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ABSTRACT LiDAR point clouds are a rich source of information for autonomous vehicles and ADAS
systems. However, they can be challenging to segment for moving objects as - among other things - finding
correspondences between sparse point clouds of consecutive frames is difficult. Traditional methods rely
on a (global or local) map of the environment, which can be demanding to acquire and maintain in real-
world conditions and the presence of the moving objects themselves. This paper proposes a novel approach
using as minimal sweeps as possible to decrease the computational burden and achieve mapless moving
object segmentation (MOS) in LiDAR point clouds. Our approach is based on a multimodal learning model
with single-modal inference. The model is trained on a dataset of LiDAR point clouds and related camera
images. The model learns to associate features from the two modalities, allowing it to predict dynamic objects
even in the absence of a map and the camera modality. We propose semantic information usage for multi-
frame instance segmentation in order to enhance performance measures. We evaluate our approach to the
SemanticKITTI and Apollo real-world autonomous driving datasets. Our results show that our approach can
achieve state-of-the-art performance on moving object segmentation and utilize only a few (even one) LiDAR
frames.

INDEX TERMS LiDAR, point clouds, moving object segmentation, knowledge transfer, autonomous
driving.

I. INTRODUCTION
Moving object segmentation is critical for many applications,
including autonomous driving, robotics, and surveillance [1],
[2], [3]. In autonomous driving, it is usually interpreted as the
point-wise detection of dynamic objects, mainly pedestrians,
cyclists, cars, and other vehicles. This information is used to
avoid collisions and maintain safe distances.

One of the drawbacks of previous approaches is the
computational inefficiency resulting from the simultaneous
processing of several point clouds (about 0.5–1 million

points). Another disadvantage of them is that they rely on
predetermined classes. Ignoring previously unseen classes of
moving objects (e.g., animals) could cause a serious threat.
Our proposal (later referred to as 2DPASS-MOS) is efficient
in terms of required sweeps (or points, thus computation), and
it can benefit from the semantic information without restrict-
ing categories by applying instance segmentation only as a
refinement step.

MOS could be realized with different sensors like cam-
eras [4], LiDARs [5], or with sensor fusion [6]. Each modality
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FIGURE 1. Example of our single scan-based moving object prediction. (Reference objects are framed with blue - parking cars, green - parked bicycle,
and yellow - pedestrians.).

performance should be maximized to optimize cooperative
performance and redundancy. Our work focuses on LiDAR
modality in application, but its performance optimization is
done by utilizing another sensor (camera) during the training.
The advantage of solely relying on LiDAR in the prediction
phase is that we can leverage its inherent strengths such as
independence from lighting conditions.

On the one hand, MOS is an essential topic as it can sig-
nificantly improve safety by drawing attention to hazardous
objects which should be carefully considered in trajectory
planning. Also, situational awareness can be enhanced by
better understanding the environment around us.

On the other hand, it is highly relevant as it can aid other
components of intelligent transportation systems. Simultane-
ous Localization and Mapping (SLAM) generally works so
that filtering moving objects from the scene can seriously
increase their performance [7]. This can be explained by the
fact that the registration problem of consecutive frames (we
will refer to this as local map building) can be more robustly
solved without outliers [8].

Other LiDAR MOS methods require localization and local
(using about 10 consecutive sweeps [9]) or global maps [10]
to work with high performance. That is why using them as
a preprocessing step to a SLAM algorithm would be highly
inefficient.

Besides, utilizing very little information (a few frames) and
providing decision information as quickly as possible [11],
[12] is an important ambition for computation efficiency and
real-time operation. We consider an algorithm to be capable
of real-time operations at a frequency that is at least as high as
the sensor’s acquisition rate, typically ranging from 5 to 20 Hz
in rotating LiDARs. Our algorithm meets the KITTI dataset’s
10 Hz frame rate.

Our experiments indicate that only a few LiDAR frames
(two or even one, without any map building or even poses) can
be eligible to moving object segmentation. The term ‘eligible’
in this context refers to the suitability of a specific number of
LiDAR frames for achieving satisfactory performance.

One sweep-based MOS, illustrated in Fig. 1, can be learned
by interpreting the environment like human perception. The
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model can discern that moving pedestrians typically exhibit
different limb positions compared to stationary ones, as seen
in Fig. 1(a) and (c). In addition, bikes occupied by a rider
(Fig. 1(a) and (b)) are often associated with movement. In
contrast, unoccupied bikes are more likely to be stationary.
Furthermore, the model can distinguish between moving and
static vehicles based on their location: vehicles on roads are
generally in motion, while those parked in designated areas
are static (Fig. 1(a) and (b)). Also, distortion of both the static
and the dynamic part of the point cloud could correspond to
some (ego and relative to ego) velocity information.

A. CONTRIBUTIONS
The paper contributes to the following:
� We demonstrated that only a few frames (even one) are

eligible for efficient moving object segmentation in Li-
DAR point clouds.

� This is the first work successfully fusing camera and
LiDAR data in training to enhance the LiDAR-only in-
ference for LiDAR MOS.

� We improve the state-of-the-art by adapting a multi-
modal learning scheme and extending it by multi-frame
instance segmentation.

� An efficient MOS pipeline is proposed which is robust
against decreasing the number of input frames. By uti-
lizing fewer frames than others, delay and inference time
can be reduced.

� To foster further research, we provide source code, pre-
trained models and comprehensive sensitivity analysis
highlighting both strengths and weaknesses.

� State-of-the-art performance is reached both in Se-
manticKITTI and Apollo on the most referenced
LiDAR-MOS datasets.

B. OUTLINE OF THE PAPER
The paper is organized as follows: Section II surveys the
literature about the related topics. Section III describes the
proposed method and the concept in detail. Section IV shows
our test results and evaluates them, while Section V elaborates
further discussion. Finally, Section VI draws some conclu-
sions and anticipates future work.

II. RELATED WORKS
LiDAR-based moving object segmentation is a relatively new
challenge in the field of point cloud processing. The reason
for that point-wise annotation of LiDAR data is exhausting
work; one of the first databases that provided this kind of
data (and still one of the most commonly used ones) is Se-
manticKITTI [13], [14] which is based on the even more pop-
ular autonomous driving dataset, the KITTI vision benchmark
suite [15]. The second most frequently used dataset in the Li-
DAR MOS domain is based on the Apollo dataset [16], which
is generally used to demonstrate the generalization capabili-
ties of the different algorithms. We also use these datasets for

benchmarking. The research related to LiDAR MOS can be
sorted into two categories: offline and online methods.

A. OFFLINE MOS METHODS
Offline moving object segmentation methods, which require a
larger set of precisely registered point clouds (global maps),
can serve mainly two purposes. They either used for filtering
static maps [17], [18], [19], [20], [21] or generating labels
for online methods [10], [22]. There are different approaches
among these frameworks, but most of them build their solu-
tion to occupancy grids with enhanced ground segmentation
and line-of-sight-based calculations. As their category name
states, they cannot be utilized for decision-making in au-
tonomous driving.

B. ONLINE MOS METHODS
According to the leaderboard of the SemanticKITTI dataset,
the most successful published LiDAR moving object segmen-
tation methods are [9], [23], [24], [25], [26] and [27]. Ref. [9]
was the first to apply residual images of range images with dif-
ferent semantic segmentation networks to solve the problem
of moving object segmentation. This approach proved suc-
cessful and was later adopted by others, e.g., by [24]. Range
image representation is also used by [28] and [25]. Ref. [28]
applied vision transformers and leveraged pre-trained models
on RGB images and achieved comparable results to methods
that use CNNs on similar data. Ref. [25] combined a semantic
and a motion network to reach their best performance. They
applied semantics as a prior, restricting recognizable moving
object classes, which is highly disadvantageous. Ref. [23] -
instead of the previously used range image representations
- turned the LiDAR scans into voxelized sparse 4D point
clouds and applied 4D convolutions in their model to estimate
moving objects. Ref. [26] is similar to our work in the sense
that they are utilizing instance information. However, our es-
timation of object instances works differently (explained in
detail in Section III-D), resulting in higher accuracy in the
MOS task. Currently, the best-performing model among the
published MOS researches, on the SemanticKITTI dataset
is proposed by [27], which utilizes residual maps to repre-
sent motion features. Constructing the representation proved
highly inefficient in terms of computation resources. Our pro-
posal outperforms it without having such a computational
burden.

The above methods have the following in common: they
all need at least 6 consecutive frames and/or poses to achieve
high-performance MOS.

Compared to the above online methods, the method of
this paper offers several advantages. Our proposal operates
in real-time, fuses camera and LiDAR data during training
to optimize LiDAR point cloud inference performance, and
does not necessitate predetermined object categories. Addi-
tionally, our method requires only one or two frames for
high-performance estimation, and our single-frame estimation
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FIGURE 2. Proposed pipeline for LiDAR-based moving object segmentation from two frames.

does not rely on pose information. Most importantly, our ap-
proach achieves the highest scores on the KITTI and Apollo
benchmarks.

III. THE PROPOSED METHOD
Here, the four steps of the proposal are described in detail.

1) Prerequisites
2) Camera and LiDAR fusion in the training process
3) Inferencing on LiDAR data
4) Enhance the estimates by semantics-based instance seg-

mentation
These steps are described in the following subsections. The

schematics of the pipeline is illustrated in Fig. 2.

A. PREREQUISITES
As a prerequisite before running the framework, the intrinsic
calibration [29] of the camera should be executed together
with the LiDAR-camera calibration [30]. The transformation
matrix from the LiDAR coordinate system to the camera coor-
dinate system will be indicated as TL,C and the intrinsic matrix
as K in the following. In this way, the 3D point cloud can be
projected to the image plane using the equation.

⎡
⎢⎣

u

v

1

⎤
⎥⎦ = K · TL,C ·

⎡
⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎦ (1)

where [u v] are the coordinates in the image plane and [X
Y Z] are the 3D point coordinates.

B. CROSS-MODAL KNOWLEDGE TRANSFER
Our framework adapts the cross-modal knowledge transfer
with 2DPASS network architecture from [31]. The network
was designed and applied earlier to semantic segmentation.
A method utilizing this scheme is currently in first place in
the latter task of the SemanticKITTI leaderboard. The essence
of the knowledge distillation scheme across different modal-
ities is the transfer of 2D knowledge through a multi-scale
fusion-to-single manner; this takes care of the modal-specific

knowledge. The multi-scale fusion-to-single knowledge dis-
tillation scheme first fuses features of both images and point
clouds and then conducts unidirectional alignment between
the point cloud fused and the fused features. The goal is
to preserve modal-specific information and retain complete
information from the fusion. Implementation details can be
found in [31].

Base model: For our MOS problem, we defined three cate-
gories: static, dynamic, and ‘do not care’ classes. (The latter
is necessary as in the SemanticKITTI dataset, there are ‘un-
labeled’ and ‘outlier’ labeled points.) The total loss of the
segmentation ζall is the sum of Lovasz (ζiou) [32] and Cross-
entropy (ζacc):

ζall = ζiou + ζacc (2)

The former one enables the direct optimization of the mean
Intersection over Union (or Jaccard index, see (5)), while the
latter one is:

ζacc = −
C∑

c=1

wc log(pc)yc (3)

where p is predicted the probability of the given class, y is the
target and w is the weight of the cth class among C number
of classes. The class weights were determined based on the
inverse of the class frequency in the training dataset to ensure
that the model pays sufficient attention to the underrepre-
sented moving object class.

The training processes ran 64 epochs long, and an SGD
(Stochastic Gradient Descent) optimizer was used. For the
one-frame prediction case, batch size 8 was used, while in
the two-frame prediction case, the batch size was 4. For the
baseline model the knowledge distillation scheme parameters
were the same as in [31] including segmentation loss and and
Kullback–Leibler divergenece proportion (1:0.05).

The above-described learning method (adapting the knowl-
edge transfer scheme from semantic segmentation problem to
moving object segmentation) gives our baseline (indicated as
Base in Table 4 of our Ablation study). This approach, without
direct motion information, already outperforms some of the

VOLUME 6, 2025 121



ROZSA ET AL.: EFFICIENT MOVING OBJECT SEGMENTATION IN LiDAR POINT CLOUDS USING MINIMAL NUMBER OF SWEEPS

current MOS methods. This can be explained by observations
(listed in Section I) learned from images.

Two consecutive frames: Besides adapting it, we also ex-
tended the knowledge transfer scheme to a two consecutive
scan-based model. We use only two consecutive frames as
this is the lowest number of scans, including direct motion
features.

From a computational point of view, one-frame-based pre-
diction is the most efficient as it does not require registration
of LiDAR frames and operates with the smallest number of
points (influencing runtime).

However, applying only two consecutive frames is still
considered efficient, as bundle adjustment is not needed,
and the input points of the model are also low. In our
implementation, two consecutive LiDAR point clouds are
merged into one to access motion information in a com-
mon coordinate system. Concatenating the point clouds
(P = [Pt−N+1,t−N+1 Pt,t−N+1]) happens after the coordi-
nate transformation of the second point cloud to the coordinate
system of the first one:

Pt,t−N+1 = Tt,t−N+1 · Pt,t (4)

where the first index t of Pt,t−N+1 point cloud indicates the
time moment of its acquisition. The second index t − N + 1
refers to the time moment of the measurement to which the
coordinate system is transformed by the homogenous transfor-
mation matrix Tt,t−N+1 calculated from the ego-movement of
the vehicle. If the ego-motion is not measured directly, it can
be calculated by registration algorithms like KISS-ICP [33]
from the LiDAR data. We define N to get a general descrip-
tion, but a maximum of two consecutive frames are used for
the training in our experiments, N = 2 (in the base model
N = 1).

C. INFERENCE
The cross-modal knowledge transfer happens in the train-
ing phase. The inference requires only LiDAR point clouds,
maximizing the efficiency of single-modal estimation. During
the inference, no preprocessing was applied in the case of a
single sweep, and only coordinate transformation (described
in Section III-B) was in the case of a two-sweep model.

A voting scheme was proposed for a semantic segmentation
problem in [34]. We also adopted this test-time augmentation
(referenced as ‘voting’ or ‘TTA’ later) for our MOS problem.
During the inference, the TTA rotates the input scene at dif-
ferent angles around the Z-axis and averages the prediction
scores. It is included in the ‘Base’ model in Table 4. Prediction
accuracy can be increased with this voting scheme. However,
applying it is a trade-off between performance and runtime,
which should be carefully considered. We suggest applying
it to our unique single-frame inference; as with this configu-
ration, one can still achieve better runtime performance than
competitors. We also investigated the influence of the scheme
in the case of two-frame inference; our experimental results
related to this are introduced in Section V.

Algorithm 1: Object Level Decision.
Require: Merged point cloud P, target category y,
moving threshold moving_threshold

Ensure: P with updated point labels indicating moving
objects

1: points← SelectPoints(P, y)
2: clusters←

DetectOb jectInstances(points, min_points =
200, max_distance = 0.5)

3 for all cluster ∈ clustersdo
4: moving_points ← FilterPoints(cluster,′moving′)
5: moving_rat io ←

Count (moving_points)/Count (cluster)
6: if moving_rat io ≥ moving_threshold then
7: CategorizeAllPointsAsMoving(cluster)
8: end if
9: end for

D. APPLYING SEMANTIC INFORMATION
We propose to utilize semantic information as well. Previ-
ously to our work, LM-net [9] and MF-MOS [27] applied
semantic information to the MOS problem. Their approach
is different from ours, as they checked whether the predicted
moving objects were movable or not, and consensus was nec-
essary for a point to get a final moving label.

In our framework, semantic segmentation results are used
to create instances, and only the addition of points to the
moving category is possible based on them. This approach
is consistent with our proposition that semantics categories
must not be applied as prior knowledge, as it would exclude
possible moving objects (e.g., animals). The semantic cat-
egories post factum considered are: pedestrian, car, cyclist,
motorcyclist, bus, truck, rail and other vehicle.

InsMOS [26] also aimed to create instances to help the
MOS problem. Their approach differs from our model as they
do not use direct semantic information; instead, an instance
detection head is part of their model.

2DPASS-MOS merges the advantages of these approaches
and so outperforms them (as it is visible in Section IV-A).

In our proposal, the semantic labels are utilized in the fol-
lowing steps (pseudo code of Algorithm 1):

1) For a given point cloud (concatenated from mul-
tiple scans in a common coordinate system, P =
[Pt−K+1,t−K+1 Pt−K+2,t−K+1 . . . Pt,t−K+1]), the
points of a given category are selected based on the
previously predicted semantic labels.
Note: K (the number of frames used in the instance
segmentation process) can differ from N . The original
2DPASS [31] semantic segmentation network was ap-
plied to generate these labels in our tests.

2) On the remaining points, object instances are detected
using dbscan [35] extension (details in Algorithm 1).
Note: Our temporal (and conditional) dbscan extension
is efficient (see Table 6) even in the case of increasing
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TABLE 1. Performance Comparison of Methods Do Not Utilize Ego-Poses
on SemanticKITTI Validation Dataset

K . The reason for that is that the algorithm deals with
a small number of points of the point cloud, selected in
Step 1).

3) Each object instance of the given frame, generated with
the previous steps, is examined, and a binary decision is
made on the object level. If the object contains more
than a given percent of points with a ‘moving’ label
prediction, then all the object’s points should be cate-
gorized as ‘moving.’ (The threshold percent was 40% in
our experiments.)

To summarize, our temporal instance segmentation algo-
rithm iterates over clusters of points belonging to a specific
category (e.g., cars), through multiple frames (if not one
sweep pipeline is used). For each cluster, it calculates the ratio
of points labeled as ‘moving’ to the total number of points
in the cluster. If this ratio exceeds a predefined threshold, all
points within the cluster are categorized as ‘moving’. This
approach allows for robust object-level decisions, even in
cases where individual point-level predictions may be noisy
or uncertain.

IV. RESULTS
In this section, our test results are presented. In LiDAR-based
moving object segmentation, the most commonly used bench-
mark is the SemanticKITTI [13], [14], so we also evaluated
on this dataset. The LiDAR data of SemanticKITTI is point
wisely annotated from the KITTI Odometry dataset with the
same splits. We report the results for the validation dataset
(unseen during the training). containing 4071 LiDAR scans
(about 500 million points). The performance measure of the
benchmark is applied:

IoUMOS = T P

T P + FP + FN
(5)

where FN , T P, and FP are the numbers of False Negatives,
True and False Positives of moving points, respectively.

A. QUANTITATIVE RESULTS
Table 1 reports results related to our most efficient, ego-
poseless, one-frame pipeline for the SemanticKITTI valida-
tion dataset. Here, all the alternative methods, except one,

TABLE 2. Performance Comparison of Methods Which Utilizes Ego-Poses
on SemanticKITTI Dataset.

utilize also only one frame for solving the MOS problem.
Most of these are semantic segmentation frameworks re-
trained for MOS task. The one exception is the 4DMOS [23]
method, one of the highest-performing MOS solutions nowa-
days. This specific case of 4DMOS (reported by [23]) is
included in our comparison as it also does not utilize ego-
poses. In the training and inference, 5 consecutive frames are
merged (using different local coordinate systems).

One can see that our proposed solution significantly outper-
forms all the other networks with single frame prediction and
several with multiple frame ones from Table 2.

To evaluate our two-sweep solution, we provide Table 2
with the reported results of the competitors. In the first part
of Table 2, we listed alternatives where only two consecutive
frames are used as input of the model. The poses utilized
in these tests were the database-provided ground-truth ones.
4DMOS [23] was the closest to our performance. However,
one can see that in Table 1 4DMOS [23] performs very
severely in poseless cases. Ultimately, our framework per-
formed the best among these solutions.

We also listed (in the second part of Table 2) other state-of-
the-art solutions from the LiDAR MOS field, which utilizes
more scans (still not long sequences as offline methods). They
have the disadvantage of computational inefficiency because
processing several frames is required.

Our proposed method offers a state-of-the-art solution with
real-time run compared to alternatives that do not use addi-
tional datasets for the training. Also, by applying test time
augmentation, the best overall performance is achieved with-
out using additional data.
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FIGURE 3. Qualitative examples of moving object predictions.

Besides, alternative methods are very sensitive to the
decreased value of N . For example, InsMOS [26] (the cur-
rently published second best-performing solution on the
SemanticKITTI test dataset in the MOS problem according
to the leaderboard) provided data about the influence of N .
The method achieves the best performance using 10 frames.
However, if the frame number is decreased to 5in training, the
authors of [26] found that the IoU values significantly drop
to the level that is outmatched even by our single frame pre-
diction. Our two frames-based, real-time estimation surpasses
this model by a large margin (more than 10% ). A compari-
son of how competitors perform in the case of different scan
numbers is introduced in Section V, Fig. 4.

We have executed experiments to analyze the proposal’s
performance in the case of the most frequent semantic cate-
gories of moving objects. In the case of the parameter settings
T TA = 12, K = 2, and N = 2, we have got the following
IoU values for the SemanticKITTI validation set: Moving
car: 76.1, Moving person: 61.7 and Moving cyclists: 94.4.
One can see that the car (most frequent category) is about
the same as the value for general moving objects. Cyclists’
segmentation score is almost 100% . Person categories are the
most troublesome; the reason for that is that even the general
concept of someone moving or not is not obvious.

B. QUALITATIVE RESULTS
In the following, qualitative examples illustrate our tests eval-
uated in Tables 1 and 2. In Fig. 3, some typical example

FIGURE 4. IoU as a function of different numbers of sweeps (K) in our
instance segmentation process compared to IoU performance variation in
case of applying different numbers of sweeps in competitor methods.

is visualized where the proposal’s advantage can be com-
pared to alternatives. All the figure rows show an example
from the SemanticKITTI dataset with our results compared
to the currently best performing other two methods. In the
first row, it is visible that car parking on the road is falsely
detected as moving one by [26], while both of our predictions
are correct. The other three examples show the most fre-
quently appearing error of other methods: moving car points
are categorized as static. The reason behind that could be
that other methods use many more sweeps for the predic-
tions than us; that is why their model anticipates significant
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TABLE 3. Comparison on Apollo Dataset

movement, and slowly moving objects are assumed to be
static.

V. DISCUSSION
In this section, a further study of our proposed framework is
presented. First, we investigate the generalization capabilities
of our 2DPASS-MOS; next, ablation studies of different com-
ponents are presented. Finally, runtimes are discussed.

A. GENERALIZATION ANALYSIS
We demonstrate that our proposal generalizes well to different
scenes by conducting experiments on the second most fre-
quent MOS database, the Apollo [16] dataset. We follow the
standard setup of [10] and use (the highly dynamic frames
selected by them) sequence 2 and sequence 3 for testing.
To achieve the reported performance, we only trained on the
training set of SemanticKITTI and evaluated our framework
on the Apollo dataset without modifying any settings or fine-
tuning.

In Table 3, the accuracy of the proposed method with
parameter set achieving the highest performance and still
working in real-time is reported. One can see that some
state-of-the-art alternative methods only provide accept-
able performance when they are fine-tuned on the new
dataset. Our system proved to be the most efficient with-
out fine-tuning and using significantly fewer scans than
others.

B. ABLATION STUDIES
In order to investigate the effect of different components of
our system, we report an ablation study of the constructing
elements of our approach in the SemanticKITTI validation
dataset and one for the Apollo dataset.

As the baseline model already incorporates multi-modal
learning, our focus here is on the incremental gains achieved
by our proposed approach. A detailed ablation study on
instance segmentation variants is presented in Tables 4
and 5. A dedicated analysis of TTA is presented in
Fig. 5, highlighting its positive impact on the system’s
accuracy.

TABLE 4. Influence of Different System Components to the IoU in
SemanticKITTI Dataset

TABLE 5. Influence of Different System Components to the IoU in Apollo
Dataset

FIGURE 5. Effect of different number of votes (TTA) in the test time
augmentation for our Single (N = 1, K = 1) and Two Frame (N = 2, K = 2)
predictions.

In Table 4, the checkmark indicates that the given compo-
nent (they are introduced in Section III) is used, and x means
it is not.

In Tables 4 and 5, ’Base’ means the 2DPASS model re-
trained for the MOS task in the SemanticKITTI training set
and applying TTA = 12. One can see that all of our con-
tributions raised the performance. Comparing Tables 4 and
5, it becomes apparent that the system generalizes learned
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TABLE 6. Runtime Comparison in ms on SemanticKITTI

temporal and velocity information more easily than semantic
information. While the contribution of semantic information
was less important in the SemanticKITTI (the dataset, the
model was trained), it played the most significant role in the
Apollo dataset (new environment).

In Tables 4 and 5 K = 1 and K = 2 cases are presented. To
further investigate the number of frames used in the instance
segmentation part of our pipeline (parameter K), we introduce
Fig. 4.

C. SENSITIVITY ANALYSES
In this subsection, three analyses are provided, each of which
highlights the effect of different hyperparameters of our sys-
tem through the SemanticKITTI validation dataset. First, K ,
then the number of votes, and finally, movingt reshold impact
is investigated. Fig. 4 (parameters N = 2 and T TA = 12 are
fixed) depicts the relationship between the number of sweeps
and the performance of our and other methods.

The performance of other methods significantly drops when
the number of input frames is reduced. The performance of
our 2DPASS-MOS remains high. The overall best perfor-
mance we measured (by K = 10) is 77.8in the case of the
SemanticKITTI validation set.

Note: There is a trade-off between accuracy (through in-
creasing input frame number) and computational burden.
Inspecting Fig. 4 and Table 6, it is observable that increasing
the K value in our algorithm is computationally efficient. (In
our tests, increasing K by 1 resulted in a maximum 9 ms run
time increment in the post-processing.)

We also provide an analysis for the effect of different num-
bers of test time augmentation in Fig. 5. The runtime of TTA is
directly proportional to the number of votes. That is why, for
real-time at a configuration similar to our test one, T TA = 2
is proposed for N = 1 and T TA = 1 for N = 2.

In Fig. 6 the performance of the proposed method is in-
vestigated through different moving threshold values. Besides
the IoU, False positives are also indicated normalized with the
number of all the ’care’ points of the dataset.

It is observable that the IoU optimum is around 40% (the
value we used in our experiments), which results in just a bit

FIGURE 6. Impact of the moving threshold to our temporal moving
instance segmentation (T TA = 12, N = 2, K = 2) in case of SemanticKITTI
dataset.

higher FP than we would get without the temporal instance
segmentation (moving threshold equal to 100% ).

D. RUNNING TIME ANALYSIS
Here, we provide a runtime comparison to alternatives.

In Table 6, besides our single and two frame-based pre-
diction cases, running time values are reported for the two
currently best-performing competitors (InsMOS [26] and MF-
MOS [27]) and also for LM-net [9], which provides the fastest
implementation among the SemanticKITTI MOS leaderboard
currently. Our test configuration was the following: AMD
Ryzen 7 6800H with Radeon Graphics 3.20 GHz processor,
32 GB RAM, NVIDIA GeForce RTX 3070 GPU.

Preprocessing is required in the case of LM-net and MF-
MOS corresponds to the residual image generation. MF-MOS
needs significantly more of them minimally than LM-net, and
this operation is computationally intensive; a real-time run is
not possible for that method in the test hardware.

Pose estimation is necessary for all methods except in our
one frame-based solution, but most of the competitors do not
provide pose estimation implementation. Thus, the running
time of KISS-ICP [33] in our test configuration is indicated
for all these cells.

Postprocessing means refinement in the case of InsMOS
and MF-MOS, using semantics in the case of LM-net and
our proposal. LM-net assumed that the semantic segmentation
could run parallel with the moving object segmentation; we
used the same assumption for a fair comparison. Notably, the
proposed method with N = 1 and K = 1 demonstrates signif-
icant efficiency gains in preprocessing and pose estimation, as
these steps are not required. However, the inference and post-
processing stages introduce additional overhead compared to
LM-net. InsMOS and MF-MOS exhibit high inference and
post-processing costs. MF-MOS requires the most runtime in
all components except for inference, where InsMOS is the
slowest.

Altogether, it is visible in Table 6 that our one frame so-
lution is the fastest one among the presented solutions in
our test configuration (introduced earlier), and only LM-net
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is faster among the alternatives than our two-frame solution.
However, its IoU performance (see Table 2) is not compa-
rable to our proposal. LiDAR sensors typically operate at
frequencies ranging from 5 to 20 Hz. Given this range, a
processing time of approximately 10 Hz is well within the
real-time requirements of most LiDAR-based applications.
Furthermore, the KITTI dataset, which we employed for our
evaluation, also features a 10 Hz LiDAR frame rate. It’s worth
noting that the reported processing times were obtained using
standard, off-the-shelf hardware. We anticipate that with more
specialized hardware, such as high-end GPUs, it would be
feasible to achieve even faster processing speeds. In addition
we have experienced that point cloud subsampling can lead to
further significant speedups.

VI. CONCLUSION
A novel framework for moving object segmentation in Li-
DAR point clouds has been proposed. The proposed method
performs state-of-the-art moving object segmentation and
state-of-the-art generalization to new datasets.

We demonstrated that our proposal is less influenced than
alternatives by the number of input sweeps; even one scan is
sufficient for high-performance moving object segmentation.
This is achieved by utilizing a multimodal learning model
and training on LiDAR point clouds and camera images (and
single modal inference only from LiDAR point clouds). Using
fewer frames than other methods results in better computa-
tional efficiency. The potential application of our approach in
autonomous vehicles and ADAS is significant.

In the future, we plan to investigate quantitatively the
method’s robustness against occlusion and also against gen-
eralization to unknown categories and a broader range of
application domains. Besides, we would like to enhance
LiDAR MOS by applying knowledge transfer from other au-
tonomous sensors.
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