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Abstract
Given a finite set of positive integers, A, and starting with a heap of n chips, Alice 
and Bob alternate turns and on each turn a player chooses x ∈ A with x less than or 
equal to the current number of chips and subtract x chips from the heap. The game 
terminates when the current number of chips becomes smaller than min{A} and no 
moves are possible. The player who makes the last move is the winner. We define 
w
A(n) to be 1 if Alice has a winning strategy with a starting heap of n chips and 0 if 

Bob has a winning strategy. By the Pigeonhole Principle, wA(n) becomes periodic, 
and it is easy to see that the period length is at most an exponential function of 
max{A} . The typical period length is a linear function of max{A} , and it is a long 
time open question if exponential period length is possible. We consider a slight 
modification of this game by introducing an iitial seed S that tells for the few initial 
numbers of chips whether the current or the opposite player is the winner, and the 
game ends when the first such position is achieved. In this paper we show that the 
initial seed cannot change the period length of wA(n) if the size of A is 1 or 2, but 
it can change the period length with |A| ≥ 3 . Further, we exhibit a class of sets A of 
size 3 and corresponding initial seeds such that the period length becomes a super-
polynomial function of max{A}.

Keywords  Combinatorial games · Subtraction game · Superpolynomial period 
length

 *	 István Miklós 
	 miklos.istvan@renyi.hun-ren.hu

	 Logan Post 
	 loganpost9@gmail.com

1	 Department of Stochastics, HUN-REN Rényi Institute, Reáltanoda u. 13‑15, Budapest, 
Budapest 1053, Hungary

2	 MILAB, HUN-REN SZTAKI, Lágymányosi u. 11., Budapest, Budapest 1111, Hungary
3	 Budapest Semesters in Mathematics, Bethlen G. tér 2, Budapest, Budapest 1071, Hungary
4	 Georgia Institute of Technology, 686 Cherry St, Atlanta, NW, GA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00182-024-00911-5&domain=pdf
http://orcid.org/0000-0002-1160-6855


1276	 I. Miklós, L. Post 

Mathematics Subject Classification  91A46

1  Introduction

Game Theory is the theory of interactive situations or games among rational deci-
sion-makers or players in which the decisions of each player are contingent on the 
decisions of the others. Combinatorial Game Theory considers games with perfect 
information and without elements of chance. That is, at all times during the game, 
players have perfect information about the state of the game, and further, the moves 
in the game are entirely decided by the players, there are no elements of chance once 
the game has begun. We further require that a combinatorial game must end with a 
clear winner.

An example of a two-player combinatorial game is the subtraction game. For 
a finite set A ⊂ ℕ+ , the A-subtraction game is a two-player combinatorial game 
which proceeds as follows. We begin with heap of n-chips. Players Alice and 
Bob alternate turns, and on each turn a player chooses x ∈ A with x ≤ n , and sub-
tracts x chips from the heap, leaving n − x remaining. The game terminates when 
n < min(A) and thus no moves are possible. The player who makes the last move 
is the winner. In general we consider a fixed A and ask for which values of n each 
player has a winning strategy. Note that when Alice makes a move x, Bob and Alice 
switch roles and we reduce to the n − x game.

The subtraction game is also in the large class of combinatorial games called 
impartial games. An impartial game is a combinatorial game in which the allowable 
moves depend only on the position and not on which of the two players is currently 
moving, and where the payoffs are symmetric. It is also in normal mode, meaning 
that the winner is who can make the last possible move. The Sprague–Grundy theo-
rem (Sprague 1936; Grundy 1939) says that any impartial game in normal mode is 
equivalent with a Nim game, which is the disjunctive sum of ℕ+-subtraction games. 
Despite this reduction, we know little about the patterns of the winning positions of 
the subtraction game.

For any finite set A ⊂ ℕ+ , a dynamic programming recursion can compute which 
player has the winning strategy starting with a pile of size n. A simple reasoning 
by Pigeonhole Principle shows that the pattern of winning positions will eventu-
ally become periodic as n takes all possible positive integers, and the period length 
cannot be longer than 2max(A) . It is a long time open question if exponential period 
lengths exist in the subtraction game. Althöfer and Bültermann conjectured that 
superpolynomial period lengths might exists if |A| ≥ 5 (Althöfer and Bültermann 
1995). Flammenkamp (Flammenkamp 1997) also had experimental evidences for 
exponential period length for some subtraction sets. He also gave non-trivial upper 
bounds on the period lengths (Flammenkamp 1997,  page 62), see also Larsson 
(2024).

For some A, the subtraction game has a pre-period in the winning positions 
before becoming periodic, that is, a pattern of winning positions for small n that is 
never repeated. We also know little about for which A the subtraction game has a 
pre-period and for which A it is purely periodic, that is, has no pre-period.
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In this paper, we generalize the subtraction game by modifying who is the winner 
for some small n. We call this initial pattern a seed. It is called “initial" since these 
are the initial values in the dynamic programming recursion to compute who has the 
winning strategy starting with a given value (see also Eq. (1)). On the other hand, 
the game ends when a seed position is reached. We give a complete analysis of sub-
traction games with seeds for |A| = 1 and 2. We prove that for all seeds the game has 
no pre-period if |A| = 1 or 2. For A = {a} , the period length is 2a. For A = {a, b} , 
the period length can be any divisor of a + b , with a few exceptions. If a and b are 
relatively prime then the period can be any divisor except 1, 4, and 6. We also com-
pute the number of possible distinct period lengths over all seeds. When |A| = 3 , 
then there might be pre-periods. We give characterisations of period and pre-period 
lengths for a large class of possible sets A. Finally, we show that superpolynomial 
period lengths exist already when |A| = 3 . The introduction of the seed is considered 
in Sects. 3 and 6, wheras Sects. 4 and 5 consider only the standard game.

2 � Preliminaries

Definition 1  Let wA(n) be the winning indicator function of A, so wA(n) = 1 if Alice 
(the first player) has a winning strategy and wA(n) = 0 if Bob has a winning strategy.

For brevity, we may use w(n) to refer to wA(n) . By definition, w satisfies the recur-
rence relation

This follows from the observation that for a particular n, Alice is in a winning posi-
tion if she can subtract some x to give Bob a losing position. Otherwise, she will 
certainly move to a winning position for Bob, and he will win. We can then also 
describe wA as the lexicographically least sequence in n such that for all x ∈ A , 
w(n) = 0 ⟹ w(n + x) = 1.

Note that it is natural to define w(0) to be 0, because if a player has previously 
made a move to 0, then the next player will lose. Therefore, to satisfy recurrence 
relation (1), we shall define w(n) to be 1 for all n < 0.

To describe an entire sequence {wA(n)}∞
n=0

 of winning positions, abbreviated as 
{wA} , we use exponents to denote repeated values. A noted example in (Berlekamp 
et  al. 2001,  p. 86) is the set {2, 4, 7} . We find that 
{w{2,4,7}} = 0, 0, 1, 1, 1, 1, 0, 1, 1, 0,… , which can be abbreviated to 
{w{2,4,7}} = 02140120… = 0212(120)∞ . In this example we have w(0) = 0 , w(1) = 0 , 
and w(2) = 1 . This follows from the rule that if n < 2 , Alice is unable to move, but 
at n = 2 , Alice may subtract 2 chips and win the game. Similarly w(6) = 0 because 
for any move Alice makes, Bob can respond with a winning move. In general, if we 
present a prefix of {wA} of length � , we use “ …

�

 " to indicate the continuation of the 
sequence and clarify the prefix’s length for the reader. For example, 

(1)w(n) =

{
1 if w(n − x) = 0 for some x ∈ A

0 if w(n − x) = 1 for all x ∈ A
= 1 −min{w(n − x) ∣ x ∈ A}.
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{w{2,4,7}} = 0214…
6

 may indicate that the first 6 values of w are given and the rest are 
not yet derived. Throughout the paper, we refer to � = max(A) . The following exam-
ple is an easy generalization of one in (Berlekamp et al. 2001, p. 83).

Proposition 1  Suppose A = {1, 2,… , �} . Then wA(n) =

{
0 (� + 1) ∣ n

1 otherwise
 , so 

{wA} =
(
01�

)∞.

Proof  Suppose n = k(� + 1) . We claim Bob has a winning strategy. If Alice subtracts 
x, then Bob can subtract � + 1 − x , reducing to (k − 1)(� + 1) chips. Bob can repeat 
this until there are (0)(� + 1) chips, winning the game. Suppose n = k(� + 1) + y . 
Then Alice has a winning strategy. She may subtract y, reducing the game to 
k(� + 1) , then play as Bob would by countering each of his moves x with � + 1 − x . 	
� ◻

We define a notation for repeated concatenation of strings. By analogy to addi-
tion, for strings w1,w2,…wk , let

This notation satisfies the equality ��
�

∑k

i=1
wi
�
�
�
=
∑k

i=1
�
�wi

�
� . Recall that sequence con-

catenation is not a commutative operation, unlike the usual summation of numbers. 
When we use a summation symbol for a concatenation of strings, we will always use 
an index that defines the order of the concatenation.

Definition 2  A sequence {wA(n)} is periodic over p if there is some N ∈ ℕ such that 
for all n ≥ N , wA(n) = wA(n + p) . We say the period of wA(n) is the least such p and 
the preperiod is the least such N. We denote these by Per (A) and PrePer (A) respec-
tively. A string X has sub-period Y if X = Yk for some k > 1.

In Example 1 we have Per ({1,… , �}) = � + 1 and PrePer ({1,… , �}) = 0 . We 
also observe that Per ({2, 4, 7}) = 3 and PrePer ({2, 4, 7} = 4 , because for all n ≥ 4 it 
holds that w(n) = w(n + 3).

Lemma 2  For any finite set A ⊂ ℕ+ , {wA(n)} is periodic.

Proof  To prove this fact, we define a new tool called the vector of previous values. 
Given A ⊂ ℕ+ , let

As shown above, v(n) will be an element of ℤ�
2
 . Next, we use the recurrence relation 

to define a function F ∶ ℤ
�
2
→ ℤ

�
2
.

k∑

i=1

wi ∶= w1◦w2◦… ◦wk.

(2)v
A(n) ∶= ⟨w(n − �),… ,w(n − 2),w(n − 1)⟩ = ⟨v1,… , v�⟩ ∈ ℤ

�
2
.
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Thus by Recurrence 1, we have v(n + 1) = F
(
v(n)

)
 . Note that ℤ�

2
 has 2� elements, 

so by the Pigeonhole Principle there must be distinct integers 0 ≤ N < M ≤ 2𝛼 such 
that v(N) = v(M) . Therefore, for all n ≥ N we have the equality

Therefore, a single repeated vector guarantees periodicity of length M − N . 	�  ◻

Indeed this lemma often fails for infinite set games.

Proposition 3  For some k ≥ 2 , suppose A = {nk ∣ n ∈ ℕ} . Then the sequence wA is 
not periodic.1

Proof  We first show there must be infinitely many losing positions by contradiction. 
Suppose there are � losing positions. Among all integers ≤ (2�)k , there are 2� ele-
ments of A. Because each winning position can be expressed as a losing position 
plus some x ∈ A , there can be combinatorially at most 2�2 distinct winning posi-
tions ≤ (2�)k . This implies � + 2�2 ≥ (2�)k , which contradicts finiteness of losing 
positions. Thus {wA} has infinitely many zeros. If we suppose w is periodic after 
some N with period p, then there is some n > N with w(n) = 0 . This implies that 
after pk−1 periods, we will have w(n + pk) = 0 , contradicting pk ∈ A . 	�  ◻

The proof of Lemma 2 gives the result that for any finite A, 
PrePer (A) + Per (A) ≤ 2� . We can get a slightly tighter bound for dense sets, but no 
less than exponential in �.

Theorem 4  For A = {a1, a2,… , ��, �} , let � = min(�, a1 + ��) . Then

Proof  First, we show that there cannot be a string of ones longer than � in {wA} . 
If some w(n) is preceded by a string of � ones, then w(n − x) = 1 for all x ∈ A , so 
w(n) = 0 . Alternately, if n is preceded by a string of a1 + �� ones, this implies that 
in particular w(n − a1) = 1 , and (n − a1) is preceded by �′ ones. This means that for 
all ai ∈ A except for � , we have ai ≤ �′ and therefore w(n − a1 − ai) = 1 . Because 
w(n − a1) = 1 , by process of elimination we conclude that w(n − a1 − �) = 0 . There-
fore w(n − �) = 1 . Thus w(n − x) = 1 for all x ∈ A , so w(n) = 0 . Hence � bounds the 
number of consecutive ones in {wA}.

Now, let ni be the ith zero in {wA} . By the proof above ni − ni−1 ≤ � + 1 , so 
ni ≤ i(� + 1) . In order to have w(ni) = 0 , we require that within the vector v(ni) , 
the � − xth entry v(ni)�−x = 1 for all x ∈ A . This fixes |A| entries, so there are 2�−|A| 

(3)F(v) ∶= ⟨v2, v3,… , v�−1, 1 −min{v�−x ∣ x ∈ A}⟩

v(n) = F
n−N

(
v(N)

)
= Fn−N(v(M)) = v(n +M − N).

(4)PrePer (A) + Per (A) ≤ (� + 1)2�−|A|.

1  For k = 2 , the losing positions of this sequence are in the Online Encyclopedia of Integer Sequences 
(OEIS Foundation Inc. 2023, A030193)
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possibilities for v(ni) . By the Pigeonhole Principle, there is some repeated vector 
vnN

= vnM
 for some N < M ≤ 2𝛼−|A| , and nM ≤ (� + 1)2�−|A| . This proves the claim. 	

� ◻

A similar argument can give a bound of (|A| + 1)2�−|A| . Using the approach from 
Proposition 3, we can see that there are at most (2�−|A| − 1) ⋅ (|A|) ways to express a 
winning position less than n2�−|A| , which yields this improved constant.

2.1 � Initial seed

We can generalize the subtraction game by changing the end state of the game. In 
(Althöfer and Bültermann 1995, (ix)), Althöfer and Bülterman suggest that this vari-
ant “may be interpreted as simulations of certain computing devices," and pose open 
questions about this game. Through the analysis in Sects. 3, 4, and 6 we find that 
this generalization also provides insights into the original game. We begin with two 
motivating examples.

Example 1  The Miseré mode of the A-subtraction game is the same game except the 
player to make the last move is the loser.

Example 2  The Greedy mode of the A-subtraction game is the same game except a 
player may take x > n chips, thereby making the heap negative. The game concludes 
when then heap is negative, and the player to make the last move is the winner. This 
is close to the version studied in Althöfer and Bültermann (1995).2

Notice that for n ≥ � , the recurrence relation for both of these games is the same 
as Eq. (1), but the ultimate sequence of winning positions may be different because 
of the players’ final goals. We can account for this by adjusting negative values of 
w(n), then allowing the recurrence relation to proceed for n ≥ 0.

Definition 3  Define the seed S of a game to be the value of v(0) , determining w(n) 
for n ∈ [−�, 0) . The recurrence relation follows, so v(n) ∶= F

n(S) , with F  defined 
in Eq. (3). We define {wA,S(n)}∞

n=0
 to be the sequence generated by seed S. Further 

define Per (A, S) and PrePer (A, S) to be the period and preperiod of {wA,S}.

For ease of notation, we interpret S more generally as the negative values of 
wA(n) . Ordinarily |S| ≤ � , and if not then vA,S(0) is taken to be the last � elements 
of S. Similarly, if |S| < 𝛼 , then we presume S to be preceded by infinitely many 1’s, 
so let w{A,S} ∶= w{A,1�−|S|S} . It follows from this convention and Definition 2 that 

2  The exact game studied in Althöfer and Bültermann (1995) is the same but has w(0) ∶= 0 ; this cannot 
be generated from a seed as there is no function w ∶ ℤ → {0, 1} satisfying recurrence 1 for all n ∈ ℕ . 
For example, if A = {1, 3} , we desire w(0) = 0 , w(1) = 1 , and w(2) = 1 . Any choice of w(−1) leads to a 
contradiction.
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Per (A) = Per (A, 1�) , and thus in general we refer to a game with seed 1� as having 
‘no seed’.

In Example 1, we observe that S = 0min(A)1�−min(A) generates the sequence of 
winning positions for the Miseré mode of the subtraction game, and in Example 2, 
we see that S = 0� generates the sequence for the Greedy game. By considering all 
seeds in ℤ�

2
 we describe a larger class of games. Some seeds generate games which 

are similar or identical to the original, while some are dramatically different. For 
example, the Miseré and Greedy modes cause only a translation in w(n) by min(A) 
and � respectively.

Notice that Results 2–4 consider the recurrence in generality and therefore hold 
for all seeds. In order to characterize wA,S over all seeds, we provide the following 
notation for the set of all winning sequences and their periods.

Thus WA is the set of all (A, S) games, i.e. all sequences satisfying recurrence rela-
tion 1, and PA is the set of their periods. For general A, a natural open question is to 
find max(PA).

2.2 � Properties of subtraction games

If the elements of A are not coprime, we can interpret the sequence w as multi-
ple games (w)i proceeding in parallel. Formally, choose finite A ⊂ ℕ+ with maxi-
mum � and gcd 1, and denote kA = {kx ∣ x ∈ A} . Then given some seed S with 
|S| = k� , where S = ⟨S(m) ∣ m ∈ {0,… , k� − 1}⟩ , we break S into classes modulo 
k by defining Si for i ∈ {0,… k − 1} such that for all m ∈ {0,… � − 1} , we have 
Si(m) ∶= S(mk + i) . Thus |Si| = � and S can be decomposed into Si’s. By analogy, 
similarly let (wkA,S)i(m) ∶= wkA,S(mk + i) . We observe that {(wkA,S)i(m)}

∞
m=0

 depends 
only on Si.

Proposition 5  (Multiplicative Linearity) For any k ∈ ℕ , set A, and seed S with 
|S| = k� , then

So if Si = S0 for all i ∈ {0,… , k − 1} , then Per (kA, S) = k Per (A, S0) and 
PrePer (kA, S) = k PrePer (A, S0) . This condition holds for S = 1k� , implying that 
Per (kA) = k Per (A) and wkA(n) = wA(⌊n∕k⌋) . 	�  ◻

Proposition 5 follows by applying the recurrence relation to (wkA,S)i(m).

Definition 4  (Extension) Choose set A ⊂ ℕ+ and seed S. We say b ∈ ℕ⧵A is an 
extension of (A, S) if wA∪{b},S = wA,S.

(5)W
A ∶=

{

{wA,S(n)}∞
n=0

∣ S ∈ {0, 1}�
}

(6)P
A ∶=

{

Per (A, S) ∣ S ∈ {0, 1}�
}

(7)(wkA,S)i(m) = wA,Si (m)
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Proposition 6  (Better Definition of Extension) For b ∈ ℕ⧵A is an extension of (A, S) 
if and only if for all n ∈ ℕ it holds that wA,S(n) = 0 ⟹ wA,S(n − b) = 1.

Proof  Let B = A ∪ {b} . Suppose it holds that wA,S(n) = 0 ⟹ wA,S(n − b) = 1 , but 
wB,S ≠ wA,S , and choose the least n ∈ ℕ where they differ. If wA,S(n) = 1 , then for 
some x ∈ A , wA,S(n − x) = wB,S(n − x) = 0 , so wB,S(n) = 1 . If instead wA,S(n) = 0 , 
then wA,S(n − b) = wB,S(n − b) = 1 , so indeed wB,S = 0 , contradicting that 
wB,S ≠ wA,S.

In the other direction, suppose wB,S = wA,S but there is some n with 
wB,S(n) = wA,S(n) = 0 and wB,S(n − b) = wA,S(n − b) = 0 . This contradicts the recur-
rence relation for B. 	�  ◻

This means that we can identify redundant elements of a set A if they are exten-
sions of the other elements. The following proposition is a digression, but

Proposition 7  For all finite or infinite sets A ⊆ ℕ+ , if PrePer (A) = 0 and Per (A) = p , 
then wA = wA∩{1,…,p} , so every element of A greater than p is redundant as an exten-
sion of A ∩ {1,… , p} . There is no analogous statement for sequences with preperi-
ods; for example {w{1,4,7,…}} = 0(101)∞ , but no other set generates that sequence.

Proof  For the first statement, let B = A ∩ {1,… , p} . Suppose for the sake of contra-
diction there is some least n such that wA(n) ≠ wB(n) . By the recurrence relation it 
must be that wA(n) = 1 and wB(n) = 0 , and wA(n − a) = 0 for some a ∈ A⧵B . By our 
definitions a > p so n > p . Then wB(n − p) = wA(n − p) = 1 so there is some x ∈ B 
such that wB(n − p − x) = 0 . Therefore wB(n − x) = 0 , so wB(n) = 1 , a contradiction. 
For the second statement, suppose wA = 0(101)∞ . Suppose x ≡ 0 (mod 3) . Then 
wA(2) = wA(2 + x) = 0 , so x ∉ A . Suppose x ≡ 2 (mod 3) . Then wA(0) = wA(x) = 0 , 
so x ∉ A . Therefore A ⊆ 3ℕ + 1 = {1, 4, 7,…} . It is easy to see that A = 3ℕ + 1 is 
a valid choice. Suppose A ⊊ 3ℕ + 1 , and 3k + 1 is the least element of 3ℕ + 1⧵A . 
Then surely wA(n) = w3ℕ+1(n) for all n < 3k + 1 . However, for all 3j + 1 ∈ A , j < k , 
wA(3k + 1 − (3j + 1)) = wA(3(k − j)) = 1 , so wA(3k + 1) = 0 , a contradiction. Thus 
3ℕ + 1 is the only set generating this sequence.	�  ◻

The following proposition gives another way to identify these extensions, which 
we use later in the paper.

Proposition 8  If {wA} is periodic over p and PrePer (A) = 0 , then for all x ∈ A and 
k ≥ 1 , b = kp + x is an extension of A.

Proof  Suppose Per (A) ∣ p and PrePer (A) = 0 . Choose any x ∈ A and k ≥ 1 , and 
n ∈ ℕ such that wA(n) = 0 . By the recurrence wA(n − x) = 1 . If n − x − kp ≥ 0 , then 
by periodicity wA(n − x − kp) = 1 . Otherwise, wA(n − x − kp) = 1 because we have 
no seed. Thus by the better definition b is an extension of A. 	�  ◻

The following elementary example can be found in (Ho 2015, thm 1).
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Example 3  If A = {1} , then {wA} = (01)∞ , so Per (A) = 2 and PrePer (A) = 0 . 
Because 1 ∈ A , any odd number 2k + 1 is an extension of A.

From Example 1, if {1,… , k − 1} ⊆ B and B ∩ kℕ = � , then {wB} = (01k−1)∞ 
and Per (B) = k . The set B = {1} ∪ {p ∣ p prime} is an example for k = 4.

We must be careful to note that Proposition 8 does not hold for all seeds. If we 
do allow for initial seeds |S| ≤ � , the induction step fails for n ∈ [p + x − �, p) . 
This margin leads to many counterexamples; we provide two. Let A = {3, 5} 
and S = 0110 . We find Per (A, S) = 8 and PrePer (A, S) = 0 , so let b = 8 + 3 = 11 . 
Then:

These are vastly different and we even caused a preperiod of length 12. As another 
example:

We also note that the converse of Proposition 8 does not hold, though it appears to 
hold if |A| ≤ 3 . For example, let A = {1, 2, 6, 11} . Then {wA} = 0

(
12013(012)2

)∞ , 
so Per (A) = 12 , PrePer (A) = 1 . However it is true that for all k ≥ 1 and x ∈ A , 
b = 12k + x is indeed an extension of A. Also see the counterexample {1, 8, 13, 16}.

Contrasting these complex examples with Example 3, we see that sequences 
are easiest to examine with no seed and no preperiod. The following Lemma can 
simplify the process of checking whether a sequence is in this form.

Lemma 9  (Translating zeros) Given a set A, then for any p ∈ ℕ , wA is periodic over 
p and has no preperiod if and only if it holds for all x ∈ A and m < x that

We call this “translating zeros” because w(m) = 0 ⟹ w(m + p − x) = 1 sug-
gests that w(m + p) = 0 , but does not discuss the translation of the 1’s. Note that 
it does not a priori imply that the zeros translate, since only m < x is considered.

Proof  Suppose for the sake of contradiction that the premise 
w(m) = 0 ⟹ w(m + p − x) = 1 holds but there is some least m ∈ ℕ such that 
w(m) ≠ w(m + p) . There are two cases. 

	 (i)	 If w(m) = 1 , then w(m + p) = 0 , so there is some x ∈ A such that w(m − x) = 0 
but w(m + p − x) = 1 . Because there is no seed this implies m − x ≥ 0 , and 
because w(m − x) ≠ w(m − x + p) this contradicts the minimality of m.

	 (ii)	 If w(m) = 0 , then w(m + p) = 1 , so there is some x ∈ A with w(m + p − x) = 0 
but w(m − x) = 1 . If m − x ≥ 0 , then this would contradict the minimiality of n. 
Otherwise, m < x and w(m) = 0 , so the premise implies that w(m + p − x) = 1 , 
a contradiction.

{wA,S} = (01502)∞ and {wA∪{b},S} = 01501013(01)∞

{w{3,6,8},0213} = (0113(01)3)∞ and {w{3,6,8,12},0213} = (0140130013)∞.

wA(m) = 0 ⟹ wA(m + p − x) = 1.
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Either case leads to a contradiction, so for all m ≥ 0 , we have w(m) = w(m + p) . In 
the other direction, if w is periodic with no preperiod then the condition follows by 
definition. 	�  ◻

Corollary 9.1  If A = {a, b, c} for any a < b, c , then Per (A) ∣ (b + c) and 
PrePer (A) = 0 if and only if wA(b + c − i) = 1 for all i ∈ [1, a].

Proof  Apply Lemma 9 for p = b + c . For all x ∈ A , if x = b , then 
w(m) = 0 ⟹ w(m + p − b) = w(m + c) = 1 by the recurrence. If x = c , then 
w(m) = 0 ⟹ w(m + p − c) = w(m + b) = 0 . If x = a = min(A) , then we note that 
for all m < a , w(m) = 0 . Therefore it suffices to check that for m ∈ [0, a − 1] , we 
have wA(b + c + m − a) = 0 . Simplify by substituting i = a − m ∈ [1, a] . 	�  ◻

This Corollary will likely help in proving Conjecture 3.

Corollary 9.2  If A = {1, b, c} , then Per (A) ∣ (b + c) and PrePer (A) = 0 if and only if 
wA(b + c − 1) = 1.	�  ◻

These corollaries give some insight to the usefulness of the translating zeros 
Lemma. For Corollary 9.2 we can determine the period and preperiod by checking 
one value of the sequence! This will be used in Sect. 4.

Lemma 10  The following statements are equivalent. 

(i)	w is periodic over p with no preperiod
(ii)	For all n ≥ 0 , w(n) = w(n + p)

(iii)	For all n ≥ � , v(n) = v(n + p)

(iv)	v(�) = v(� + p)

(v)	For all x ∈ A , for each m < x , we have w(m) = 0 ⟹ w(m + p − x) = 1.	�  ◻

3 � The {a,b} case

We first inspect the case when |A| = 1 . If A = {a} , then the recurrence relation in 
Eq.  1 gives that wA(n) = 1 − wA(n − a) for all n ∈ ℕ . This gives us an immediate 
characterization of the periodicity for all possible seeds.

Proposition 11  Let A = {a} . For all seeds S, let S be the string exchanging 0’s and 
1’s. Then {wA,S} =

(
S S

)∞ , so Per (A, S) ∣ 2a and PrePer (A, S) = 0.	�  ◻

This gives the result that W{a} =
{
( S S

)∞
∣ S ∈ {0, 1}a}

}
 and thus ||

|
W

{a}|
|
|
= 2a.

Proposition 12  Let A = {a} , and let a = 2kc , where c is odd. Then 
P
A = {2k+1d ∶ d ∣ c}.
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Proof  First, we show that p = Per (A, S) must be of the form 2k+1d . We know that 
{wA,S} will always be periodic over 2a, so p ∣ 2a . Additionally, we know 
wA,S(n) ≠ wA,S(n + a) for all n, so p ∣∕ a . Therefore 2k+1 ∣ p . We now show that for 
any d ∣ c we have 2k+1d ∈ P

{a} . Because c/d is odd let c = (2x + 1)d . Then let 
S =

(
12

kd02
kd
)x
12

kd , so we conclude {wA,S} =
(

(

12kd02kd
)x12kd

(

02kd12kd
)x02kd

)∞
=
(

12kd02kd
)∞ 

and Per ({a}, S) = 2k+1d . 	�  ◻

These initial results are apparent at first inspection of the problem. With more 
work will get similarly general results for |A| = 2.

Theorem 13  Let A = {a, b} . For all seeds S, Per (A, S) ∣ a + b and PrePer (A, S) = 0.

Proof  Let A = {a, b} . For all n ∈ ℕ , in the case where w(n) = 0 we have 
w(n + a) = w(n + b) = 1 , which implies that w(n + a + b) = 0 . Alternately, if 
w(n) = 1 , then w(n − a) = 0 or w(n − b) = 0 , so by the 0-case we know w(n + b) = 0 
or w(n + a) = 0 respectively. This means w(n + a + b) = 1 . 	�  ◻

The following Theorem on 2-move games with no seed is well known and can be 
found in (Berlekamp et al. 2004, p. 530).

Theorem 14  Let A = {a, b} with a < b , and let b = qa + r with 0 ≤ r < a . Then

so Per (A) = 2a if b is an odd multiple of a and Per (A) = a + b otherwise.

Proof  For n < b , we note that by having no seed wA(n − b) = 1 . This implies 
wA(n) = w{a}(n) . This yields the sequence {wA} = 0a1a0a1a …

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
b

Ḟor n ∈ [b, a + b) , we 

note that n − b ∈ [0, a) so wA(n − b) = 0 and thus wA(n) = 1 . Theorem 13 implies 
that this period repeats. 	�  ◻

3.1 � A preliminary tool: studying {1, b}

Theorem 14 characterizes the period structure for the default seed. Our next goal is 
to describe the sequence under all seeds. One corollary of the following theorems is 
that for any a, b coprime, 4, 6 ∉ P

{a,b} . At present, it seems like it should be possible 
to find a seed which generates a period of 4 or 6 as long as 4 ∣ a + b or 6 ∣ a + b , 
but in fact it is not. We will give a full characterization of all period structures and 
lengths which will make this fact obvious. To do this, we first analyze the special 
case where a = 1.

(8){wA} =

�
(0a1a)q∕20r1a q is even.

(0a1a)⌈q∕2⌉1r q is odd.
=

�

0a1a0a1a …
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

b

1a
�∞
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Theorem 15  Suppose we have A = {1, b} and a string X with no sub-period. Then 
X∞ ∈ W

A if and only if |X|||
|
(1 + b) and X is some concatenation of 01 and 011 under 

some rotation.

Proof  ⟹ Suppose that {wA,S} = X∞ . By the assumption that X has no sub-period, 
Per (A) = |X| , so by Theorem 13 |X|||

|
(1 + b) . Next we will show that X has no two 

consecutive 0’s or three consecutive 1’s. By the recurrence relation, w(n) = 0 
implies w(n + 1) = 1 . Additionally, suppose for some sufficiently large n that 
w(n) = w(n − 1) = 1 This implies w(n − b) = 0 , so by Theorem  13 
w(n − b + b + 1) = w(n + 1) = 0 . These two restrictions mean that X is a concatena-
tion of 01 and 011 under some rotation. ⟸ Suppose that k|X| = (1 + b) for k ≥ 1 
and X is some concatenation of 01 and 011. For the seed S we can simply choose Xk , 
so it suffices to show that X∞ satisfies the recurrence relation. Choose n ∈ ℕ . First, 
suppose X∞(n − 1) = 0 . Because there are no consecutive 0’s, X∞(n) = 1 , which 
satisfies the recurrence relation. Now suppose X∞(n − 1) = 1 and X∞(n + 1) = 0 . 
Because there are no consecutive 0’s, X∞(n) = 1 . Additionally because X∞ is peri-
odic over |X|, X∞(n + 1 − k|X|) = X∞(n − b) = 0 , so indeed X∞(n) = 1 satisfies the 
recurrence. Now consider the last case X∞(n − 1) = X∞(n + 1) = 1 . Because there 
are no three consecutive 1’s, this implies X∞(n) = 0 . Additionally 
X∞(n + 1 − k|X|) = X∞(n − b) = 1 and by assumption X∞(n − 1) = 1 , so X∞(n) = 0 
satisfies the recurrence. 	�  ◻

Recall from Theorem 13 that {wA,S} can never have a preperiod, so Theorem 15 
completely characterizes all possible sequences for {1, b} . We also note that 
instead of considering strings X with |X|||(b + 1) and no sub-period, we can equiv-
alently consider all X with |X| = (b + 1) and allow for any sub-period of length 
p ∣ (b + 1) . Let the sets

and Q(�) ∶= {X ∈ Q ∣ |X| = �} . Sequences of this form can be generated iteratively 
by hand or by computer. For example, Q(2) = {01, 10} , Q(3) = {011, 101, 110} , 
and Q(6) = {010101, 101010, 011011, 101101, 110110} . Theorem  15 proves that 
W

{1,b} = {X∞ ∣ X ∈ Q(b + 1)} . We can also provide an explicit enumeration of the 
possible sequences.

Theorem 16  Let � be the plastic constant and z, z̄ be the other two complex roots 
of x3 − x − 1 , and let Q(�) ∶= 𝜙� + z� + z̄� . Then the number of distinct sequences 
{w{1,b},S} over all seeds S is

Proof  To find a recurrence relation, we consider the four possible forms for the 
period structure X to take, and how each can be reduced to a different form. We will 
then add the sequences which count each of these forms.

Q ∶= {X ∈ {0, 1}� ∣ � ∈ ℕ, X is a concatenation of 01 and 011 under some rotation},

(9)|
|W

{1,b}|
| = |Q(1 + b)| = Q(1 + b).
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We note Q1(�) = Q1(� − 2) + Q1(� − 3) , so to follows that 
Q(�) = Q(� − 2) + Q(� − 3) . This is a linear recurrence relation, meaning Q(�) 
is a linear combination of the form c1𝜙� + c2z

� + c3z̄
� , where �, z, and z̄ are the 

roots of x3 − x − 1 . We give initial conditions Q(1) = 0 , Q(2) = |{01, 10}| = 2 , and 
Q(3) = |{011, 101, 011}| = 3.

To find the coefficients we compute that Q(0) = 3 , so 
c1 + c2 + c3 = 3 . Additionally, Q is real so c2 = c3 . Finally, we know that 
x
3 − x − 1 = (x − 𝜙)(x − z)(x − z̄) = x

3 − (𝜙 + z + z̄)x2 +… , so 𝜙 + z + z̄ = 0 = Q(1) . There-
fore c1 = c2 = c3 = 1 . 	�  ◻

Q(�) is in the OEIS, known as the Perrin sequence (OEIS Foundation Inc. 2023, 
A001608).

3.1.1 � Distinct periodicities

If we analyze W{1,5} , or equivalently Q(6) , we find that all of the sequences ‘look like’ 
some form of (01)∞ or (011)∞ , with some initial shift that we call a ‘rotation’. This 
is true for many sequences, motivating a formal notion of similarity between period 
structures.

Definition 5  We call two strings X1,X2 similar if they have a common sub-period, 
i.e. Xk1

1
= X

k2
2

 for k1, k2 ≥ 1 , or if X2 is some rotation of X1 , i.e. |X1| = |X2| = � and 
X2(n) = X1(n + x (mod �)) . We define the equivalence relation ≃ to be the transitive 
closure of these two criteria. We say X and Y are distinct if X ≄ Y .

Definition 6  We denote Q∕≃ as the set of equivalence classes of Q under ≃ . The 
length of a class [Y] is the length of its smallest element, i.e. the smallest sub-period 
of Y or the period length of Y∞.

Recall that Q(�) is the set of all strings in Q with length � , which is in bijection 
with W{1,�−1} . Therefore Q(�)∕ ≃ is the set of distinct periodicites in Q(�) , so we have 
proven that

Q1(�) X = 0… 01Q1(� − 2) + Q2(� − 2) by removing the last two numbers

Q2(�) X = 0… 11Q1(� − 1) by removing the last number

Q3(�) X = 1… 01Q2(�) by rotating one character left

Q4(�) X = 1… 10Q1(�) + Q2(�) by rotating one character right

Q(�) = Q1(�) + Q2(�) + Q3(�) + Q4(�) = 3Q2(�) + 2Q1(�) = 3Q1(� − 1) + 2Q1(�).

(10)W
{1,b}∕≃ =

{
[X∞], [X] ∈ Q(�)∕ ≃

}
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Definition 7  We define (Q∕≃)(�) to be set of distinct periodicities of Q∕≃ with 
length � . Similarly (WA∕≃)(�) is the set of distinct periodicites in WA∕≃ with 
length �.

It follows that

This implies that p ∈ P
{1,b} if and only if p ∣ (1 + b) and |(Q∕≃)(p)| > 0 , as 

means there is some non-periodic string X ∈ Q with length |X| = p and thus 
X∞ ∈ (W{1,b}∕≃)(p).

Example 4  If we want to find the distinct periodicities of length three, 
six, and eight, we observe that (Q∕≃)(3) = {[011]} , (Q∕≃)(6) = � , and 
(Q∕≃)(8) = {[01101101]} . In contrast, if we wish to know all distinct perio-
dicites of {1, 2} , {1, 5} , and {1, 7} , we instead consult (Q(3)∕≃) = {[011]} , 
(Q(6)∕≃) = {[(01)3], [(011)2]} , and (Q(8)∕≃) = {[(01)4], [01101101]}.

It follows that because the periodicites of Q(�) must have some length d ∣ � , we 
can enumerate Q(�)∕ ≃ by partitioning over period length. The following is a natu-
ral result of Eqs. 10 and 11.

In the rest of this section we will enumerate the sets W{a,b} , W{a,b}∕≃ , and 
(W{a,b}∕≃)(�) for all {a, b} . Recall that Theorem 16 gives |W{1,b}| = Q(n).

Proposition 17  Let

where d!|� represents proper divisors of � . Then the number of distinct periodicities 
of {1, b} of length � ∣ (1 + b) is |(W{1,b}∕≃)(�)| = N�(�) , and the total number of 
distinct perioditicites is |W{1,b}∕≃ | = N(b + 1).

Proof  We will show N�(�) = |(Q∕ ≃)(�)| . First we consider all strings X ∈ Q(�) . 
In particular suppose X has period p, so �∕p = k and X = Zk for some Z having 
no sub-period, i.e. [Z] ∈ (Q∕ ≃)(p) . Because Z has no sub-period, it has p differ-
ent rotations and therefore p representatives X1,… ,Xp ∈ Q(�) . Since p can be any 
divisor of � , we conclude �Q(�)� =

∑
p∣� p�(Q∕ ≃)(p)� . We can rearrange this to 

conclude |(W{1,b}∕≃)(�)| = |(Q∕ ≃)(�)| = N�(�) as written in Eq. 13. Note that we 

(11)(W{1,b}∕≃)(�) =
{
[X∞], [X] ∈ ⇐Q∕ ≃)(�)

}
.

(12)

|W{1,�−1}∕ ≃ | =
∑

d∣�

|(W{1,�−1}∕ ≃)(d)| = |Q(�)∕ ≃ | =
∑

d∣�

|(Q∕ ≃)(d)|

(13)N�(𝓁) ∶=

Q(𝓁) −
∑

d!|𝓁

d ⋅ N�(d)

𝓁
N(L) ∶=

∑

𝓁∣L

N�(𝓁),
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do not need a base case to compute N′ explicitly because 1 has no proper divisors. 
Equation 12 implies |W{1,b}∕≃ | = N(b + 1) . 	�  ◻

Note that N�(�) does not depend on b, and in fact the set of distinct perio-
dicities of length � is equal for any b as long as � ∣ (1 + b) . The OEIS contains 
sequences N�(�) (OEIS Foundation Inc. 2023, A113788) and N(L) (OEIS Foun-
dation Inc. 2023, A127687), motivating an interesting bijection.

It is known that Q(�) counts the maximal independent sets in vertex labeled 
cycles C

�
 (see, for example, Example 1.2 in Füredi (1987)). In 2007, Bis-

dorff et. al demonstrated that N(b + 1) counts the number of unlabeled maxi-
mal independent sets of the cycle Cb+1 Bisdorff and Marichal (2007). The cor-
respondence between a binary sequence Y and a vertex set S ⊆ V(Cb+1) is 
simple; we include the ith vertex in S exactly when Y(i) = 0 . For example 
Q(10) ∋ (01)2(011)2 ↦ {1, 3, 5, 8} ⊆ V(C10) . The conditions for a string to be 
valid are equivalent to those for a maximal independent set. We cannot have 
two adjacent vertices of S by independence, and Y cannot have two consecu-
tive zeros by Theorem  15. We also cannot have three adjacent non-vertices in 
S by maximality, or else we could add the middle vertex to S. Similarly Y can-
not have three consecutive ones. By our construction, it is clear that N counts 
these sets in Cb+1 up to rotation, but not reflection. For example, the sequence 
(01)(011)(01)2(011)(01)3(011) ≄ (01)3(011)(01)2(011)(01)(011) because one can-
not be rotated to the other, so they belong to different equivalence classes of 
Q∕ ≃ . Thus, N(21) will count them both. However a reflection automorphism of 
C21 would map the corresponding independent sets to each other. Moving for-
ward, Table 1 shows the sequences Q(�) , N�(�) , and N(�) for � ∈ {0,… , 20}.

3.2 � Generalizing to {a, b}

We will use a simple multiplicative permutation of wA,S to reduce every {a, b} 
case to a version of {1, b�} . This will induce the strict structure of Theorem 15 on 
the seemingly complex periodicities of the {a, b} case. We will generally assume 
that a, b are coprime. If not, we can divide out g = gcd(a, b) and then find g paral-
lel copies of sequences (w)i for the coprime set A = {a∕g, b∕g} using Multiplica-
tive Linearity Proposition 5.

Table 1   Q(�) counts the possible sequences {wA,S} over all S for A = {a, b} if a, b coprime and a + b = �

N
�(�) counts the number of distinct periodicities of length � . N(�) counts the number of distinct perio-

dicities of any length for A = {a, b}

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q(�) 0 2 3 2 5 5 7 10 12 17 22 29 39 51 68 90 119 158 209 277
N�(�) 0 1 1 0 1 0 1 1 1 1 2 2 3 3 4 5 7 8 11 13
N(�) 0 1 1 1 1 2 1 2 2 3 2 4 3 5 6 7 7 11 11 16
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Definition 8  Given some a,  b coprime, define the permuta-

tion  by �a,a+b(Y) = X , where 

X(n) = Y(an (mod a + b)) for all n ∈ {0,… a + b − 1}.

Because a and a + b are coprime, �a,a+b(Y) is a permutation of the string Y for 
all Y ∈ {0, 1}a+b . This means �a,a+b is invertible, so it is a permutation of the col-
lection {0, 1}a+b.

Theorem  18  (Bijection) Suppose A = {a, b} with a,  b coprime and let 
A� = {1, a + b − 1} . For any string Y with |Y| = a + b , let X = �a,a+b(Y) . Then 
Y∞ ∈ W

A if and only if X∞ ∈ W
A�

.

Proof  It suffices to show that Y∞ obeys the recurrence relation if and only if X∞ does, 
as we could then use the seeds Y (a+b)∕|Y| and X(a+b)∕|X| respectively. Let a-1 be the mul-
tiplicative inverse of a (mod a + b) . This means Y∞(n) = X∞(a-1n (mod a + b)) , so 
Y = �a-1,a+b(X) . By leveraging the periodicity of Y∞ and X∞ over a + b , and noting 
that b ≡ −a (mod a + b) , we get

Therefore Y∞ follows the recurrence relation of A = {a, b} if and only if X∞ follows 
the recurrence relation of A� = {1, a + b − 1} . 	�  ◻

Theorem  18 implies that the set of all period structures of {a, b} can be 
obtained by applying the inverse permutation �-1

a,a+b
= �a-1,a+b to each period 

structure of {1, a + b − 1} . Because �a,a+b is a permutation of {0, 1}a+b , it bijects 
the set W{a,b} of all {w{a,b},S} sequences with the set W{1,a+b−1} . In particular, we 
conclude precisely that if a and b are coprime, then

or informally W{a,b} = �a-1,a+b
[
W

{1,a+b−1}
]
 . Therefore Theorem 18 implies that we 

can generalize the results of Sect. 3.1.

Corollary 18.1  Choose any A = {a, b} = {ãg, b̃g} , where g = gcd(a, b) . Then 
|WA| = (Q(ã + b̃))g . 	�  ◻

The power of g follows from Linearity Proposition 5. Each of the independent 
parallel sequences (wA,S)i(m) for i ∈ {0,… , g − 1} is equal to some {ã, b̃} game. 
Thus we can count g-tuples of strings in 𝜎ã-1,ã+b̃[Q(a + b)] to arrive at the total, 

Y∞(n) = X∞(a-1n)

Y∞(n − a) = X∞(a-1n − a-1a) = X∞(a-1n − 1)

Y∞(n − b) = X∞(a-1n − a-1(−a)) = X∞(a-1n + 1) = X∞(a-1n − (a + b − 1))

(14)W
{a,b} = {Y∞ ∣ Y = �a-1,a+b(X), X ∈ Q(a + b)},
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which we formalize in Theorem  19. Next, we find that �a,a+b also bijects the 
classes of distinct periods.

Corollary 18.2  Let a, b be coprime and A = {a, b} . Then |WA∕≃ (�)| = N�(�) is the 
number of distinct periodicities of length � ∣ (a + b) , and |WA∕≃ | = N(a + b) is the 
total number of distinct periodicities of A.

Proof  It suffices to show that �a,a+b preserves rotational symmetries and sub-
periods. Suppose some sequences Y and Y ′ are rotated copies of each other, 
i.e. there is some r such that Y(n) = Y �(n + r (mod �)) for all n. This implies 
(�Y)(n) = (�Y �)(n + ar (mod �)) , so �Y  and �Y ′ are rotated copies of each other 
with shift ar. Additionally, suppose Y has some sub-period, i.e. there is some 
r ≢ 0 (mod �) such that Y(n) = Y(n + r (mod �)) . This implies Y is a rotated copy 
of itself, so indeed �Y  is a rotated copy of itself with shift ar ≢ 0 (mod �) , since 
� ∣ (a + b) and gcd(a, a + b) = 1 . We conclude that for all X and Y, X ≃ Y  if and 
only if �X ≃ �Y  , so equivalence classes of ≃ are bijected by �a,a+b . 	�  ◻

If a and b are not coprime, it is more complicated to count the number of distinct 
periodicities, but we can use a generalization of Proposition 17.

Theorem 19  Choose any A = {a, b} = {ãg, b̃g} , where g = gcd(a, b) . Define the fol-
lowing functions for all g,� ∈ ℕ⧵{0} and L = g�:

Then |WA∕≃ (p)| = N�(p, gcd(p, a, b)) is the number of distinct periodicities of A 
with length p, and |WA∕≃ | = N(a + b, g) is the total number of distinct periodici-
ties of A.

Proof  First we will justify that the total number of strings in W{a,b} which are peri-

odic over p is 
(

Q(
p

gcd(p,g)
)

)gcd(p,g)

 , not considering similarity under ≃ . Denote this set 
by W{a,b}(p) . Let � = ã + b̃ . We know by Theorem 13 that {w} is always periodic 
over g� = a + b , so for all S, {wA,S} = Y∞ for some Y with |Y| = g� . Using Linear-
ity Proposition 5, we can write Y as a collection of parallel strings Yi for 
i ∈ {0,… g − 1} where |Yi| = � , and for all m ∈ {0,… ,� − 1} , Yi(m) = Y(gm + i) . 
Additionally, for each i, Y∞

i
 must satisfy the recurrence relation for {ã, b̃} . Suppose 

that Y is also periodic over length p ∣ � , so Y∞ ∈ W
{a,b}(p) . Using the division algo-

rithm let p = xg + r , where r < g and x ∈ ℕ . Additionally, let � = gcd(p, g) and 
g̃ = g∕𝛾 . We will prove that the following conditions are sufficient and necessary for 
this to occur. 

(15)

N�(L, g) ∶=

Q(𝓁)g −
∑

d!|L

d ⋅ N�(d, gcd(d, g))

L
N(L, g) ∶=

∑

p∣L

N�(p, gcd(p, g))
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	 (i)	 For all i ∈ {0,… , � − 1} , and all m, Yi(m) = Yi(m + p∕�)

	 (ii)	 For all i ∈ {� ,… , g − 1} and all m, Yi(m) =
{

Yi−r(m − x) i ≥ r

Yi−r+g(m − x − 1) i < r

We first show necessity. Assuming Y is periodic over length p, this means for all 
m, i, we have

This proves stronger versions of (i) and (ii).
Next, we show sufficiency. Assume (i) and (ii) hold. For any n, use the division 

algorithm to get n = mg + i . We hope to show that Y(n) = Y(n − p) . Suppose that 
i ∈ {� ,… , g − 1} . Then by condition (ii),

Alternately, suppose that i ∈ {0,… , � − 1} , and consider the set of indices 
i, i + r, i + 2r,… , i + (g̃ − 1)r , taken modulo g. We denote these Ij ≡ i + rj (mod g) 
for j ∈ {0,… , g̃ − 1} . Because � ∣ r , this means Ij ≡ i (mod �) for all j. Addi-
tionally, we know that the order of r in the group ℤ+

g
 is g∕ gcd(g, r) = g̃ , which 

means that Ij ≠ i for j ∈ {1,… , g̃ − 1} . This means that only I0 can be in the set 
{0,… , � − 1} and for all j > 0 we must have Ij ∈ {� ,… , g − 1}.

Now, let n� = n − g̃p , and consider the sequence of values 
Y(n�),Y(n� + p),… , Y(n� + (g̃ − 1)p) . We know that Y(n�) = Yi(m − p∕�) = Yi(m) = Y(n) 
by condition (i). We also observe that for all j ∈ {0,… , g̃ − 1} , we have 
Y(n� + pj) = YIj (mj) for some mj . Because we know Ij ∈ {� ,… , g − 1} , Eq.  16 
implies that Y(n� + pj) = Y(n� + p(j − 1)) . Therefore

Therefore we have shown that conditions (i) and (ii) are equivalent to Y∞ being peri-
odic over length p, and we now enumerate the strings satisfying these conditions. To 
satisfy (i) we may choose any �-tuple of sequences in W{ã,b̃} which are periodic over 
p∕� for Y0,… , Y�−1 . To satisfy (ii) we must let Y� ,… , Yg−1 be the appropriate trans-
lations of these sequences, so they are fixed. Thus we find the total number of possi-
bilities ||

|
W

{a,b}(p)
|
|
|
= (Q(p∕�))�.

An argument similar to Proposition 17 shows that 
�
�
�
W

{a,b}(p)
�
�
�
=
∑

d

�
�
�
�
p

d
�
�
�
W

A∕≃ (d)
�
�
�
 . Letting N�(d, gcd(d, g)) =

|
|
|
W

A∕≃ (d)
|
|
|
 , these can 

be rearranged to Eq.  15. Note that we can also derive N�(p, 1) = N�(p) for all p, 
meaning that if g = 1 , we have reduced to the case of {a, b} coprime. 	�  ◻

Yi(m) = Y(mg + i) = Y(mg + i − p) = Y(mg + i − xg − r) =

{
Yi−r(m − x) i ≥ r

Yi−r+g(m − x − 1) i < r

= Y(mg + i + g̃p) = Y(mg + i + gp∕𝛾) = Yi(m + p∕𝛾),

(16)

Y(n) = Yi(m) =

{
Yi−r(m − x) i ≥ r

Yi−r+g(m − x − 1) i < r
= Y(mg − gx + i − r − gx) = Y(n − p)

Y(n) = Y(n�) = Y(n� + p) = … = Y(n� + (g̃ − 1)p) = Y(n − p).
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In the simpler case when a,  b are coprime, refer to the sequences Q(�),N�(�), 
and N(�) in Table 1. As a result of the general enumeration we find that for all g ∣ L , 
N(L, g) = 0 exactly when L = g or L = 4g or (L, g) = (6, 1) . Thus

We also see that for any coprime a, b and any � ≤ 10 , there is at most one distinct 
periodicity of a and b of length � over all S. Given some A = {1, 11k − 1} for k ≥ 1 , 
the two periodicites of length 11 are ⇐Q∕≃)(11) =

{[
(01)4(011)

]
,
[
(01)(011)3

]}
 . 

This means that for any {a, b} , with 11 ∣ a + b , the two periodicities are 
�a-1,11

(
(01)4(011)

)
 and �a-1,11

(
(01)(011)3

)
.

Example 5  Consider the set A = {3, 11} . There are N(14) = 5 periodicites, where 
exactly N�(14) = 3 have period 14. First we write the 5 periodicities of B = {1, 13} , 
given by

Next, we permute these strings. 3-1 ≡ 5 (mod 14) , so we compute Y = �5,14(X) . For 
the first string:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

X 0 1 0 1 1 0 1 1 0 1 1 0 1 1
�(X) 0 0 1 1 1 0 0 1 1 1 0 1 1 1
5n (mod 14) 0 5 10 1 6 11 2 7 12 3 8 13 4 9

This yields �5,14
(
01(011)4

)
= (0213)2(013) . Repeating this procedure, we get the 

following:

Note that the period lengths of 2, 7, and 14 are conserved under the permutation, as 
shown in Corollary 18.2. This procedure yields all 5 periodicites of {3, 11}.

P
{a,b} =

{

p
|
|
|
p|(a + b), p ̸ | gcd(a, b), p ≠ 4 gcd(p, a, b), (p, gcd(p, a, b)) ≠ (6, 1)

}

Q(14)∕ ≃=

{[
(01)(011)4

]
,
[
(01)4(011)2

]
,
[
(01)3(011)(01)1(011)

]
,

[
((01)2(011))2

]
,
[
(01)7

]}

.

�5,14
(
01(011)4

)
= = (0213)2(013)

�5,14
(
(01)4(011)2

)
= 0130313(01)2 ≃ 120313(01)3

�5,14
(
(01)1011(01)3011

)
= 021303150 ≃ 03130315

�5,14
(
(01)2011)2

)
= 014031402 ≃ (0314)2

�5,14
(
(01)7

)
= = (01)7

W
{3,11}∕≃ =

{[(
(0213)2(013)

)∞]
,
[(

120313(01)3
)∞]

,
[(

03130315
)∞]

,
[
(0314)∞

]
,
[
(01)∞

]}
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The asympotic behavior of these functions is generally well behaved. Because 
|z| = |z̄| < 1 , where z and z̄ are the non-real roots of x3 − x − 1 , we have the conver-
gence Q(�) = 𝜙� + z� + z̄� →

�→∞
𝜙�.3 For the following analysis, let 

A = {a, b} = g{ã, b̃} with g = gcd(a, b) , and assume that ã + b̃ ≥ 2.37 ln g , which 
excludes relatively few sets. Then ||

|
W

{a,b}|
|
|
= Q(ã + b̃)g ∼ 𝜙a+b . The set of seeds 

{S ∣ S ∈ {0, 1}b} has cardinality 2b ≥
√
2
a+b

 . Because 𝜙 ≈ 1.32 <
√
2 this means 

that the set of seeds grows faster than the sequences they generate, the number of 
seeds converging to the same sequence {w} grows exponentially as a + b increases. 
This approximation of Q(�) also implies that N�(�) ∼ ��∕� and N(�) ∼ N(�) . We 
can can also derive �L∕L ∼ N�(L, g) ∼ N(L, g) , giving a strong estimation of the of 
the number of possible period structures for large a, b.

4 � The {1,b, c} case

Note that we do not consider seeds in this section. Analogously to Sect. 3.1, a good 
starting point for understanding the {a, b, c} game is the {1, b, c} game. This case 
was studied by Ho in (Ho 2015, sec. 2), where he solves the game for c < 4b . We 
provide a full analysis by constructing {w{1,b,c}} for all b and c with no seed, where 
most importantly we specify the existence and structure of preperiods.

For the remainder of the paper we will use x ∶≡ y (mod z) to define x as the least 
non negative remainder of y modulo z.

Theorem  20  Suppose we have some 1 < b < c , and let A = {1, b, c} . Denote 
q ∶= ⌊c∕(b + 1)⌋ , r ∶≡ c (mod b + 1) . This means c = q(b + 1) + r . Additionally let 
k ∶= b∕2 and � ∶=

b−r−2

2
 ; we will only use these when they take on integer values.

Case Conditions Per (A) PrePer (A) {wA}

i b, c odd, 2 0 [01]∞

ii b odd, c even, b + c 0 [
(01)c∕21b

]∞

iii b even, c = b + 1 2b 0 [
(01)k1b

]∞

iv b even, r ∈ {1, b} b + 1 0 [
(01)k1

]∞

v b even, r > 1 odd b + c 0 [
((01)k1)q+11r−1

]∞

vi b even, r = b − 2 c + 1 0 [
((01)k1)q(01)k−11

]∞

vii b even, c > b + 1 , r < b − 2 is even, q > 𝛾 c + 1 �(b + c + 2) − b − 1 Equation 17
viii b even, c > b + 1 , r < b − 2 is even, q < 𝛾 b + c q(b + c + 2) − b − 1 Equation 17
ix b even, c > b + 1 , r < b − 2 is even, q = � b − 1 q(b + c + 2) − a − 1 Equation 17

3  For all � ≥ 10 , we have the exact equality Q(�) = round(��).
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The last three cases yield the most interesting results, providing an exact speci-
fication of the existence and structure of preperiods. These can be visualized in 
Figs. 1 and 2.

Proof (i)  If b and c are odd, then they are both extensions of {1} as in Example 3, so 
{wA} = {w{1}} = (01)∞ . 	�  ◻

Proof (ii)  Suppose b is odd and c is even. For n < c , w(n − c) = 1 , so 
w(n) = 1 −min{w(n − 1),w(n − b), 1} , and therefore wA(n) = w{1,b}(n) = w{1}(n) , 
because b is an extension of {1} . Thus {wA} = (01)c∕2…

c
 Now for all n ∈ [c, c + b) , 

we find that n − b < c and n − c < c . Therefore if n is odd, then n − b is even so 

Fig. 1   Theorem 20 proves that PrePer ({1, b, c}) ≠ 0 exactly when b is even, c > b + 1 , and r < b − 2 is 
even, with r ∶≡ c (mod b + 1)

Fig. 2   Theorem  20 proves that PrePer ({1, b, c}) = min
(⌊

c
b

⌋

, a−r−2
2

)

(b + c + 2) − b − 1 whenever it is 
nonzero. This is approximately quadradic in c when c is close to b, and transitions to linear when c ≫ b
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w(n − b) = 0 and therefore w(n) = 1 . If n is even then n − c is even so w(n − c) = 0 
and therefore w(n) = 1 . Thus:

Because wA(b + c − 1) = 1 , Corollary 9.2 of the translating zeros lemma implies 
that this is the entire period with no preperiod. 	�  ◻

Proof (iii)  Suppose b = 2k and c = b + 1 . For n < c we have a single period of {1, b} , 
specifically {wA} = (01)k1…

c
 Next, for n ∈ [b + 1, 2b) , we find that n − b < b + 1 

and n − c < b . If n is odd, then n − c is even so w(n − c) = 0 and thus w(n) = 1 . If n 
is even, then n − b is even so w(n − b) = 0 and thus w(n) = 1 . This yields 
{wA} = (01)k1b…

b+c
 . Because v(b + c) = v(0) = 1c , this is the entire period with no 

preperiod, as implied by Lemma 10. 	�  ◻

Proof (iv)  Suppose b = 2k and r ∈ {1, b} . Then c is an extension of {1, b} by Propo-
sition 8, so {wA} = {w{1,b}} =

(
(01)k1

)∞ . 	�  ◻

Proof (v)  Suppose b = 2k and r > 1 is odd. As above, for the first c elements of the 
sequence, {wA} is equal to {w{1, b}}.

Now let n = q(b + 1) + m for m ∈ [r, b) . This means that n − b < q(b + 1) and 
n − c = m − r . If m is odd, then n − b is odd so w(n − b) = 0 , so w(n) = 1 . If m is 
even, then w(n − 1) = 1 and w(n − b) = 1 and w(n − c) = w(m − r) = 1 , so w(n) = 0 . 
This extends the sequence to

We just showed w(q(b + 1)) = 0 , so w(q(b + 1) + b) = 1.

Now let n = (q + 1)(b + 1) + m for m ∈ [0, r − 1) . If m is odd, then 
n − b = q(b + 1) + m + 1 , which has an even remainder less than b, so w(n − b) = 0 
and therefore w(n) = 1 . If m is even, then n − c = b + 1 − (r − m) , which is even 
and less than b + 1 , so w(n − c) = 0 and therefore w(n) = 1 . We then extend the 
sequence.

Because wA(b + c − 1) = 1 , we may again apply Corollary 9.2 to claim that this is 
the complete period with no preperiod.

{wA} = (01)c∕21b…
b+c

{w{1,2k}} =
(
(01)k1

)q
(01)

r-1

2 0…
c

{wA} =
(
(01)k1

)q
(01)k …

q(b+1)+b

{wA} =
(
(01)k1

)q
(01)k1 …

(q+1)(b+1)

{wA} =
(
(01)k1

)q
(01)k1r…

b+c
=
(
(01)k1

)q+1
1r−1…

b+c
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Note that if r = 1 , this solution still works and has sub-period b + 1 , which agrees 
with (iv). 	�  ◻

Proof (vi, vii, viii, ix)  Assume b = 2k , r is even, and c > b + 1 , and recall � =
b−r−2

2
 . 

All four of the remaining cases are expressed in the following equation. Interest-
ingly, the preperiod structure is the same for all cases.

A proof of this Equation is given in Sect. 4.1. We simply check that the recurrence 
relation is satisfied.

In case (vi) where r = b − 2 , this means � = 0 so the summation is empty and 
there is no preperiod. Because we assume q ≥ 1 , this falls into the � ≤ q case of 
Eq. 17, which has length q(b + 1) + (b + 1) − 2 = c + 1.

In the remaining cases both q and � are nonzero, and each term in the preperiod 
summation has length

Examine the last b + 1 values of the last term in the summation, 
22(�−min(q,�)+1)(01)k−(�−min(q,�)+1)1 . If � ≤ q , this is 12(01)k−11 , which is equal 
to the last b + 1 values of the period structure. If q ≤ � , this is equal to 
22(�−q+1)(01)k−�+q−11 = 22(�−q+1)(01)r∕2+q , which is also equal to the last b + 1 values 
of the period structure. This implies that the preperiod transitions into the period 
b + 1 steps earlier than depicted in Eq. 17, and has length min(q, �)(b + c + 2) − b − 1

.
In cases (vii) and (viii), Per (A) can be computed simply by counting the length of 

the strings in Eq. 17. The period for � ≤ q has length

The period for q ≤ � has length

In case (ix), where � = q , recall that r + 2� = 2k − 2 . This allows us to simplify 
r∕2 + q = r∕2 + � = k − 1 , so the two period structures are equivalent and can be 
expressed as ((01)k−11)∞ , which has period b − 1.

We might also notice that Eq. 17 also holds if r = b (with no preperiod) and agrees 
with case (iv). In this case we would have � = −1 so � ≤ q and {wA} = ((01)k1)∞ . 	
� ◻

(17)
{wA} =

min(q,�)−1∑

i=0

(

((01)k1)q−i((01)k−11)i(01)r∕2+i12(�−i)+1(01)k−(�−i)1
)

×

({
((01)k1)q−� ((01)k−11)�+1 � ≤ q

((01)k−11)q(01)r∕2+q12(�−q)+1(01)r∕2+q1 � ≥ q

)∞

(q − i)(b + 1) + i(b − 1) + (r + 2i) + 2(� − i) + 1 + 2(k − (� − i)) + 1

= q(b + 1) − 2i + r + 2i + 2k + 2 = c + b + 2.

(b + 1)(q − �) + (b + 1 − 2)(� + 1) = (b + 1)q − 2� + b − 2 + 1 = (b + 1)q + r + 1 = c + 1.

q(a + 1 − 2) + (r + 2q) + (2� − 2q + 1) + (r + 2q) + 1 = q(a + 1) + 2r + 2� + 2 = b + a.
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One result of this is that preperiod lengths can be arbitrarily longer than peri-
ods in the {1, b, c} case. This can be seen in Fig. 2, where the preperiod length 
appears quadratic in c.

Example 6  Let b = 2k and c = k(b + 1) . Then A = {1, 2k, 2k2 + k} . This means 
q = k , r = 0 , and � = k − 1 . Noting that 𝛾 < q , Eq. 17 yields

and Theorem  20 (case vii) gives Per (A) = 2k2 + k + 1 , and 
PrePer (A) = (k − 1)(2k + 2k2 + k + 2) − 2k − 1 = 2k3 + k2 − 3k − 3.

If we instead choose b = 2k and c = (k − 1)(b + 1) , we would have q = � (case 
ix) so Per (A) = 2k − 1 and PrePer (A) = 2k3 − 3k2 + 2k − 4.

For general 3-sets, (Althöfer and Bültermann 1995, problem (vi)) provided the 
example A = {2s, 4s + 1, 22s + 2} with Per (A) = 26s + 3 , though they err in giving 
PrePer (A) = 24s2 − 4s + 1 for s ∈ [2, 20] while actually PrePer (A) = 24s2 − 4s − 1 
for all s ∈ [2, 200] . Another example follows from (Cairns and Ho 2010, thm 2). 
If A = {k, k + 2, 2k + 3} , then PrePer (A) = 1

2
(3k2 − 5) and Per (A) = 2 . Thus for 

general 3-sets, PrePer (A) is not bounded by any function of Per (A) , whereas for 
A = {1, b, c} , Theorem 20 shows that PrePer (A) = O(Per (A)3).

In Sect. 3, we used the A = {1, b} case to characterize all possible 2-sets using 
a permutation of wA . A similar strategy may be possible if we could characterize 
all periodicities of {1, b, c} , though this would be more complicated. In particular, 
note that the length of the periods are highly dependent on seeds, unlike the {a, b} 
case. An example of this is proven in Sect. 6 and visualized in Fig. 7.

Suppose A = {a, b, c} and we are given any string Y with |Y| = p . If 
gcd(a, p) = 1 , then we let a-1 be the multiplicative inverse of a in ℤ×

p
 and 

b� ∶≡ a-1b (mod p) and c� ∶≡ a-1c (mod p) . We see X = �a,p(Y) is a permutation 
of Y, so we could show in a manner similar to Theorem 18 that Y∞ ∈ W

{a,b,c} if 
and only if X∞ ∈ W

{1,b�,c�} . Thus as long as p and a are coprime, we have 
W

a,b,c(p) = �a-1,p

[

W
1,b�,c� (p)

]

 . This observation carries little information without 
further understanding of W1,b,c.

As an example we apply Lemma 22. Choose any n ∈ ℕ and d ≥ 1 . 
Let b = 4n + 2d + 1 and let p = 2(n + 1)b + 1 . Lemma 22 will imply 
that p ∈ P

{1,b,b+1} . 2 is coprime to p, so calculate that 2-1 = (n + 1)b + 1 
and 2-1b = (2n + d) + 2-1 = (n + 1)b + 2n + d + 1 , and finally 
2-1(b + 1) = 2n + d + 1 . Therefore there is some seed S such that 
Per ({2, 2n + d + 1, (n + 1)b + 2n + d + 1}, S) = 2(n + 1)b + 1.

(18)

{wA}=

k−2∑

i=0

(

((01)k1)k−i((01)k−11)i(01)i12(k−i)−1(01)i+11
)(

(01)k1((01)k−11)k
)∞
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4.1 � Building the preperiod sequence for {1, b, c}

The statements in Theorems 20, 21, and Lemma 22 are somewhat tedious, so we 
provide three proofs of distinct flavors. In this section we provide a visual verifi-
cation of Eq. 17 to complete the proof of Theorem 20.

Proof  We claim that if b = 2k , q = ⌊c∕(b + 1)⌋ , r = c − qb is even c > b + 1 , and 
� =

b−r−2

2
 , then Eq. 17 holds.

To verify the construction of the preperiod, we will confirm that for each term 
i ∈ {0,… , min(q − 1, �)} , the recurrence relation holds. If i = 0 , note that the first 
c entries proceed as w1,b , so {wA} =

(
(01)k1)q(01)r∕2…

c
 , which agrees with the i = 0 

term of Eq. 17. Thus when considering prefixes we may assume i ≥ 1 . Suppose the 
ith term starts at entry m, and assume that the previous i − 1 terms follow Eq. 17.

The “alignment diagram" on the left hand side in Fig. 3 re-writes the structure 
presented in Eq. 17 on two lines such that wA(n) on the first line is horizontally justi-
fied with wA(n − c) on the second line. To interpret this diagram, we simply confirm 
that for all n, if wA(n) = 0 , then then look directly below to check that wA(n − c) = 1 . 
Further, if wA(n) = 1 , then either wA(n − 1) = 0 on the left, or wA(n − c) = 0 
directly below (shown in bold), or neither is true and we must have wA(n − b) = 0 
(underlined).

Consider the additional case where q ≤ � and i = q . The diagram nearly holds 
until the last b + 1 entries. In particular, we note that ((01)k1)q−i = � , so the 
wA(n − c) sequence should conclude with (01)k−11(01)0 instead of (01)k10 . There-
fore the qth term can be modified to ((01)k−11)q(01)r∕2+q12(�−q)+1(01)k−(�−q)−110101.

The alignment diagram on the right hand side in Fig.  3 similarly re-writes the 
structure such that wA(n) is horizontally justified with wA(n − b) . We must con-
firm that if wA(n) = 0 , then directly below, wA(n − b) = 1 . We also confirm that the 
underlined entry has wA(n − b) = 0.

Therefore for all i ∈ [0,… , min(q − 1, �)] , the ith term follows the recurrence. 
Note that the ∗ does not affect the recurrence, but represents that the value is 
unknown. This value is 1 if i < 𝛾 but 0 if i = � . In either case, the recurrence holds. 
Now we consider the � ≤ q case. As justified above, after the � − 1th term, the � th 
term begins at index m1 with

Fig. 3   Two alignments diagrams re-writing the structure presented in Eq. 17. See text for details
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We now observe that for Y =
(
(01)k1

)q−�(
(01)k−11)�+1 , the sequence Y∞ satisfies 

the recurrence. Because Y has length c + 1 , it suffices to check that Y(n) = 1 if and 
only if Y(n − 1) = 0 or Y(n + 1) = 0 or Y(n − 2k) = 0 . Y satisfies this criterion by 
inspection.

Now consider the q ≤ � case. As justified above, after the q − 1th term, the qth 
term begins at index m1 with

Now, we show that for Y = ((01)k−11)q(01)r∕2+q12(�−q)+1(01)r∕2+q1 , the sequence 
Y∞ satisfies the recurrence using alignment diagrams. Note that |Y| = b + c , and we 
start the diagram at Y(−1) to simplify the diagram.

Similarly checking the recurrence for b:

{wA} = …
m1

(
(01)k1

)q−�(
(01)k−11)� (01)r∕2+�12(�−�)+1(01)k−(�−�)1…

= …
m1

(
(01)k1

)q−�(
(01)k−11)� (01)k−11(01)k1…

= …
m1

(
(01)k1

)q−�(
(01)k−11)�+1(01)k1…

{wA} = …
m1

((01)k1)q−q((01)k−11)q(01)r∕2+q12(�−q)+1(01)k−(�−q)−110101…

= …
m1

((01)k−11)q(01)r∕2+q12(�−q)+1(01)r∕2+q1 0101…

Fig. 4   Two plots of Per ({a, b, a + b}) with fixed a. Note the phase transition from linear period lengths 
to quadratic, as well as the dips when gcd(a, b) ≠ 1 . See Fig. 6 for a more extreme example
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These diagrams verify that Y∞ satisfies the recurrence, and this completes the proof 
that Eq. 17 holds. 	�  ◻

5 � The {a,b, a + b} case

Note that we also do not consider seeds in this section. In Berlekamp et al. (2004, p. 
531), Berlekamp et al. state without proof that the period lengths of the {a, b, a + b} 
game are quadratic and give a formula for the period length of the Grundy sequence 
G(n) . In Althöfer and Bültermann (1995), Althöfer and Bülterman prove a particular 
example of this case (Example 7). In this section we provide a proof for the general 
{a, b, a + b} game by finding {wA} explicitly, which was presented as open by Ho in 
(Ho 2015, table 4) (Fig. 4).

Theorem  21  Suppose A = {a, b, a + b} with a < b . Define k =
⌊
b−1

2a

⌋

 , 
�i ∶≡ ib (mod a) , and 𝛿i ∶= 1(𝜎i > 𝜎i−1) , with the exception �1 = 0.4 Let 
ã = a∕ gcd(a, b) . Then

It follows that

Berlekamp et al. (2004, p. 531) inspire an alternate formulation of Eq. 20. If we 
let b = 2ha + � for � ∈ (−a, a] , then the following also holds:

Proof  We separate this proof into 2 cases, beginning with the simpler linear case.
Case 1: If b ≥ a (mod 2a) or b ≡ 0 (mod 2a) , we can let b = qa + r for odd 

q = 2k + 1 and r ∈ [0, a].
For n < b we find wA(n) = w{a}(n) , and {w{a}} = (0a1a)∞ . Because q is odd,

(19){wA} =

⎧
⎪
⎨
⎪
⎩

�
ã−1�

i=1

�
(0a1a)k−𝛿i0𝜎i1b0a−𝜎i1a

�
0a1a+b

�∞

1 ≤ b < a (mod 2a)

�
(0a1a)k0a1a+b

�∞
Otherwise

(20)Per (A) =

{
ã(2b − 2ka) 1 ≤ b < a (mod 2a)

b + 2a(k + 1) Otherwise

Per (A) =

{
ã(2b + 𝜌) 1 ≤ 𝜌 < a

2b + 𝜌 𝜌 ≤ 0 or 𝜌 = a

{wA} = (0a1a)k0a1r …
b

4  This means �
i
= 1 if 𝜎

i
> 𝜎

i−1 and �
i
= 0 if not.
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Next, for all n ∈ [b, b + qa) , we see that if w(n − b) = 0 then both w(n) = 1 and 
w(n + a) = 1 . This fills in the next portion of the sequence; we use underline and 
bold characters to highlight the structure of the recurrence.

We now observe that v
(
b + (q + 1)a

)
= 1a+b = v(0) , which proves that 

Per (A) = b + 2a(k + 1) with no preperiod. We now move to the quadratic case.
Case 2: If 1 ≤ b < a (mod 2a) , then we will have b = qa + r , for r ∈ [1, a) and 

q = 2k . Again for n < b , the sequence is identical to w{a}.

Once again for n ∈ [b, 2b) , we notice that if wA(n − b) = 0 , then 
by the recurrence wA(n) = wA(n + a) = 1 . This means that for all 
n ∈ [b, 2b) ∪ [(2b − r) + a, 2b + a) , we have w(n) = 1 , as illustrated in the equation 
below. This leaves a gap of length a − r . In this gap n ∈ [2b, (2b − r) + a) , we find 
w(n − a) = w(n − b) = w(n − a − b) = 1 , so indeed w(n) = 0.

Because we showed n ∈ [2b, 2b + a − r) has w(n) = 0 , this implies w(n + a) = 1 , so 
we may append (a − r) 1’s after 2b + a.

This completes the first term in the summation, where �1 = r and �1 = 0 . Using this 
as a base case for induction, we now show that the i + 1th term in the summation 
succeeds the ith term. Suppose

We need only consider recent values of w(n) back to w(n − a − b) , so define the 
index m such that

{wA} = …
m
1b−a+�i0a−�i 1a … Now let m1 = m + (b − a + �i) and notice that v(m1) 

ends with a long string of ones. In particular we find that for all 
n ∈ [m + a + b,m1 + b) , we have wA(n − a − b) = 1 and wA(n − b) = 1 , so wA pro-
ceeds identically to w{a} for a length of precisely b − 2a + �i . We must now consider 
sub-cases for parity, where 𝜎i + r < a or �i + r ≥ a . We show the two cases below

{wA} = …(0a1a)k−�i0�i1b0a−�i1a …
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Note that in the two cases we can plug in �i+1 = �i + r = and 
�i+1 = �i + r − a respectively. In the second case, where �i + r ≥ a , 
then for n ∈

[
(m1 + b), (m1 + b) + (a − �i+1)

)
 , we find wA(n − a) = 0 so 

wA(n − a) = 1 . For n ∈
[
(m1 + b) + (a − �i+1), (m1 + b) + a

)
 , we find 

wA(n − a) = wA(n − b) = wA(n − a − b) = 1 , so w(n) = 0 . Extend this second case 
below, defining m2 as the frontier of the sequence:

This adds another copy of 0a1a to the sequence in the second case, and observe 
that �i+1 = 1 in the first case and �i+1 = 0 in the second. We can therefore com-
bine cases. Additionally, we find that for n ∈ [m2,m2 + b) , if w(n − b) = 0 then 
w(n) = w(n + a) = 1 . This leads to another string of 1b with a gap of length a − �i+1 
which is filled with zeros. This is shown below, where m3 = m2 + b + a (Fig. 5),

For n ∈
[
m3,m3 + (a − �i+1)

)
 , we see w(n − a) = 0 so w(n) = 1 . This completes the 

inductive step as we show below:

{wA} = …(0a1a)k−𝛿i0𝜎i1b 0a−𝜎i1a 0a1a0a1a …
���������������������������

b

…
m1+b

=

⎧
⎪
⎨
⎪
⎩

…
m1

0a−𝜎i1a (0a1a)k−10𝜎i+r …
m1+b

𝜎i + r < a

…
m1

0a−𝜎i1a (0a1a)k−10a1𝜎i+r−a …
m1+b

𝜎i + r ≥ a

{wA} =

⎧
⎪
⎨
⎪
⎩

…
m1

0a−𝜎i1a (0a1a)k−10𝜎i+1 …
m2

𝜎i + r < a

…
m1

0a−𝜎i1a (0a1a)k−10a1a0𝜎i+1…
m2

𝜎i + r ≥ a

{wA} = …(0a1a)k−�i0�i1b0a−�i1a (0a1a)k−�i+10�i+11b0a−�i+11a …

Fig. 5   Let a = 13 , b = 2a + 3 , and A = {13, 29, 42} . We compute Per (A) = 793 , and the period structure 
is shown above, with- used for 0
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By induction this pattern will repeat. Let ã =
a

gcd(a,b)
 , which is the order of b in ℤ+

a
 . 

Thus the ãth iteration is the first such that 𝜎ã = 0 and 𝛿ã = 0 so the sequence is

We see that v(m4) = 1a+b = v(0) , so this is the entire period. We see that the ith 
term of the summation has length 2ka − 2a�i + b + 2a , and there are ã total terms. 
We also compute that r⋅ã

a
 is the number of terms j for which 𝜎j < 𝜎j−1 , so if we 

include the first term �1 = 0 and exclude the last term 𝛿ã = 0 , there are precisely 
r∕ gcd(a, b) terms in the summation where �j = 0 , and the rest have �i = 1 . Therefore 
∑ã−1

i=1
𝛿i = (ã − 1) − r∕ gcd(a, b) . We conclude that the total period length is

◻ 	�  ◻

The following example is given as a Theorem in Althöfer and Bültermann (1995).

Example 7  (Althöfer and Bültermann 1995, Thm 3.1) Let A = {a, 2a + 1, 3a + 1} . 
Then Eq. (19) gives the following sequence, where b = 2a + 1 , k = 1 , and �i = i so 
�i = 1 for all i ∈ [1, a − 1).

Additionally Per (A) = (6a2 + 3a) − 2a2 = 4a2 + 3a ∼
2

9
max(A)2.

This class of sets appears to be the only case for |A| = 3 which can have superlin-
ear period lengths with no seed. Further generalizations using this result and Theo-
rem 20 might bring the following conjecture within reach (Fig. 6).

Conjecture 1  For all a < b < c such that a + b ≠ c,

We have verified Conjecture 1 computationally for all {a, b, c} ∈
(
[200]

3

)
 . Ward 

(2016) conjectured that the period length in this case is a divisor of one of a + b , b + c 
and a + c . Further, if the period length divides more than one of these numbers, then 

(21)

Per (A) =

ã−1∑

i=1

(2ka − 2a𝛿i + b + 2a) + 2ka + b

= (2ka(ã − 1) − 2a((ã − 1) − r∕ gcd(a, b)) + b(ã − 1) + 2a(ã − 1)) + 2ka + b

= 2kaã + 2ar∕ gcd(a, b) + bã

= 3ãb − 2kaã

{wA} =

(

0a1a
a−1∑

i=1

(

0i1b0a−i1a
)

0a1a+b
)∞

=

(

0a1a 011b0a−11a 021b0a−21a 031b0a−31a … 0a1a+b
)∞

(22)Per ({a, b, c}) < 2c
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it is exactly the greatest common divisor of them. He verified this conjecture for all 
{a, b, c} ∈

(
[4096]

3

)
 . The 2D map of the period lengths for a fixed c and varying a, b < c 

seems to have a fractal structure, see Larsson (2024); Flammenkamp (1997). If this 
conjecture is true, it must relate in part to some invariant of the structure caused by 
the initial seed of 1� , because it fails entirely for different seeds, even if a, b,  and c are 
coprime. This invariant would therefore be carried through the quadratic length prepe-
riods seen in Sect. 4.

6 � Super‑polynomial period lengths with initial seeds

In this section we consider a particular family of sets which demonstrate that super-pol-
ynomial period lengths exist for 3-sets, given properly chosen initial seeds. This family 
will relate to an intersection of the cases of Sects. 4 and 5, and now we do consider 
seeds.

Lemma 22  For any n ∈ ℕ , choose some odd b > 4n + 1 and let A = {1, b, b + 1} 
and S = (013)n . Then Per (A, S) = 2(n + 1)b + 1 and PrePer (A, S) = 0.

A proof of this Lemma is found in Sect. 6.1. If we denote b = 4n + 1 + 2d , where 
d ≥ 1 , then the period is obtained by inserting d pairs into structure of a known perio-
dicity of {1, 4n + 1, 4n + 2} . These inserted pairs are either of the form (11)d or (01)d , 
and this is why b must be odd for the construction. The resulting structure is exactly

To choose a seed generating this structure it suffices to choose any sub-string of 
length a + 1 , so we choose the first a + 1 entries, namely (11)d11(013)n ≈ (013)n . 

{wA,S} = …

(
n−1∑

i=0

(

(11)d(130)i11(013)n−i (01)d0(130)i11(013)n−i−10

)

(11)d(130)n12 (01)d0(130)n
)∞

,

Fig. 6   The period lengths for {a, b, a + b} where a = 360 , a superior highly composite number
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Lemma 22 contradicts the generalization of Conjecture 1 over all seeds, since it 
implies quadratic period lengths. Figure 7 plots all period lengths for {1, b, b + 1} , 
which shows that this Lemma only scratches the surface of the periodicities of 
3-sets.

Theorem  23  (Superpolynomial Period Lengths) For n ≥ 1 , define bn = 4n − 1 , 
An = {n, nbn, nbn + n} , and S(n) =

∑n−1

j=1
0j1bn−j . For the family of pairs {An, S(n)}

∞
n=1

 , 
where �n = max(An) , it holds that

Proof  Fix n, so we have b = 4n − 1 and A = {n, bn, bn + n} . We now con-
struct the seed S dependent on n. Because A has greatest common divisor n, let 
B = {1, b, b + 1} and apply Multiplicative Linearity Proposition 5 to see that the par-
allel sequences satisfy (wA,S)i(m) = wA,S(mn + i) = wB,Si (m) where Si ∈ {0, 1}b+1 for 
i ∈ {0,… , n − 1} . We now apply Lemma 22 by letting Si = (013)i ≈ 14(n−i)(013)i , so 
we have Per (B, Si) = 2(i + 1)b + 1 . By combining all Si in parallel, this construction 
yields S =

∑n−1

i=0
1n−i0i13n =

∑n

j=1
0i1b−i . Now, suppose {wA,S} is periodic over some 

p ∈ ℕ . This implies that for all m ∈ ℕ and i ∈ {0,… , n − 1} , we have

so {wB,Si} must also be periodic over p, i.e. Per (B, Si) ∣ p . Because this is true for all i, 
we conclude that lcm {2(i + 1)b + 1 ∣ 0 ≤ i < n} ≤ Per (An, S) . A result from (Bate-
man et al. 2002, Problem 10797) regarding the lcm of arithmetic progressions implies 

Per (An, S(n)) = eΩ(
√
�n).

wB,Si (m) = wA,S(mn + i) = wA,S(mn + i + np) = wB,Si (m + p),

Fig. 7   This figure shows all periods of {1, b, b + 1} for b + 1 ≤ 35 . The points highlighted in blue are 
given by Lemma 22 and the points in red are the default periods. Note that some points close together 
are overlapping. For example, P

{1,31,32} = {3, 7, 11, 21, 33, 63, 125, 167, 187, 249, 251, 311, 313, 
373, 375, 377, 435, 437, 439, 497, 499, 501, 503, 563, 565, 629} , while Lemma 22 gives only {63, 125, 187, 
249, 311, 373, 435, 497}
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a somewhat loose bound of lcm (2b + 1, 4b + 1, 6b + 1,… , 2na + 1) ≥ en−o(n)

.5 Therefore for all n, we note that �n ∼ 4n2 , and conclude 
Per (An, Sn) = eΩ(n) = eΩ(

√
�n) . 	�  ◻

Table 2 demonstrates the construction for n = 2 . This family proceeds as follows

•	 n = 1 , b = 3 , A1 = {1, 3, 4} , S1 = � , and Per (A1, S1) = lcm {7} = 7

•	 n = 2 , b = 7 , A2 = {2, 14, 16} , S2 = 016 , Per (A2, S2) = 2 ⋅ lcm {15, 29} = 870

•	 n = 3 , b = 11 , A3 = {3, 33, 36} , S3 = 01100219 , 
Per (A3, S3) = 3 ⋅ lcm {23, 45, 67} = 208 035

•	 n = 4 , b = 15 , A4 = {4, 60, 64} , S4 = 01140211303112 , 
Per (A4, S4) = 4 ⋅ lcm {31, 61, 91, 121} = 83 287 204

•	 n = 5 , b = 19 , A5 = {5, 95, 100} , S5 = 0118021170311604115 , and 
3 364 005 645 ∣ Per (A5, S5) ; we have not computed the exact period.

It is natural to predict that we have a multiple of n in the period length, but we have 
not proven this to be the case. To prove Theorem  23 we used a rough bound on 
lcm {2b + 1,… , 2nb + 1} and the few periodicities from Lemma 22, as shown in 

Fig. 8   Using the periods from Fig. 7, we can construct sets A
b
 with many parallel {1, b, b + 1} periods, 

specifically we get A
b
= |P{1,b,b+1}| ⋅ {1, b, b + 1} and some seed S comprised of S0,… , S|P{1,b,b+1}| such 

that Per (A
b
, S) ≥ lcm (P{1,b,b+1}) . This gives a heuristic for the longest period possible, which appears to 

approximate eO(
√
max(A

b
))

5  In particular it says that lim
n→∞

log( lcm (…))

n
=

1

�(k)

∑ 2b

m
 with the summation taken over units of ℤ×

2b
 . 

This is an average of numbers greater than 1.
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Fig. 7. It is unclear if more periodicities and a stronger bound on their lcm , would 
yield an asymptotically better result, but this does not appear to be the case. Figure 8 
shows that eΩ(

√
�n) appears to be best possible.

6.1 � Proof of Lemma 22

The final proof uses different approach to the previous ones. Rather than construct-
ing the sequence from scratch, we will exploit a structural pattern to extend a simple 
period. This was the method used to discover Lemma 22, and might be a productive 
strategy moving forward.

Proof  First, we note that if n = 0 , then Theorems 20 and 21 coincide to give that 
Per (A) = 2b + 1 with no seed, so we are done. Next, fix n ≥ 1.

Observe that if � = 4n + 1 and B = {1, �, � + 1} then the string X = 110(130)n is 
a valid period structure of B with period length � + 2 . This follows from the fact that 
X∞(n) = 1 if and only if X∞(n − 1) = 0 , X∞(n + 1) = 0 , or X∞(n + 2) = 0 , mean-
ing each zero is separated by 2 or 3 ones. We use this fact to explicitly build period 
structures for odd b > 𝛽.

Write 2n + 1 copies of X in a (2n + 2) × (� + 1) grid so that the rows 0,… , 2n + 1 
are the following: The kth even row indexed from zero reads (130)k11(013)n−k and the 
kth odd row reads 0(130)k11(013)n−k−10 , except for the last row, (the nth odd row), 
and this reads 0(130)n . Table 3 gives two examples of such a filling. Notice that this 
filling has the following three properties.

•	 Reading across all of the rows yields X2n+1 in order.
•	 Even rows are fully filled. These begin and end with strings 13 or 11. Their length 

is � + 1 = |X| − 1 so they contain all of X except for a 0.
•	 Odd rows have � − 1 entries, except for row n which has � entries. These begin 

and end with 0, and contain all of X except either 13 or 11.

Denote x(i, j) as the element in row i and column j, both indexed from 0. We can 
now re-interpret the recurrence relation on wB(n) in terms of x. The following identi-
ties must hold for all i, j.

(23)

x(i, j) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 −min{x(i, j − 1), x(i − 1, j), x(i − 1, j + 1)} i is odd and j > 0

1 −min{x(i, j − 1), x(i − 1, j − 2), x(i − 1, j − 1)} i > 0 is even, 𝛽 > j > 1

1 −min{x(i − 1, 𝛽), x(i − 1, 0), x(i − 1, 1)} i is odd and j = 0

1 −min{x(0, j − 1), x(2n + 1, j), x(2n + 1, j − 1)} i = 0, 𝛽 > j > 0

1 −min{x(2n + 1, 𝛽 − 1), x(2n + 1, 0), x(2n, 𝛽)} i = 0, j = 0

1 −min{x(0, 𝛽 − 1), x(0, 0), x(2n + 1, 𝛽 − 1)} i = 0, j = 𝛽

1 −min{x(i, 𝛽 − 1), x(i, 0), x(i − 1, 𝛽 − 2)} i > 0 is even, j = 𝛽

1 −min{x(i, 0), x(i − 1, 0), x(i − 2, 𝛽)} i > 0 is even, j = 1

1 −min{x(i − 1, 𝛽 − 2), x(i − 2, 𝛽), x(i − 2, 𝛽 − 1)} i > 0 is even, j = 0
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We focus on the first two cases which are the most general. It might also help to recall 
that for odd i, x(i, 0) = 0 and for even i, x(i, 0) = x(i, 1) = x(i, � − 1) = x(i, �) = 1 . 
These follow from the specifications of the grid filling.

Next, we will choose any odd b = � + 2d for d > 0 , and let A = {1, b, b + 1} . We 
will extend the grid to create a period structure for A with length 2(n + 1)b + 1 . We 
add d copies of the first two columns on the left side, as shown below.

We call the elements of this modified grid y(i,  j), with i indexed from 0 and j 
indexed from −2d . Thus for j ≥ 0 we have y(i, j) = x(i, j) . If j < 0 is even we have 
y(i, j) = x(i, 0) and if j < 0 is odd we have y(i, j) = x(i, 1) . Because of the specifica-
tions for filling x, we note that this entails prepending (11)d to even rows and (01)d to 
odd rows (Table 4).

Claim. Reading across the rows of this table yields Y, a valid period structure for 
A with length 2(n + 1)b + 1.

First we have added (2n + 2)2d entries to the table, and we started with X2n+1 , so 
the total length is

Next we show that the recurrence relation is satisfied. To do this, write the recur-
rence relation wA(n) = 1 −min{wA(n − 1),wA(n − � − 2d),wA(n − � − 1 − 2d) in 
terms of y(i, j). The rows are extended by the same length as the recurrence, so the 
following rules very are similar to Eq. 23.

From here it is possible to check that the nine cases in Eq. 24 hold for all j ≥ 0 and 
j < 0 using Eq. 23, the definition of y(i, j) and the three properties of the filling. We 
will show only the two main cases; the rest follow suit.

If i is odd and 0 < j < 𝛽 , then we confirm

If i is odd and −2d < j ≤ 0 is even, then we know y(i, j) = x(i, 0) = 0 , so we confirm

If i is odd and −2d < j < 0 is odd, then we know y(i, j) = x(i, 1) = 1 , so we confirm

(2n + 2)2d + (2n + 1)(� + 2) = (2n + 2)2d + (2n + 2)� + 1 = 2b(n + 1) + 1

(24)

y(i, j) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1 −min{y(i, j − 1), y(i − 1, j), y(i − 1, j + 1)} i is odd and j > −2d

1 −min{y(i, j − 1), y(i − 1, j − 2), y(i − 1, j − 1)} i > 0 is even, 𝛽 > j > 1 − 2d

1 −min{y(i − 1, 𝛽), y(i − 1, 0), y(i − 1, 1)} i is odd and j = 0

1 −min{y(0, j − 1), y(2n + 1, j), y(2n + 1, j − 1)} i = 0, 𝛽 > j > −2d

1 −min{y(2n + 1, 𝛽 − 1), y(2n + 1, 𝛽), y(2n + 1,−2d)} i = 0, j = −2d

1 −min{y(0, 𝛽 − 1), y(0,−2d), y(2n + 1, 𝛽 − 1)} i = 0, j = 𝛽

1 −min{y(i, 𝛽 − 1), y(i,−2d), y(i − 1, 𝛽 − 2)} i > 0 is even, j = 𝛽

1 −min{y(i,−2d), y(i − 1,−2d), y(i − 2, 𝛽)} i > 0 is even, j = −2d + 1

1 −min{y(i − 1, 𝛽 − 2), y(i − 2, 𝛽), y(i − 2, 𝛽 − 1)} i > 0 is even, j = −2d

y(i, j) = x(i, j) = 1 −min{x(i, j − 1), x(i − 1, j), x(i − 1, j + 1)}

= 1 −min{y(i, j − 1), y(i − 1, j), y(i − 1, j + 1)}.

y(i, j) = 1 −min{y(i, j − 1), y(i − 1, j), y(i − 1, j + 1)} = 1 −min{1, 1, 1} = 0.
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If i > 0 is even and 1 < j < 𝛽 , then

If i > 0 is even and −2d + 1 < j ≤ 1 is odd, then we know y(i, j) = x(i, 1) = 1 , so we 
confirm

If i > 0 is even and −2d + 1 < j ≤ 0 is even, then we know y(i, j) = x(i, 0) = 1 , so we 
confirm

Such verification can be completed for the seven edge cases to show that y(i, j) obeys 
Eq. 24, and therefore Y∞ ∈ W

A.
Finally, we check for sub-periods of Y. Note that as long as d > 0 , there are 

exactly (n + 1) copies of the substring (01)d+1 present in Y, each at the beginning 
of a row. Additionally, the last row uniquely has length b, meaning the instances 
of (01)d+1 are unequally spaced throughout Y. This prevents a sub-period of Y from 
occurring. 	�  ◻

7 � Closing

We close the paper by setting up a few conjectures. First, we recall the observation 
that the converse of Proposition 8 holds for all (A,  S) where |A| ≤ 3 , and state it 
explicitly in a conjecture.

Conjecture 2  If |A| ≤ 3 , then for all S ∈ {0, 1}� , let p = Per (A, S) . Then if kp + x is 
an extension of A for all k ∈ ℕ+ and x ∈ A , then PrePer (A, S) = 0.

It suffices to check the case k = 1 . If S = � this is precisely the converse of Propo-
sition 8; otherwise the converse is not true.

The following conjecture is based on computer simulations of A ∈
(
[200]

3

)
 . It pro-

vides a very limited characterization of the general {a, b, c} case but provides an 

y(i, j) = 1 −min{y(i, j − 1), y(i − 1, j), y(i − 1, j + 1)} = 1 −min{0, 1, 0} = 1.

y(i, j) = x(i, j) = 1 −min{x(i, j − 1), x(i − 1, j − 1), x(i − 1, j − 2)}

= 1 −min{y(i, j − 1), y(i − 1, j − 1), y(i − 1, j − 2)}.

y(i, j) = 1 −min{y(i, j − 1), y(i − 1, j − 1), y(i − 1, j − 2)} = 1 −min{1, 0, 1} = 1.

y(i, j) = 1 −min{y(i, j − 1), y(i − 1, j − 1), y(i − 1, j − 2)} = 1 −min{1, 1, 0} = 1.

Table 4   Example of extending the grid for b = � + 2d with n = 1 and d = 3

1 1 1 1 1 1 1 1 0 1 1 1 (11)d+1 0 1 1 1
0 1 0 1 0 1 0 1 1 0 (01)d+1 1 0
1 1 1 1 1 1 1 1 1 0 1 1 = (11)d+1 1 0 1 1
0 1 0 1 0 1 0 1 1 1 0 (01)d+1 1 1 0
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example of its complex behavior. It is also an interesting question how this conjec-
ture could explain the fractal structure observed by Flammenkamp (1997) and Lars-
son (2024).

Conjecture 3  Suppose A = {a, b, c} with 1 < a < b < c . Use the division algorithm 
to obtain the following variables:

Then Per (A) = b + c and PrePer (A) = 0 if and only if one of the following holds: 

	 (i)	 q is even and r′
c
> 0 , r′

a
≤ r , and 2q′

a
≤ q , and if 2q�

a
= q then r�

a
≤ 2r − a.

	 (ii)	 q is odd and r ≠ 0 , r ≤ ra ≤ a , and if qa = 0 then ra < a.
	 (iii)	 q is odd and r = 0 , and ra ≠ a

The following conjecture has been verified for all A ∈
(
[25]

3

)
 , for all seeds S. 

Together with Conjecture 1 these are a strengthening of a conjecture by Althöfer and 
Bültermann in (Althöfer and Bültermann 1995, (i)).

Conjecture 4  If A = {a, b, c} with a < b < c , and if gcd(a, b, c) = 1 , then for all 
seeds S ∈ {0, 1}� , we have Per (A, S) < c2.

This would imply that the construction in Theorem  23 can only occur if A 
has a greatest common divisor. It would also provide the general bound that if 
g = gcd(a, b, c) and c̃ = c∕g , then for all seeds S, Per (A, S) ≤ c̃2g , which is O(e2c∕e) 
in the worst case but ordinarily much less than (min(a + b, c) + 1)2c−3 , the bound 
derived in Theorem 4.

From computer simulations of A ∈
(
[25]

3

)
 with gcdA = 1 , we note that for all seeds 

S, if the period is super-linear, i.e. Per (A, S) > 2c , then (a + b) ∣ c , with the follow-
ing eight exceptions. These sets have max(PA) > 2𝛼 , with example seeds given.

Per ({11, 16, 20}, (01)214012) = 61

Per ({3, 11, 21}, 0210120) = 61

Per ({7, 17, 23}, (010)2012) = 73

Per ({10, 21, 23}, 021014) = 78

Per ({5, 11, 24}, 0120312010) = 65

Per ({11, 16, 25}, 012010214) = 56

Per ({16, 21, 25}, 02(1013)2012) = 61

Per ({13, 23, 25}, 0212010215) = 83

A characterization of these sets may relate to the solution to Conjecture 1 and/or 4.

b = q a + r

c = qc(a + b) + rc rc = qa(2a) + ra

c − a = q�
c
(a + b) + r�

c
r�
c
= q�

a
(2a) + r�

a
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