probability of being
in each gear. The larger the absolute value of the SHAP value is, the
more importance that feature has to be in that gear. For the DT policy
used in Fig. 8 these values have been calculated and the resulting plots
are given shown in Fig. 9. These values show us a clear relationship
etween the vehicle velocity, acceleration and the resulting gear. For

higher velocities and lower acceleration there is a higher probability to
 t

8 
Table 4
The thresholds for the look-up table derived from the DT of depth 3 in Section 4.4.

Parameter Velocity [km/h] Engine speed [rpm] Pedal position [0–1]

Thresholds 20.45 2091 0.5
39.54 3485

3545
3667

Table 5
The final look-up tables derived from the DT of depth 3. The thresholds for engine
speed (ES), vehicle velocity (V) are given in each table individually, the threshold for
the accelerator pedal position (PP) is the distinction between the upper and lower
table.

PP ≤ 0.5 V ≤ 20.45 20.45 < V ≤ 39.54 39.54 < V

ES ≤ 2091 2 6 8
2091 < ES ≤ 3485 3 3 8
3485 < ES ≤ 3545 3 3 8
3545 < ES ≤ 3667 3 3 8
3667 < ES 3 3 5

0.5 < PP V ≤ 20.45 20.45 < V ≤ 39.54 39.54 < V

ES ≤ 2091 2 6 6
2091 < ES ≤ 3485 3 3 6
3485 < ES ≤ 3545 3 3 4
3545 < ES ≤ 3667 3 3 4
3667 < ES 3 3 4

be in a higher gear, while lower velocities or high acceleration gives a
higher probability of being in a lower gear. This follows the intuition
that in order to keep speed, downshifting is required to accelerate.

4.5. Software in the loop testing

In the above evaluation, the policies were implemented and evalu-
ated in Python, using the precompiled shared library .dll file. In order
to implement software in the loop testing, we implement the DT as a
look-up table in the original simulation and evaluate it directly there.
Note that while our RL agent was trained using 0.5 s (50 ms) updates,
the original simulation uses the look-up table to update every 2 ms.
This testing is done for the agents defined in Table 3. The DT of depth
3 can be converted to the look-up table with thresholds in Table 4.

The final look-up table, derived using the values from the final
leaves of the DT, and the thresholds defined at each node, is shown
in .

The results of implementing this table are given in Fig. 10. Inter-
estingly, the implementation of the above look-up table brings to light
ne of the advantages that the interpretability of this approach has. In
he above solution, there is one look-up table entry (corresponding to
he input parameters PP ≤ 0.5, 39.54 < V, 3667 < ES) which gives the
ear as 5. This can be seen directly in the shifting policy during the FTP
ycle in Fig. 8. At time 𝑡 ≈ 240 the DT policy shifts down to gear 5, when

both the RL Agent and the Matlab benchmark remain in gear 8. This
downshifting at high speeds is counter intuitive to human experience,
and is noticeable when looking at the look-up table directly. Because
our approach uses RL in the creation of the look-up table, there is still
room for control engineers to visually inspect the resulting table, and
manually adjust entries when needed. In this case, this value could be
changed to gear 8 and the engineers could verify that this improves the
resulting policy.

The policy shown in has a total of 30 entries, which is a direct
result of choosing a DT of depth 3. While there is no clearly defined
limit at which size a look-up table becomes too large to interpret, the
smaller the table is, the easier it is to implement technically and to be
verified by test engineers. If a DT of higher depth was taken in order to
improve performance, the look-up table size would necessarily increase.
 comparison and discussion of the DT depth and number of look-up

able entries for this example is given in ??.
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Fig. 9. SHAP values for each gear in the policy of the DT shown in Section 4.4 for the state space variables: Acceleration (Acc), Velocity (Vs) and Engine Speed (Es). As expected
intuitively, the higher the velocity and the lower the acceleration, the higher the probability to be in a higher gear. Conversely, a low velocity or a high acceleration increases
the probability to be in a lower gear. The crossover between these two regimes happen around gear 4.

Fig. 10. Above: The velocity as a function of time for the FTP cycle in blue (the look-up table reimplemented in simulink), in orange (the look-up table in the Python compiled
simulation). Below: The associated shifting policies as a function of time.
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5. Conclusions

In this paper we investigated a post-hoc explainable AI approach,
based on a derivation of DTs and ultimately, look-up tables from an
original neural network. This directly allows us to exploit the benefits of
RL in a way where it remains feasible to implement the resulting policy
in a practical, control engineering use case. The proposed method
consists of initially training an RL agent using the PPO algorithm, then
sampling the resulting policy and training a DT, which has been limited
to a manageable depth. This DT is then translated into a look-up table,

hich can be directly implemented in control software. This method
as demonstrated in a powertrain control use case, in the gear shifting

ogic of an automatic transmission. In order to study the performance
of the DT policies as a function of depth, we use a set of different
optimised RL policies, and trained sets of DTs with depths varying
rom 1–20. We see the stable convergence of the DT behaviour for a
nique solution of the RL Agent around depth 9, with single solutions
f significantly smaller depths (depth 3) already outperforming the
enchmark policy in both fuel economy and velocity following. Looking
t one such policy in more depth we can see the differences directly in
he policy which allow for improved performance. Implementing the as-
ociated look-up table (with 7 thresholds over the three input variables)

we tested this new policy in a software in the loop setup. Each step
takes advantage of standard Python libraries thus reducing the required
engineering resources, and allowing for standardised algorithms to be
used.

Our results here are based on a reward that includes a trade-
ff between fuel economy and the number of velocity faults. What
etermines this trade-off is dependent on the end-users (Ahmad et al.,

2018) which is, actually, already a part of automotive design. More
pecifically, this trade-off is part of the design of different operating

modes, with most engines offering an ‘eco’ or a ‘sport’ mode which
llows the end consumer to decide this trade-off themselves. While
he reward used here features two easily quantifiable aspects – fuel
conomy and velocity faults – factors that impact the driver’s comfort,
uch as impacting driver comfort, such as the frequency of gear changes

and the wear-and-tear from excessive shifting, are more challenging to
measure objectively and were therefore excluded from the RL agent’s
objectives. Addressing these aspects would require input from control
engineers, and the policy would need adjustment to account for them.
Future work could explore incorporating these factors into the reward
function, for instance through user feedback or by setting constraints
on the agent, such as limiting the frequency of gear shifts.

In addition, our results here are based on the fact that, due to the
mall dimension of the input state space, a uniform sampling of the
L policy was possible. Small state spaces are common in industrial
pplications, as they are currently being implemented with simpler
ontrol solutions. However, in the case of higher dimensional state
paces this method is not scalable and a more in depth study of this
ipeline is required, and will be the subject of future work. In this case,
ampling can be done via a variety of different methods, e.g., those
utlined in Bastani et al. (2018) and Ross et al. (2011).

Finally, a set of different driving cycles have been used to indepen-
ently test how well the policies generalise to unseen circumstances,
aving been trained on a different cycle. While these driving cycles

have been specifically designed to reflect real-world driving scenarios, a
omplete performance evaluation requires tests in real-world scenarios
utside of the simulation. Such tests will be the subject of future work.

While these results are given for one use case, the method can
be generalised to different use cases, providing low-barrier access to
enefits from RL in cases where implementing a neural network is
nrealistic. This is particularly relevant to safety-critical use cases such
s medical control use cases where a neural network based policy
s not able to satisfy the regulatory requirements. Additionally, even
n non safety-critical industrial use cases, where decisions made in
rocess control should be traceable, this approach could allow RL to
e implemented without sacrificing the accountability from industrial
rocess optimisation to the parameter configuration of a consortium

Zhai et al., 2024).
lockchain (see
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