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Abstract

We consider delayed chemical reaction networks with non-mass action monotone
kinetics and show that complex balancing implies that within each positive stoi-
chiometric compatibility class there is a unique positive equilibrium that is locally
asymptotically stable relative to its class. The main tools of the proofs are respec-
tively a version of the well-known classical logarithmic Lyapunov function applied to
kinetic systems and its generalization to the delayed case as a Lyapunov—Krasovskii
functional. Finally, we demonstrate our results through illustrative examples.
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1 Introduction

Chemical reaction networks (also called CRNs or kinetic systems) are dynamical
systems which can be formally represented as a set of (mathematically generalized)
chemical reactions assuming certain reaction rates determining the velocity of the
transformations of complexes to each other (Feinberg 2019; Chellaboina et al. 2009).
The scope of reaction networks reaches far beyond the (bio)chemical application field,
since they can be considered as general descriptors of nonlinear dynamics capable
of producing complex dynamical phenomena, such as multiple equilibria, nonlinear
oscillations, limit cycles, and even chaos (Erdi and Téth 1989). It is known that major-
ity of compartmental models used, e.g., in population dynamics or epidemiology are

Communicated by Alexander Lohse.

B Mihdly A. Vaghy
vaghy.mihaly.andras @itk.ppke.hu

Faculty of Information Technology and Bionics, Pdzmény Péter Catholic University, Prater u.
50/a, Budapest 1083, Hungary

Systems and Control Laboratory, Institute for Computer Science and Control (SZTAKI), Kende u.
13-17, Budapest 1111, Hungary

Published online: 29 November 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-024-10115-6&domain=pdf

20 Page2of26 Journal of Nonlinear Science (2025) 35:20

naturally in kinetic form. Additionally, many other non-chemically motivated mod-
els can be algorithmically transformed to reaction network form (Samardzija et al.
1989; Craciun et al. 2019). Therefore, the results of chemical reaction network the-
ory (CRNT) relating network structure and qualitative dynamics can be of general
importance in the field of dynamical systems (Angeli 2009).

Stability is a key qualitative property of dynamical models and their equilibria.
In Horn and Jackson (1972), the local stability of complex balanced equilibria of
kinetic systems was shown using an entropy-like logarithmic Lyapunov function.
The most well-known stability-related result in CRNT is probably the Deficiency
Zero Theorem which states that weakly reversible deficiency zero CRNs are complex
balanced independently of the (positive) values of reaction rate coefficients (Feinberg
1987). According to the Global Attractor Conjecture, the stability of complex balanced
networks is actually global within the nonnegative orthant (Craciun 2015; Anderson
2011). The stability of a wide class of CRNs with more general kinetics than mass
action was shown in Sontag (2001). These results were further extended in Chaves
(2005) for time-varying reaction rates using the notion of input-to-state stability.

The explicit modeling of time delays is often necessary to understand complex
dynamical phenomena in nature or technology, and to build models having sufficient
level of reliability (Stépan 1989). Various phenomena may justify the inclusion of
time delays into dynamical models such as protein expression time in systems biology
(Zhu et al. 2024), hatching or maturation time in population dynamics (Ruiz-Herrera
2019), driver reaction times in traffic flow models (Orosz et al. 2009), latent periods
in epidemic modeling (Wang et al. 2023), or communication and feedback delays
in complex networks (Zhu et al. 2020). The most commonly used approach in the
stability analysis of time-delay systems is the construction of appropriate Lyapunov—
Krasovskii functionals which is generally a challenging problem (Fridman 2014).

The main motivation for introducing delayed chemical reactions was to focus on
the most important species and chemical transformations, and to avoid the detailed
description of mechanisms of less interest (Roussel 1996). In delayed reactions, the
consumption of reactant species is immediate, while the formation of products is
delayed either through discrete or distributed delays. The notion of stoichiometric
compatibility classes was generalized for delayed mass action CRNs in Lipték et al.
(2018a), and it was proved using a logarithmic Lyapunov—Krasovskii functional that
complex balanced networks are at least locally stable for arbitrary finite delays. An
analogous result for kinetic systems with distributed delays was given in Liptédk et al.
(2019). In Komatsu and Nakajima (2019) the authors introduced the notion of stoichio-
metric compatibility classes for arbitrary delayed CRNs and proved the generalization
of well-known persistence results (Angeli et al. 2007, 2011) to the delayed case. In
Komatsu and Nakajima (2020) the authors prove a delayed version of the deficiency
zero theorem and discuss global asymptotic stability. In Zhang and Gao (2021) the
authors provide several sufficient conditions for the persistence of delayed complex
balanced CRNs with mass action kinetics, and they improve the practical applicability
of these results via semilocking set decomposition in Zhang et al. (2023).

Using the achievements outlined above, the purpose of the present paper is to further
extend stability results for delayed complex balanced kinetic systems with general
(non-mass action) kinetics. For this, an appropriate Lyapunov—Krasovskii functional
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is proposed through which the local asymptotic stability of positive equilibria can be
shown.

The structure of the paper is as follows. Section2 introduces the basic notions
related to kinetic systems. In Sect. 3 we study the set of positive equilibria in the context
of complex balancing and the quasi-thermodynamic/thermostatic properties for non-
mass action kinetics, our first main contribution. The other main contribution can be
found in Sect.4, where the local asymptotic stability of positive complex balanced
equilibria is shown. Section 6 contains three computational examples to illustrate the
theory. Finally, conclusions of the paper are given in Sect. 7.

2 Preliminaries

=N . . .
Throughout the paper RY, R_’X and R denote the N-dimensional space of real, positive
and nonnegative column vectors, respectively, and the Euclidean norm is denoted by
|.|. For x, y, € Rﬁ the vector exponential x” is defined as x¥ = ]_[,1(\':1 x,;vk and the

inner product x - y is defined as x - y = 2112121 x;yi.Forx e R_ZZ the vector logarithm
log(x) is defined element-wise. For every t > 0 we denote the Banach space of
continuous functions mapping the interval [—t, 0] into RY, into Rﬁ_’ and into Rﬁ by
C; = C([—r, 0], IRN), Cs+r and Eﬂ, respectively. We equip the spaces C;, C ¢
and 5+,T with the standard norm [|{/[| = sup,¢[_; o |1p(s) ], and the open ball around
Y with radius € > 0 is denoted by B, (1). The space of continuously differentiable
functions on R is denoted by C!(R). The dynamics of mass action kinetic systems
can be given as

M
2(0) =) kex (1) (e — o) ey
k=1

where x () € Eﬁ is the state vector representing the concentrations of species
(Feinberg 2019). The system consists of M reactions, where each reaction k has a
source and product complex with corresponding stoichiometric vectors yi, yi € NV,
respectively, and a positive real reaction rate constant k. The set of stoichiometric
vectors is denoted with /. In some cases we will use the complex matrix Y that has
the stoichiometric vectors as columns. The reaction vector of reaction k is defined as
yir — Yk. The linear span of the reaction vectors is called the stoichiometric subspace
S of (3), defined as

S:span{yk/—yk|k=1,2,...,M}

and for p € Rﬁ the corresponding positive stoichiometric compatibility class S, is
defined by

sz{xeRmx—peS}.

It is well-known that the positive stoichiometric compatibility classes are positively
invariant under (1); that is, we have that x(f) € S, fort > 0if x(0) € S,.
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Stability of systems of the form (1) can be investigated through the entropy-like
logarithmic Lyapunov function

N N
V(. X)) =Y (xi(logx; —logX; — 1) + %) = Y (xi log = +%; — x,~>, ©)
i=1

T
i=1 t

where X is a positive equilibrium. We aim to generalize certain stability results to
include non-mass action cases like the Michaelis—Menten kinetics or general Hill-
type kinetics, while still relying on a similar Lyapunov function. In order to do so, we
consider kinetic systems of the form

M
£(1) =Y rxy () Ow — o), 3)

k=1

where the function y : Ef — R[Z is defined element-wise by the increasing functions
¥; € C'(R). This class of systems include a wide variety of interesting and relevant
kinetics, while the product structure of y** (x) allows us to rely on logarithmic identities
in the calculations. In particular, the Michaelis-Menten kinetics can be given by y; (s) =
CifH for ¢; > 0, and more general Hill kinetics can be given by y;(s) = ‘- for
¢; >0andn; > 0.

We impose the following assumptions on the y; functions. First of all, if the concen-
tration of any reactant is zero, the reaction should not take place; that is, we assume that
y;(0) = 0. A fundamental case for the choice of the y; transformations is y;(s) = s,
which corresponds to mass action kinetics. For regularity, in particular for the exis-
tence of nontrivial equilibria, we usually assume that the y; functions further satisfy

]01 |log y;(s)|ds < oo and that y; : R, + R, are onto. In this case the inverse of

s
ci+s"i

yi_l (s) is strictly increasing from R, onto R, and thus

lim_ (/x v ') ds — bx) = 00 4)

holds for any 0 < a < oo and any b. While the y;(s) = s mass action case satisfies
the above assumptions, many fundamental examples from biochemistry do not; in
particular, the Michaelis-Menten kinetics and the Hill kinetics fail to do so, since they
are not onto R, and they do not meet assumption (4). However, as we will show, a
slightly relaxed condition still ensures the existence of nontrivial equilibria. Instead of
assuming that the y; function are onto R, we only require that they are onto [0, ¢;),
where 0 < 0; < 0o can be finite. Then instead of (4) we will require that

X
lim (/ yi_l(es)ds — bx> =00 5)
x*tlogo; a

holds for any 0 < a < oo and any b. For more details we refer to (Sontag 2001,
Section IV.B.)
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We note that (3) can be rewritten in matrix form as follows. Assume that the number
of distinct complexes is L and define «;; as ky if there is areaction k such that ypr = y;
and y; = y;, and zero otherwise. Denoting by K the matrix defined element-wise as
[K]ij = «ij, the system (3) takes the form

X(t) = Y(K — diag(1; K))['(x) =: YKT (x), (6)

where 1; € R’ denotes a column vector with all of its coordinates equal to one and
=N =N .
I': R, — R, is defined as

M) = [y @)y &) -y W]

Note, that K is the weighted negative Laplacian of the reaction graph of the system.
We also consider the delayed version of (3), having the form

M

i =) « ( Y (x(t = 7))y — )”Vk(x(l))yk>» )

k=1

where 1, > 0 are discrete constant time delays. The solution corresponding to an
initial function i € E+,r at time ¢ > 0 is denoted by xV (1) € R}Z or by xtw € E+,r
when we use it as a function. A positive vector X € ]Rﬁ is called a positive equilibrium
of (7) if x(t) = X is a solution of (7); that is, the equilibria of (7) and (3) coincide. The
Lyapunov—Krasovskii approach for such delayed systems is formally very similar to
the Lyapunov approach of ODEs (Fridman 2014; Haddad et al. 2010). Let t = maxy ¢
and X be an equilibrium of (7). If the functional V : C; ; — Rissuchthat V(x) =0
and

V() > a|y0) —x
V(y) <0,

),

holds for ¥ € C4 ;, where o : Ry — R, is a continuous and strictly increasing
function with «(0) = 0, then X is Lyapunov stable. If there exists a  : Ry > R is
a continuous and strictly increasing function with y (0) = 0 such that

V) < —y(Iv(0) — )

then the system is locally asymptotically stable. Finally, if a(s) — oo as s — 00,
then the system is globally asymptotically stable.

3 Quasi-thermodynamic property and complex balancing

In this section, we restate some of the stability results described in Sontag (2001)
under milder conditions using the computational approach of Feinberg (2019). Here
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we consider nondelayed kinetic systems of the form (3). First, let us recall some
definitions. A positive vector x € Rﬁ is called a positive equilibrium of (3) if x () = x
is a solution of (3); that is, the equilibria of (3) satisfy the equation

M
F) =) k™ ® 0w — ) =0,

k=1

where f : R}Z — S denotes the species formation rate function of the kinetic system
(3). In the classical terminology of Horn and Jackson (1972); Feinberg (2019) a kinetic
system is called quasi-thermostatic if there exists a positive vector X € Rﬁ such that
the set of positive equilibria is identical to the set

&= Hx e RY| log(&) — log(¥) € Si}.

In this case we say that the kinetic system is quasi-thermostatic with respect to x.
Standard arguments show that then the system is quasi-thermostatic with respect to
any element of £. The distribution of positive equilibria of quasi-thermostatic systems
can be efficiently characterized, namely, each positive stoichiometric compatibility
class contains precisely one positive equilibrium (Horn and Jackson 1972).

Furthermore, a kinetic system is called quasi-thermodynamic if there exists an
X € Rﬁ such that the system is quasi-thermostatic with respect to x, and

(log(x) —log(x)) - f(x) =0 ®)

holds for x € Rﬁ , with equality holding only if f(x) = O or, equivalently, if log(x) —
log(x) € S*. In this case we say that the kinetic system is quasi-thermodynamic with
respect to x. Similarly to quasi-thermostaticity, a system is quasi-thermodynamic with
respect to any element of £. The main consequence of quasi-thermodynamicity is that
the unique positive equilibrium of each positive stoichiometric compatibility class is
locally asymptotically stable relative to its class. This arises from the fact that the
gradient of the function

N
H(x,X) =) xi (logx; —logX; — 1)

i=1

is given by log(x) — log(x) which is a term in Eq. (8). Thus, the function (2) is
a Lyapunov function for quasi-thermodynamic kinetic models. The short physical
background of this is that H was used to describe the Helmholtz free energy density
of the system, and its gradient is the chemical potential function.

As noted in Horn and Jackson (1972), while the above definition is physically
associated with mass action kinetics and ideal gas mixtures, it could apply to any
kinetic system. In some cases the definitions can be extended without voiding their
consequences. In order to do so, following (Sontag 2001), we define for x € Rﬁ the
function
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p(x) =log(y(x)),

where y is defined as in Eq. (3). A kinetic system of the form (3) is called quasi-
thermostatic in the generalized sense if there exists an X € Rf such that the set of
positive equilibria is identical to the set

S:{ieRﬂp(ﬁ)—p(Y)eSL}. ©)

For brevity, we simply say that the kinetic system is quasi-thermostatic with respect
to X. Again, similarly to classical quasi-thermostaticity, standard arguments show that
then the system is quasi-thermostatic with respect to any element of £. Furthermore,
the distribution of the positive equilibria of quasi-thermostatic kinetic systems across
positive stoichiometric compatibility classes can be characterized. We describe that
distribution in the following proposition.

Proposition 3.1 Assume that the kinetic system (3) is quasi-thermostatic. Then, for
every p € Rﬁ the corresponding positive stoichiometric compatibility class S, con-

tains precisely one positive equilibrium.

Proof We first show the existence of a pointin S, N €. Let X be an element of £. By
(Feinberg 1995, Proposition B.1) there exists a (unique) vector . € S+ such that

y(X)et — p e S.
Let x be defined by
y (X)) ==y @)et.
Then X € S, and taking logarithm shows that
pE) —p(E) =peSH
that is, we have that x € £ as well.

In order to show uniqueness, let us assume by contradiction that X and x are distinct
positive equilibriain S,. Then ¥ — ¥ € Sand p(X) — p(x) € S L and thus

N
0=(p(®)—p(®) - E—3) =) (ogyi(%) —logy; (i) (i — %).
i=1

Since the functions y; and the logarithm are strictly increasing, the above expression
is zero if and only if X = X. O

Remark 3.2 Note that we implicitly used assumption (5), see (Sontag 2001, Lemma
IV.1) and Proposition 4.2 for more details.

@ Springer



20 Page8of26 Journal of Nonlinear Science (2025) 35:20

A kinetic system of the form (3) is called quasi-thermodynamic in the generalized
sense if there exists an X € Rﬁ such that the system is quasi-thermostatic with respect
to X and

(P(¥) = p(@) - f(x) <0

holds for x € Rﬁ , where equality holds only if f(x) = O or, equivalently, if
p(x) — p(X) € S*. Again, for brevity, we simply say that the kinetic system is
quasi-thermodynamic with respect to X, however, similarly to quasi-thermostaticity, a
system is quasi-thermodynamic with respect to any element of £.

The following proposition and its proof shows that the underlying function

N
V(ed) =Y [ (logn) - tog ) ds (10)
j=1 Y%

is a Lyapunov function of the system (3). Note, that (10) reduces to (2) in the mass
action case.

Proposition 3.3 Assume that the kinetic system (3) is quasi-thermodynamic. Then,
each positive stoichiometric compatibility class contains precisely one positive equi-
librium and that equilibrium is locally asymptotically stable, and there is no nontrivial
periodic trajectory along which all species concentrations are positive.

Proof The fact that each positive stoichiometric compatibility class contains precisely
one positive equilibrium follows from quasi-thermostaticity.

Let us consider any positive stoichiometric compatibility class S, and denote its
unique positive equilibrium by x. Then, for any x € &, other than X, we have that

(p() = p@) - F(x) < 0. (11)

Itiseasy toseethat V(x, x) > 0andequality holdsonly if x = X,andthat VV (x,X) =
p(x) — p(x). This, combined with (11) show that

VV(x,f) - f(x) <0

holds for any x € S, other than x. Standard arguments show that V (x, X) is a strict
Lyapunov function for X on its positive stoichiometric compatibility class S, thus x
is locally asymptotically stable relative to S),.

To show that no nontrivial periodic trajectories can exist along which all species
concentrations are positive, assume by contradiction that x : [0, T'] Rﬁ is such a
solution with x(7") = x(0) and denote the unique positive equilibrium of the corre-
sponding positive stoichiometric compatibility class by x. Then

T
V(x(T),X) — V(x(0), %) =/O VV(x(1),T) - fx(0)dt <0,
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and thus
V(x(T),%) < V(x(0), %),
contradicting x(7") = x(0). O

In Sontag (2001) the author considers systems of the form (3) or, equivalently, of
the form (6), and assumes that the complex matrix Y is of full rank and none of its
rows vanishes, and that K is irreducible (implying that the reaction graph is strongly
connected). Then, without using the above terminology, the author shows that such
systems are quasi-thermodynamic. We note, that these assumptions imply that if X is
an equilibrium of (6), then K I'(x) = 0; that is, the vector I"(X) is in the kernel of K.
Thus, systems that satisfy the above assumptions are complex balanced, defined as
follows.

Without any restrictions on Y or assuming that K is irreducible, an equilibrium X is
called complex balanced if KT'(x) = 0 or, equivalently, if for every complex n € K
we have that

Y okyn (@) = Y Ky (®).

kin=yx kin=yr

where the sum on the left-hand side is taken over the reactions where 7 is the source
complex and the sum on the right-hand side is taken over the reactions where 7 is
the product complex. Therefore, complex balanced equilibria are also called vertex-
balanced in the literature (Miiller 2023). We note that this setting is indeed more
general than that of Sontag (2001), as for mass action systems complex balancing can
occur in weakly reversible systems, not just in strongly connected systems; that is,
there can be more than one linkage classes.

First, we show that the existence of a positive complex balanced equilibrium affects
every positive equilibrium.

Proposition 3.4 Assume that the kinetic system (3) admits a positive complex balanced
equilibrium. Then every positive equilibrium is complex balanced.

Proof Let us assume that x € ]Rﬁ is a positive complex balanced equilibrium and
X € Rﬁ is a positive equilibrium other than X. Then X € &; that is, we have that
px)—pkx) e S+. Letus define fork = 1,2, ..., M the function qr : Rf — R by

g (x) = (p(x) — p(X)) - Wk
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Then, for any complex n € K we have that

Z Kkyy"(i)— Z Kkyy"(i)

k:n=yk kn=yy
— Z ke y ()_c)eq"(i) _ Z Key (f)elﬂc (3)
k:n=yk kn=y
= onn(¥) ( Y oart®— Y art (x)) —0,
k:n=yk k:n=yy/
thus x is indeed complex balanced. O

The above Proposition shows that positive complex balancing is a system property.
Thus, a system of the form (3) is called complex balanced if it admits a positive complex
balanced equilibrium. Finally, the connection between complex balanced systems and
quasi-thermodynamic systems are described in the following proposition.

Proposition 3.5 Assume that the kinetic system (3) is complex balanced. Then it is
quasi-thermodynamic.

Proof Letus consider the positive complex balanced equilibrium X; that is, the equality

D oky(®) = Y k™t

k:n=yk k:n=yy
holds for any complex 1 € K. Observe that for any x € Rf we have that
M
(p(x) = p(®) - f(X) =Y kay™ (1) (qur (x) — qe(x))
k=1

M
=Y sy @ (g (x) — g ().
k=1

Using the well-known inequality

(b —a) <e? — e (12)

leads to

M
(p() = p(®) - f() =D kiey (%) (e ™) — 1)
k=1 (13)

= Ze‘fﬂ()‘)< Yo oart®— Yy Kk)/y"(f)> =0,

nelkl kin=y, k:n=yx
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where equality holds if and only if g/ (x) = g (x) for each reactionk = 1,2, ..., M,
thatis, if and only if p (x) — p (X) lies in S*-. In particular, if f(x) = 0, then p (x)— p(X)
lies in S*. It remains to be shown that if p(x) — p(X) lies in S, then f(x) = 0,
as a quasi-thermodynamic system needs to be quasi-thermostatic as well. Rewrite the
species formation rate function as

f(x)=Zn( > ke - Y wﬂ(x))

nekl kin=y k:n=yx
— Z 77( Z Kky)’k()—c)elIk(X) _ Z Kky)’k(f)e‘Ik(X)).
nekl kin=y k:n=yk

If x is such that p(x) — p()_c) € St then p(x) — p(X) is orthogonal to every reaction
vector, and thus

fo0) = Zeq”(")n( Y okmrm-— Y Kkyyk(f)) =0;

nekl kin=yy k:n=yk

that is, the vector x is an equilibrium. This shows that the set of positive equilibria
coincides with the set £, and thus the system is quasi-thermostatic. This, combined
with (13) shows that the system is quasi-thermodynamic as well. O

4 Stability of delayed kinetic models

In this section, we consider kinetic systems with delayed reactions having the form
(7). In order to do so, first, we have to extend the notion of positive stoichiometric
compatibility classes to the delayed case. We note, that the following definition and
invariance proof was already established in Liptdk et al. (2018a) for the case of mass
action kinetics and in Komatsu and Nakajima (2019) for the general case. For each
v € RY define the functional ¢, : Cy ; > R as

M
o) =v- [wm £ (Kk/
k=1

-7

0

yyk(w(s»ds)yk] ¥ eChr

For each 6 € C4 ; the positive stoichiometric compatibility class of (7) corresponding
to 6 is denoted by Dy and is defined by

Dy =¥ € Chcleu() = eo(6) forallv e S*.

Clearly, ¥ € Dy if and only if ¢ € C4 ; and

0
(™ () = 7 0(s)) ds )yk €s. U9

— Tk

M
Y ) —9(0>+Z<ka
k=1
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This shows that if each delay t; is zero, then the delayed positive stoichiometric
compatibility classes reduce to the positive compatibility classes of (3).
The following Proposition establishes the invariance property of Dy.

Proposition 4.1 Forevery 6 € C 1 the positive stoichiometric compatibility class Dy
is a closed subset of C1 . Moreover, Dy is positively invariant under (7); that is, if

W € Dy, then x € Dy forall t > 0.

Proof The closedness follows from the continuity of ¢,. We will show that for each
v € St the functional ¢, is constant along the trajectories of (7). To see this, let us
assume that x is a solution of (7). Then for r > 0 we have that

M
;—tcu(xz) =v- ()’C(t) + ];Kk(l/yk (x(1)) — ¥ (x(t — fk)))yk>

M
=v- (ZKW”‘ (x(t — ) O — yk))

k=1

M
=Y kay™ (et — T - (e — yi) =0,
k=1

where the last equality follows from the fact that v € S L. Thus, if Y € Dy, then for
every v € St and ¢ > 0 the equalities

co(x)) = coxd) = co(¥) = ()

hold, showing that x,'p € Dy as desired. O

The delayed kinetic system of form (7) is quasi-thermostatic if its nondelayed
version, obtained by setting each 1 = 0, is quasi-thermostatic, since their equilibria
coincide. The following proposition is the generalization of Proposition 3.1 for delayed
systems.

Proposition 4.2 Assume that the kinetic system (7) is quasi-thermostatic. Then, for
every 0 € Cy 1 the corresponding delayed positive stoichiometric compatibility class
Dy of the system (7) contains precisely one positive equilibrium.

Proof In the nondelayed case (see Proposition 3.1) existence is shown via (Feinberg
1995, Proposition B.1) without modification. However, in the delayed case we need
to adapt certain steps of the proof based on (Komatsu and Nakajima 2020, Theorem
4.4), where the authors prove the statement for delayed mass action systems.

Let us for X € £ define the positive vector b € Rﬁ by

M 0
bi =60:0)+ Y ki [ y*(O(s))ds
k=1

-7
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and the continuously differentiable function g : RY > R by

N

Xi M
mn=§:(ﬁ ﬁ%mmxﬂM+m—mM>+§ywAwan.

i=1 k=1

We note that adding X; to the integral is not necessary for the following analysis, but
adding it ensures that g(x) reduces precisely to the analogous function in the known
proof of this theorem for mass action systems.

The gradient of g is given by

M
Vg(x) = V_l ()/(f)ex) —b+ Z KTk (y(f)ex)}'k Vi
k=1

and that the Hessian of g is written as

e y (@' u ey T
Hg(x) = dlag<—y/(y—1(y(f)eX))> + I;kak (y@e*) ey

where the fraction in the diagonal matrix is defined element-wise. The corresponding
quadratic form is positive-definite as the first term is a diagonal matrix with positive
entries, and thus is positive-definite, and the second term consists of positive factors
and the positive-semidefinite matrix ykykT. Then the function g is strictly convex
everywhere.

From the property (5) of the y; functions it follows that for any nonzero vector
x € RY we have that

X , X #£0,
lim (/ yl._l(y,-()_c,')eas)ds + X; —ab,-x,-) = {oo Xi #
0

a0 X x =0,
and thus

Xi

N
lim 3" (/ v (i F)e®) ds + % —abix,-> < lim g(ax) =oco. (15)
a—oQ i1 0 a— o0

Letg : ST — R be the restriction of g to S+, which is also continuously differen-
tiable and strictly convex. Define the subset

StoG= {x e Stz < g(O)}.

Clearly G is convex, closed in R¥ contains the zero vector and contains no half line
with endpoint 0 because of (15). Then G is bounded, and thus compact as well, since
in a finite-dimensional vector space every unbounded closed convex set containing 0
must contain a half line with endpoint 0 (Stoer and Witzgall 1970, Theorem 3.5.1).
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The continuity of g and the compactness of G implies that there exists u© € G such
that

gn) <gkx), VxeG.
In fact, g(0) < g(x) for x € ST\G, and thus
(W) <gkx), VreSh

Then for & € S*, the equality

d
=8t =Ve-§
t t=0

d
0=—¢ t
dtg(“+ §) .

holds; that is, the vector Vg () is in S, and thus

M
y iy @e) = b+ Y (v @e”) " w
k=1
M 0
=y (y@e") —00)+ ) (Kk / ((y @) =y (0(s))) ds)yk €Ss.
k=1 T

Let x be defined by
F=y7 (y@eh).
Then X € Dy and taking logarithm shows that
pE) = p() =p €S

that is, we have that x € £ as well.
To show uniqueness, assume by contradiction that X and X are distinct positive
equilibria in Dg. Then by (14) it follows that

M 0
X —)_C-‘rZ(Kk/ (Y% (@) — ¥ (@) ds))’k eS.

k=1 ~Tk
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This, combined with the characterization (9) shows that

0=(p(X) —pX)- [ X+ Z <Kk/ yRE) =y ®)) ds))’k:|
u
N
=Y (logy (%) —logy ®) (% — %)
i=1

M
+y (Kkrk log y % (X) — log y** (X)) (y* (X) — yy"(f))).

k=1

Since the functions y; and the logarithm are strictly increasing, the above expression
is zero if and only if X = x. O

As a clear consequence of our nondelayed analysis, a delayed complex balanced
system is quasi-thermostatic. To discuss quasi-thermodynamicity we define the can-
didate Lyapunov—Krasovskii functional, a main contribution of the paper, as

¥i (0)
V) = VD) = Zf (logi(s) — log i (%)) ds

(16)
+ ZKk/ (Vyk(W(S))<10g YW () —logy ¥ (x) — 1) + J/yk(f)) ds.
k=1 ~ T

A delayed kinetic system of the form (7) is called quasi-thermodynamic if there exists
X e ]Rﬁ such that the system is quasi-thermostatic with respect to x, and

V(x, %) <0

holds along the trajectories x; for ¢t > 0, with equality holding only if f(x) = 0.
The following theorem is a generalization of Proposition 3.3 for delayed systems.

Theorem 4.3 Assume that the kinetic system (7) is quasi-thermodynamic. Then, every
positive equilibrium of the system is Lyapunov stable relative to its positive stoichio-
metric compatibility class.

Proof The fact that each positive stoichiometric compatibility class contains precisely
one positive equilibrium follows from quasi-thermostaticity. Using (12) shows that the
second term of (16) is nonnegative and zero if only if x = X, while in Sontag (2001)
the author shows the same for the first term. Since the system is quasi-thermodynamic,
the functional (16) is a Lyapunov—Krasovskii functional for the system and the proof
is finished. O

Note, that in the nondelayed case Proposition 3.3 guaranteed local asymptotic sta-
bility and that there are no nontrivial periodic trajectories. In the delayed case the
anologous definition only implies Lyapunov stability. However, in our final theorem
that generalizes Proposition 3.5 to the delayed case, we can ensure these properties.
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Theorem 4.4 Assume that the delayed kinetic system (7) is complex balanced. Then it
is quasi-thermodynamic. Moreover, each equilibrium is locally asymptotically stable
relative to its positive stoichiometric compatibility class and there are no nontrivial
periodic trajectory along which all species concentrations are positive.

Proof Let X be a complex balanced equilibrium. The gradient of the first term of
(16) is p(x) — p(x), and thus the Lyapunov—Krasovskii directional derivative along
trajectories of (7) is given by

M
V=Y k(™ (2 — 1)qe () — ¥ () g (1))

k=1

M

+ ZKk(Vyk (@)qr(x (1)) =y (x(t — T))gr(x(t — 7))
k=1
M

+ Y (e — ) — ()
k=1
M
=Y sy (et — 7)) (qu (x(1)
k=1
—qr(x(t — 7)) + Y (x(t — ) — Y (x(1)).

Rewrite the above as

M
V) =Yy’

k=1

(f)(e%(x(zrk))(qk,(x(t)v) — qe(x(t — Tk))) 4 etk (=) _ e%(X(t)))

and use inequality (12) to find that

M
"/(xt) < ZKkVyk (g)(eqk/(X(t)) _ e[Ik(X(t)))

k=1
— Z e(In(X(t))< Z Ky Yk (X) — Z Kky (f)) =0,
nekk kin=yy k:in=yx

as the system is complex balanced, and V (x;) = 0 if and only if the equality

qr (x()) = qr(x(t — ©))
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holds for each reactionk = 1,2, ..., M. Standard arguments, see (Liptdk et al. 2018a,
Theorem 3), show that the largest invariant subset of the set

R

[\” €Cy
{W €Cir

V() =0}

ae (' 0) = a(x" ¢ —1), k=1,2,..., M}

consists of constant functions that are positive complex balanced equilibria.
The fact that there are no nontrivial periodic trajectories along which all species con-
centrations are positive can be shown similarly as in 3.3, thus we omit the calculation.
O

5 Discussion

In this section some further remarks are discussed about the results shown in Sects. 3
and 4.

5.1 Interpretation of delayed entropy

In the nondelayed case, the Lyapunov function (10) depends only on the concentration
configuration of the system and does not include any information about the reactions,
such as the reactants, the products or the reaction rate coefficients. Such Lyapunov
functions are called universal, a term used by Gorban (2019). In the delayed case, the
Lyapunov—Krasovskii functional (16) is not universal in this sense, since it explicitly
contains the stoichiometric vectors and the rate coefficients. In the entropy (or free
energy) interpretation of the Lyapunov function, the history of the trajectories tem-
porarily increase the entropy. As we have shown, this residual entropy can be described
by the second term of (16). While it might be possible to define the delayed entropy with
less information about the reactions, our Lyapunov—Krasovskii functional is inherently
tied to the delayed system. To see this, we can use the chain method to approximate
the delayed reactions in (7) with cascades of first-order mass action reactions (Gyori
1988; Gyori and Turi 1991). The Lyapunov function of the approximating system will
then converge uniformly to (16) on compact subsets of [0, 00). For a more detailed
explanation, we refer to Liptak et al. (2018b), where the authors derive this in the mass
action case.

5.2 Lyapunov-Krasovskii functional in a different notation

In the literature of CRNs, both system descriptions (3) and (6) are used frequently. In
the former case, we sum the right-hand side w.r.t. the reactions, while in the latter case
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we sum w.r.t. the complexes. The delayed system (7) can be similarly rewritten as
L L
26 =YY wkijly (et — )y — v (x() i)
i=1 j=1

Then the Lyapunov—Krasovskii functional takes the form
X o 3
V) =V, =Y [ (logyi(s) —log i (1)) ds
i=1 Y%

L L 0
+Y Y ki f _‘ (yy" (W () (logy” (¥ (5)) —logy” (¥) — 1) — o—c)) ds .

i=1 j=1

The computation on V(x;) can be repeated with minor notational modifications to
obtain

L L
Vi) < Z Zlqjyy" () (e1 D) — i Oy,

i=1 j=1

The right-hand size is equal to

L L L L
ZeW“”(ZK,-jV” (f)) - Zeq"(’“’))(Zw)yy" X) = Qx())KT ().
j=1 i=1 i=1

j=1

Since X is a complex balanced equilibrium, the vector I"(x) is in the kernel of K; that
is, we have that V (x;) < 0.

5.3 Connection with semistability

Our results also show that the positive equilibria of a delayed complex balanced CRN
are semistable, defined as follows. An equilibrium X is called semistable, if it is Lya-
punov stable and there exists § > 0 such that ¢ € Bs(x) implies that x¥ (1) converges
to a Lyapunov stable equilibrium as ¢+ — oo. In Liptak et al. (2018a) the authors
showed semistability for delayed mass action complex balanced CRNs. We note that
the existence of an equilibrium in each positive stoichiometric compatibility class was
not known at that time, but it was since proved in Komatsu and Nakajima (2020) for
delayed mass action systems and in Proposition 4.2 for the more general case.

6 Examples

In the following examples we illustrate our notations and results.
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6.1 Example 1

First, let us consider the delayed kinetic system from (Liptdk et al. 2018a) with mass
action kinetics. The system consists of a reversible reaction

k1=1

2X Xo.

k2=2,10=0.5

The corresponding kinetic system takes the form

(1) = k4 (xlz(t) [ﬂ —x3(1) [é}) + i (xz(t - 1) [3} — x2(1) [ﬂ )

The stoichiometric subspace and its orthogonal complement is

seom[7]] -]

It is easy to verify that [2 2]T is a positive complex balanced equilibrium, and thus
the positive equilibria are given by

2
5={xeR+

logx; —log?2 cstl
log xp — log2

For any X € £ we consider the set of points

X1 — X1
[(1 i) (2 — )_62)} € ‘S}'

If we construct constant functions in C+ ; from X and the elements of X% in the obvious
way, then by (14) we have A% € Dx.

Let us consider the transformations y;(s) =
transformed system takes the form

=20 [t )
Na+ao? 1]~ a+xa0)? [0

+/<( 53— 1) H_ x3(1) [o])
2 14+ x(t—1) |0 L+ x00) | 1] )

Is it easy to verify that [é + % 117 is a positive complex balanced equilibrium, and
thus the positive equilibria are given by

XXZ{XGRi

2 3 .
755 and »2(s) = 55 that is, the

2
log = —log 1
E=1xeR% Mo lestt
log 7% —log 5
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and A% is given by

Xe = {xeRi

X — X1 s
3 3 |esSq.
i X X
X — X2+t — 1)

Using the terminology of Komatsu and Nakajima (2019, 2020) it is easy to see that
the set W = {X1, X»} is the only minimal semilocking set (called siphon in the theory
of Petri nets). The Ly space consists of functions w € C . such that

w;i(s) =0, X e W,
wi(s) #0, X, ¢W

holds for s € [—t, 0]. Then (Komatsu and Nakajima 2020, Theorem 5.1) states that
the boundary equilibria of the system is contained in

U Z_)g N Lw,
9€C+,r

but the above set consists of only the constant zero function; that is, all nontrivial equi-
libria are positive and globally asymptotically stable w.r.t. their positive stoichiometric
compatibility classes.

In Fig.1, the positive equilibria, several positive stoichiometric compatibility
classes and trajectories of the original mass action system are depicted with red dashed,
green dashed and green continuous lines, respectively. The same objects for the trans-
formed system are drawn with black dashed, blue dashed and blue continuous lines,
respectively.

6.2 Example 2
Our next example is a delayed version of another complex balanced small reaction

network, taken from Szederkényi and Hangos (2011). We consider the set of reversible
reactions

1

ES

K1=-73" k3=0.1 k5=0.1
3X1 3X» 3| ——————=2X1+ X» 3Xg ————————=2X1+ X»
28 k4=0.126,74=0.4 k6=0.063,76=0.6

Kp=

m‘-
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4 — . . .

3.5

Fig. 1 Phase plot of example 1

with the transformations y;(s) = s and y»(s) = Then the system takes the form

- 1+v

| 0 ; S0 3 5@ T0
B0 = (x?(’) [3] 0 [O} ) e ( T+ m07 [0} R [3] )
+ K3 (xf(l) |:ﬂ —xi (1) |:(3)] )

M_3 2 ﬁ_z )
+K4(xl(f )l+x2(t—f4) K xl(t)l+X2(t) _1]

(s [} - e )
N+l T+no)? (3

: i ]
oy =T w02
+K6<x1(f—f6)l+x2(t_r6) _3_ 1()l—f-x (1) _1i|>'

The stoichiometric subspace and its orthogonal complement are

o[ sl

It is easy to verify via the Cardano formula that
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14

12

10

) (t)

Fig.2 Phase plot of example 2

is a positive complex balanced equilibrium, and thus the positive equilibria are given
by

logx; —logXx
E={xeR% ) 2 |estt,
log 7% —log 7%
X2 +Xx2
and A% is given by
X1 =T+ 204t + k575 (P T — T2 L)
1= X1 4T4 + K575 Tre
Xr= xR i ) e _21 Hnlles

X0 =30 + (kata +kests) (6] 15 — X1 15%;)

Similarly to the previous example, it can be shown via (Komatsu and Nakajima 2020,
Theorem 5.1) that all nontrivial equilibria of the system are positive and globally
asymptotically stable w.r.t. their positive stoichiometric compatibility classes.

In Fig.2, the positive equilibria, several positive stoichiometric compatibility
classes and trajectories of system are drawn with black dashed, blue dashed and blue
continuous lines, respectively.

6.3 Example 3

Our final example focuses on the Lyapunov—Krasovskii functional. Of course it cannot
be visualized in general as it maps an infinite dimensional function space to nonnega-
tive numbers. However, if we restrict the functional to constant history functions as in
the previous examples, then we can compare it to the nondelayed Lyapunov function.
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In order to do so, we consider the following delayed reversible reactions

xk1=1,71=1 K3=1
2X| ——2X3 2X1+ X, 3X3,
Ko=1 Kk4=2,74=0.5

. . 2 -
with transformations y;(s) = s, y2(s) = f—+s and y3(s) = 1“‘? Omitting the vector
notation, the corresponding delayed differential equation takes the form

2 2 B 3
xl(z):—lexlz(z)Jrsz( x3(8) ) 22 20 +2K< x3(t — ) )

I+ x3(1) L+ x2(0) L4+ x3(t — 14)
C o ue-w ) X3 (1)
K _K4(1 +x3(t — T4)> 3 (t)l +x2()
s xn ) 2 BO ( x3(0) >3
x3(1) = 2k x7(t — 71) 2K2(1+x3([)> +3K3x1(t)1+x2(t) 3Ky4 Ttn0)

It is easy to see that the nondelayed system is conservative as x| + xp + x3 is a first
integral; that is, the nondelayed positive stoichiometric compatibility classes can be
characterized as

Sy = {x G]Ri’)q +x2 +x3 = pi +P2+P3}’

where p € Ri is arbitrary. Then for any fixed p € Ri we can visualize the Lyapunov
function (10) as a two-dimensional function defined on the region

D, = {x eRi\xl +x2 < pi +P2+P3}~

The delayed positive stoichiometric compatibility class of the delayed system is more
complicated and, in particular, it is not a plane; that is, the delayed system is not con-
servative in this sense. However, it can be shown similarly to the previous examples
that the system is persistent, and thus every delayed positive stoichiometric compati-
bility class contains precisely one positive equilibrium. Assuming a constant history
function constructed from an element of D, we can compute the value of the func-
tional at the initial point of the corresponding trajectory. Figure 3 shows the contour
plots of the Lyapunov function and the Lyapunov—Krasovskii functional on D, with
pitpr+p3=1

7 Conclusions

The stability of kinetic systems with time delays and general kinetics was studied
in this paper. In preparation for the subsequent analysis, certain stability results of
Sontag (2001) were slightly generalized using the notion of quasi-thermodynamicity
introduced in Horn and Jackson (1972). Then it was shown for delayed complex bal-
anced reaction networks that each positive stoichiometric compatibility class contains
precisely one positive equilibrium that is locally asymptotically stable within their
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xy

(a) Lyapunov function (b) Lyapunov-Krasovskii functional

Fig. 3 Level curves of the Lyapunov function of the nondelayed system and the Lyapunov—Krasovskii
functional of the delayed system for constant history functions

positive stoichiometric compatibility classes for arbitrary finite time delays. A key
result of the paper allowing the stability proof is the construction of an appropriate
Lyapunov—Krasovskii functional. Thus, the results proposed in Liptdk et al. (2018a)
have been generalized for a wide class of delayed non-mass action reaction networks.
It was also shown that the global stability of equilibria can be proved as well if the
conditions in Komatsu and Nakajima (2019, 2020) are fulfilled. Three illustrative
examples were given to visualize the theoretical results. Further work will be focused
on the kinetic realization and control of general nonlinear delayed models given in
DDE form.
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