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Abstract: This publication presents a new method by which control methods based on reinforcement
learning can be combined with classical robust control methods. The combination results in a robust
management system that meets high-quality criteria. The described method is presented through the
control of an autonomous vehicle. By choosing the reward function chosen during reinforcement
learning, various driving styles can be realized, e.g., lap time minimization, track tracking, and travel
comfort. The neural network was trained using the Proximal Policy Optimization algorithm, and the
robust control is based on H∞. The two controllers are combined using a supervisor structure, in
which a quadratic optimization task is implemented. The result of the method is a control structure
that realizes the longitudinal and lateral control of the vehicle by specifying the reference speed and
the steering angle. The effectiveness of the algorithm is demonstrated through simulations.

Keywords: vehicle control; autonomous systems; reinforcement learning

1. Introduction

Nowadays, with the appearance of faster and faster computer devices and hardware
that appear as a result of the development of computer technology, machine learning-based
methods have also begun to develop rapidly and appear in almost all scientific fields,
including in control systems that solve complex tasks. A typical example of this is the
control of autonomous vehicles, where various environmental perception, decision-making,
and control problems must be solved in a constantly changing traffic environment. In
the case of such problems, designing high-performance and reliable control solutions is a
serious challenge.

A possible solution could be data-supported extensions of classic control procedures,
for example, Model Predictive Control (MPC) [1–3], model-free control (MFC) [4,5], and
robust and linear parameter variable methods [6]. In addition, robust control methods
are also relevant in the context of autonomous vehicles, since these systems are usually
burdened with various noises, disturbances, and uncertainties. Fortunately, however, these
can be handled using classical methods such as that of Khosravani et al., where robust
control was designed for a driver-in-the-loop case [7].

Another possible approach to management tasks requiring high-quality criteria is
the application of machine learning-based procedures. The most common of these are
usually based on some kind of deep neural network. The advantage of these algorithms
is that they can significantly benefit from the large amount of data collected during real
behavior, thus realizing optimal behavior [8]. Various solutions can be found in control
technology, where the controller is implemented by a neural network; examples of their
effectiveness can be found in [9–11]. However, the disadvantage of these methods is that
they lack theoretical guarantees for their behavior in the general case, which would be
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especially important in safety-critical applications, such as vehicle control systems. Several
publications attempt to validate neural network-based systems, such as that of Lelkó et al.,
where, by linearizing the system at different working points, a polytopic system is formed,
which can be analyzed using the Lyapunov method [12]. Other possible approaches are
described by Ruan et al., Huang et al., and Wu et al. [13–15].

The purpose of this publication is to present an integrated vehicle control strategy that
combines the advantages of classical model-based control methods and modern machine
learning-based methods. The combined solution is capable of high performance similar to
machine learning methods while having the reliability and robustness of classical methods.

2. Combined Control Structure

The integration of classical algorithms and methods based on machine learning was
performed with the help of a supervisory controller. The resulting structure can be seen in
Figure 1. In the described structure, the robust controller and the reinforcement learning-
based agent (RL agent) operate independently of each other and calculate the possible
control signal at every time step. However, the actual control signal is determined by the
supervisory controller, taking into account the output of the two former controllers. The
control signal is determined using an additive ∆L value as follows:

u = uR + ∆L, (1)

where uR denotes the output of the robust control. ∆L is a limited additive signal calculated
by the monitoring controller; its values can vary between ∆Lmin and ∆Lmax.
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The goal of the supervisory controller is to minimize the difference between the inter-
vention proposed by the neural network and the intervention that is actually implemented,
taking into account the restrictions necessary for safe movement. Robust stability is ensured
by robust control. Classical methods, such as H∞-based control design, can handle limited
input disturbances and can guarantee robust stability and performance even with limited
input disturbances.

The optimization task solved by the supervisor, containing the optimization

argmin
∆L

∥ uR + ∆L − uL ∥2
2, (2a)

is subject to the constraints
∆L ∈ [∆Lmin; ∆Lmax] (2b)

eLat,T ≤ emax, (2c)

where eLat,T is the trajectory tracking error estimated based on the vehicle model. The
estimation is performed by the model-based prediction layer built into the supervisor. With
this optimization task, not only is the limitation of the input additive disturbance (required
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for robust performance) fulfilled, but other requirements can also be considered, such as, in
this case, the limitation of the path tracking error, which can be used to prevent leaving
the track.

3. Learning Process of the Reinforcement Learning Agent

In this section, the design process of the reinforcement controller is presented. The
design method of the further control elements can be found in [15]. The reinforcement
learning-based agent simultaneously controls the longitudinal and lateral dynamics of the
vehicle as a high-quality control system. Being nonlinear, it can handle the nonlinearities of
the vehicle model and perform optimal control according to the given reward function.

The agent is trained in a simulated environment, which is based on a complex non-
linear model of the vehicle, considering nonlinear tire characteristics, steering dynamics,
real-world noises, disturbances, actuator saturation, and time delay. At the input of the
agent’s implementing neural network, there are points on the center line with uniform
intervals. To reduce the dimension of the task, the relative values of the points in relation
to the vehicle were considered in the vehicle’s coordinate system. With this solution, the
vehicle is always at the origin and faces the positive direction of the x axis. The input vector
of the neural network is therefore

xNN = [Xr,1 Yr,1 Xr,2 Yr,2 . . . Xr,N Yr,N ] (3)

where N indicates the number of track points used in the calculation. This is a design
parameter; with a higher value, more information is available to the network about the
track in front of the vehicle, but the number of network parameters also increases, and the
learning process will be longer. In the case of too-small values, there may not be enough
information to have a network available to perform maneuvers. Because of this, the value
of N is chosen mainly empirically, considering the geometry of the typical trajectory curves.

The reinforcement learning-based agent is trained based on a reward function. In
each time step, depending on the state of the environment, the agent collects rewards
based on this function, and the sum of the collected rewards characterizes the quality of
the agent during learning. The aim of the learning process is therefore to maximize the
collected reward.

To complete the task, a simple parameter reward function was defined:

R(senv, a) = −Ax2
Lat,err − Bδ2

re f + ∆p (4)

where xLat,err is the lateral error of the track tracking, ∆p is the progress of the vehicle along
the center line in the given time step, δref is the reference steering angle chosen by the
controller, senv denotes the state of the environment, and a is the action chosen by the agent
in the given step. During teaching, in the event that the vehicle has left the edges of the
track, a reward with a large negative value is applied in addition to (4), thereby punishing
the system for behavior similar to this.

4. Illustration of the Presented Structure

In this chapter, the effectiveness of the presented control structure is illustrated through
a simulation example. The simulation is based on the model of a small test vehicle, which
is a 1:10 reduced vehicle (F1TENTH). The racing car must drive through a scaled-down
1:30-scale segment of the Formula 1 Bahrain International Circuit.

The neural network used had three hidden layers, which contained 16, 32 and
64 neurons and a ReLU-type activation layer. A hyperbolic tangent activation function was
applied to the output, which takes into account the steering actuator limitations and the
vehicle’s maximum speed in a continuously derivable manner. At the input of the network,
N = 7 track points were used, which were located at a uniform distance of 0.5 m on the
center line of the track; i.e., the agent was able to detect 3.5 m of the track in advance. The
maximum speed of the vehicle is vmax = 4 m/s. During the optimization task performed in
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the supervisor, intervals ∆Lδ ∈ [–0.15; 0.15] and ∆Lv ∈ [−0.1; 0.1] were determined. The
predictive layer performed a two-step estimation based on the simplified model of the
vehicle to limit the path tracking error; the maximum allowed deviation was emax = 0.4 m
for safety reasons. During the simulation, two controllers were compared: the control agent
using pure reinforcement learning, which only performs the optimal control based on the
reward function described in Equation (4), and the full supervisor-based system, which
includes the robust controller in addition to the former.

Figure 2 shows the used steering angle and suggested speed reduction. The su-
pervisor chooses the reference speed much more conservatively; however, for the sake
of more accurate trajectory tracking, it also uses larger steering interventions, thus re-
ducing the performance of the closed loop. The result in terms of time to complete the
segment is 32 s for the reinforcement learning-based agent and 35 s for the supervisory
controller-based structure.
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The main advantage of the supervisor-based structure in this example is the successful
limitation of trajectory tracking error. An illustration of this can be seen in Figure 3, which
shows the lateral error occurring during the simulation. It can be clearly seen that the
system including the supervisory controller significantly reduces trajectory tracking error.
The prescribed maximum value was emax = 0.4 m, which was violated several times in the
case of the reinforcement learning-based agent, in the worst case, it reached almost 0.8 m,
while this criterion was also successfully met in the case of the supervisory controller.
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In both cases, it can be said that the controllers could navigate along the track. The goal
of the reinforcement learning-based agent was to minimize the lap time, and to this end, it
often resulted in cutting corners to move faster and brake less. During the learning process,
the path tracking error was not strictly limited; it was only considered as a penalty term
in the reward function. On the other hand, with the help of quadratic optimization and
model-based prediction in the supervisor, it was possible to keep the trajectory tracking
error below the prescribed level. This behavior was also supported by the presented
simulation. The disadvantage of the method is that, due to limitations, it is not capable of
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the same performance as the reinforcement learning-based agent, which is manifested in
the difference in lap times; however, compared to the supervisory controller, it is able to
ensure robust stability through the H∞ control and limitation of trajectory tracking error
with the model-based through optimization.

5. Conclusions

This paper dealt with the description of a vehicle control structure that can be used with
high efficiency for trajectory tracking. The structure consists of three parts: a classic robust
control procedure, a modern data-based nonlinear control, and a supervisory controller
that combines their advantages for control, robust stability, and limitation of trajectory
tracking error with a slight decrease in performance.

Possible future research directions include the implementation and validation of the
method on a real test vehicle. During the learning process, a model of a small test vehicle
was used, which is a test vehicle that is available and has the necessary sensors and actuators
to perform autonomous functions. The reward function was constructed with the possible
real application in mind. While different driving behaviors can be achieved through the
adequate parametrization of the reward function, the steering angle minimization increases
the stability of the motion by eliminating steering oscillations due to the real-life time
delays and steering dynamics. On the robust control side, the H∞ control method can
handle possible modeling uncertainties, noises, and disturbances. From the point of view
of applicability, therefore, the validation of safety-critical systems in a real environment
is extremely important, which must also be carried out in the case of the supervisory
controller-based control system.
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