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Abstract: Inverse perspective mapping (IPM) is a crucial technique in camera-based autonomous
driving, transforming the perspective view captured by the camera into a bird’s-eye view. This can be
beneficial for accurate environmental perception, path planning, obstacle detection, and navigation.
IPM faces challenges such as distortion and inaccuracies due to varying road inclinations and intrinsic
camera properties. Herein, we revealed inaccuracies inherent in our current IPM approach so proper
correction techniques can be applied later. We aimed to explore correction possibilities to enhance
the accuracy of IPM and examine other methods that could be used as a benchmark or even a
replacement, such as stereo vision and deep learning-based monocular depth estimation methods.
With this work, we aimed to provide an analysis and direction for working with IPM.

Keywords: inverse perspective mapping; deprojection; distance estimation; distance estimation
correction

1. Introduction

Inverse perspective mapping (IPM) is a fundamental technique in camera-based au-
tonomous driving systems, pivotal for converting the perspective view captured by the
camera into a bird’s-eye view and it is often combined with deprojection. This transfor-
mation is indispensable for accurate environmental perception, path planning, obstacle
detection, and navigation. However, despite its critical role, IPM faces significant chal-
lenges, including distortion and inaccuracies arising from varying road inclinations and
intrinsic camera properties [1]. These challenges can impede the overall reliability and
effectiveness of autonomous driving systems utilizing this technique.

Our research focuses on the pinhole camera model-based IPM methodology and
its inherent inaccuracy that must be addressed to optimize its application in real-world
scenarios [2]. These inaccuracies often stem from the dynamic nature of road surfaces
and the complex interplay of camera parameters. Consequently, there is a pressing need
for correction techniques that can mitigate these errors and enhance the precision of IPM
outputs. The IPM and deprojection algorithms are used in several works, but it is rarely
discussed in and of itself, and to the best of our knowledge, there is no prior work on the
analysis of deprojection errors for autonomous tasks [3–8].

In this study, we aimed to explore various correction possibilities to improve the
accuracy of IPM. A significant gap in the current state of the art is the inherent inaccuracy
of IPM algorithms, highlighting the need for extensive measurements and additional data
to establish a more robust foundation for further research and improvements in these
techniques. We also examined alternative approaches that could serve as benchmarks or
even replacements for traditional IPM. These include stereo vision and deep learning-based
monocular depth estimation methods. Stereo vision leverages the disparity between two
camera views to infer depth, providing a more robust 3D understanding of the environment.
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On the other hand, deep learning-based monocular depth estimation employs neural
networks to predict depth from a single image, offering a promising solution that balances
accuracy and computational efficiency.

By focusing on the enhancement of IPM through correction techniques and evaluating
potential alternatives, this research aspires to serve as a roadmap for a more computationally
efficient solution for distance estimation.

2. Materials and Methods

As we have mentioned before, inverse perspective mapping (IPM) transforms the
perspective view captured by the camera into a bird’s-eye view. To achieve accurate 3D
understanding, IPM can be combined with deprojection techniques that convert 2D image
points into their exact 3D coordinates. Deprojection lies at the heart of our work, serving
as the core algorithm driving our approach. The basic idea is to leverage the inverse of
the camera’s intrinsic matrix (K) to transform 2D pixel coordinates into 3D space. To
recover the depth information (the third dimension) for each pixel, we apply a few key
assumptions (described later in this section). We break down the exact process of this
depth recovery in the following paragraphs. Deprojection is the part where the challenging
calculation happens; consequently, we need to focus on this part. The transformation to
convert 3D coordinates to 2D homogeneous coordinates is mathematically described by
the following equation:

λ

u
v
1

 = K

Xc
Yc
Zc

, (1)

where λ is the scaling factor, K is the intrinsic camera matrix describing the camera, (u v 1)
T are homogeneous coordinates and (Xc Yc Zc) T are the 3D points in the camera coordinate
frame. The process described by this equation is commonly known as projection, and this
is our starting point [1,9]. We can take the inverse of the intrinsic camera matrix to calculate
the 3D coordinates from the 2D points:Xc

Yc
Zc

 = λK−1

u
v
1

. (2)

The only problem is that the depth information is lost during the projection process.
Specifically, when a 3D point is projected onto a 2D image plane, its depth (Zc) is not
directly observable from the image alone. This loss of information makes it challenging to
accurately reconstruct the original 3D coordinates. To address this, additional constraints
or information, such as multiple views or assumptions about the scene geometry, are
often required to recover the depth and thus fully determine the 3D coordinates. We are
building on the following assumptions. The road surface is flat (there are no elevations
or depressions), we know the position and orientation of the camera relative to the road
surface, that is, the transformation matrix [R t], and we choose the pinhole camera model
as the mathematical model of the camera.

To calculate the deprojection of the 2D points, we take (2), but we use r(λ) instead
of the 3D coordinates on the left-hand side because the depth Zc of a point is lost during
the projection process. By representing each pixel as a ray of light (a line basically),
parameterized by λ, we essentially define a family of points along this ray (or line). Each
point along the ray could correspond to a potential depth value. Using this approach allows
us to model the ambiguity in depth and calculate the exact 3D coordinates once λ (the
scaling factor needed to recover the true depth) is determined through further calculations.

The previously mentioned relationship is described with a line mathematically:
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r(λ) = λK−1

u
v
1

, | λ ∈ R>0, (3)

and we are asking which scaling factor λ returns the correct 3D points. In this case, we are
calculating the point intersecting the road surface (represented geometrically as a plane).
The intersection of the line and the plane shows us the exact point on the line that represents
the road surface; thus, the distance of that road surface point is recovered.

Following the meticulous implementation of the algorithm and precise calibration of
the camera’s position and orientation relative to the vehicle, we designed and conducted
experiments to evaluate the accuracy of our proposed method. The goal of the experiments
was to measure the inaccuracy of the deprojection algorithm. The camera we used was
factory calculated and mounted on top of our SZEmission vehicle, and we set it to be
perfectly level with zero roll, pitch or yaw with respect to the ground.

We measured the true distance from the ground directly under the camera to the
selected distances marked with traffic cones and marker tapes. In the first experiment, the
tapes were one meter apart and the traffic cones were five meters apart. In Figure 1, the
starting tape closest to the vehicle was 3 m away, the first cone was 5 m away, and then
the rest of the markings followed the rule defined above. This experiment only measured
inaccuracies in the middle of the camera image with a lens focal length of 2.1 mm.

Figure 1. First experiment with lens focal length of 2.1 mm (1080 p resolution). Camera is factory
calibrated and mounted to be perfectly level with the ground.

To measure the error near the image edges, we conducted another experiment, with
another focal length of 4 mm. This change caused the cones in Figure 2 to appear closer
while being at the same distance apart, starting from 5 m as in Figure 1. When the focal
length is longer, the field of view is narrower, and the same object will appear closer. To
make the second experiment comparable to the first one, we also measured the middle of
the image here along with the edge.
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Figure 2. Second experiment with lens focal length of 4 mm, including the edge of the image (2 K
resolution). Camera is factory calibrated and mounted to be perfectly level with the ground.

3. Results

The quantitative results can be seen in Tables 1 and 2 for experiments one and two,
respectively. If we compare experiment one with experiment two, the middle values are
close to each other for the distance of 5 m, but somewhat different for 10 m. This can be
explained with the different camera lenses and their different degree errors for a certain
part of the image. The values also show that the measurements on the edges (right values)
are farther from the middle values on the same image. This means that extra attention
might be needed for the image edges even after rectification.

Table 1. Quantitative results of the first experiment (2.1 mm).

Distances Middle Values

3 m 2.46

4 m 3.27

5 m 4.20

10 m 9.33

30 m 50.72

Table 2. Quantitative results of the second experiment (4 mm).

Distances Middle Values Right Values

5 m 4.04 3.96

10 m 8.06 7.69

15 m 12.47 11.45

20 m 16.91 15.29

25 m 21.86 19.10

The results are also plotted in Figures 3 and 4. These plots show that as we go forward
in distance, the error is getting bigger, but it also stays relatively constant for the first 20 m.
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Figure 3 shows us the results of several camera resolutions, including VGA, 720 p, 1080 p
and 2 K resolutions. The experiments with the image edges only show the results with
2 K resolution.

Figure 3. Plotted quantitative results of the first experiment (2.1 mm).

Figure 4. Plotted quantitative results of the second experiment (4 mm).

4. Discussion

In this work, we have shown that the deprojection algorithm has a slight intrinsic error,
even when assuming a flat surface, but it can be a good distance estimation. Although the
camera images are rectified to account for the lens distortions, there is still a level of error
that we cannot fix with the adjustment of the intrinsic camera model. As we are getting
further away on the image, a difference of one pixel means a much bigger difference than
for pixels representing close ranges. This error needs improvement to make the algorithm
more accurate and adaptable. External factors that can influence the algorithm’s accuracy
include variations in the scene geometry, such as inclines or surface irregularities, as well as
camera-related issues like lens distortion and misalignment or calibration errors. Lighting
conditions can also impact the accuracy, but only if the scene geometry is not assumed
to be flat, as this would require proper assessment of the surface to account for depth
variations. One way to further assess the accuracy of the algorithm would be to compare
the results to some state-of-the-art alternatives, like in-built AI stereo camera algorithms or
deep learning-based depth estimation algorithms. To perform these comparisons, we need
to conduct measurements with cameras that have a stereo estimation enabled alongside
the existing setup.
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We are also currently experimenting with some recently released depth estimation
algorithms (Figure 5), although they need calibration to return the absolute distances
from it based on the relative distance results [10]. The primary sources of errors in depth
estimation algorithms include inaccuracies in the intrinsic camera parameters (such as focal
length and principal point) and errors in the camera’s positioning and orientation relative
to the road surface. Additionally, external factors like changes in scene geometry, lighting
conditions, or surface irregularities can further affect the accuracy of depth recovery. In the
future we would like to correct these problems by taking more measurements and fitting
adaptive functions to account for the error, thus making the deprojection algorithm more
accurate. Another plan is to compare this adjustment with depth estimation algorithms
and the results of built-in stereo camera images.

Figure 5. The Depth Anything V2 algorithm, showing the relative depth of the image used for our
measurements. The left image shows the raw camera frame, the right image is the prediction result.
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