
1 of 6

XXIV IMEKO World Congress “Think Metrology”
August 26 29, 2024, Hamburg, Germany

PROGRAMMING AND CONTROL CHALLENGES OF THE PORTRAIT

DRAWING PIKTOR-O-BOT

János Csempesz a, Tamás Cserteg a,b, Kristóf Abai a, János Nacsa a, *

a HUN-REN SZTAKI, 1111, Budapest, Kende u. 13-17, Hungary,
{jcsempesz|csertegt|abai|nacsa}@sztaki.hu

b Doctoral School of Informatics, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
* Corresponding author

Abstract Robotic arms and artificial intelligence-based

solutions are all around, but few applications demonstrate the
essence of these tools in a way that is easily comprehensible
for the general public. Drawing a human face from a
photograph seems like a simple task but doing it with an
industrial collaborative robotic arm is a complex challenge.
While designing the system, an important goal was to
incorporate subsystems that mimic completely different, but
relatable industrial tasks.

Three different drawing variations are discussed, aligning
with the development history of the portrait drawing solution.
The first one involves drawing with a marker pen on a white
board surface, where one must apply constant force to ensure
that the pen touches the surface thus leaves a mark. In the
second version, where the drawing is carried out with a so-
called brush pen on regular paper, force feedback is not
necessary because of the characteristics of the pen. This
allows faster drawing for expos and exhibitions with the
added benefit of giving visitors a gift to take away. If not only
lines, but also regions with a few (4-5) shade intensities are
to be rendered by satin finish, the force feedback should be
kept within a narrower range. This is the third, graphite pencil
utilizing version. Here, the pencil is no longer kept
perpendicular to the surface and the sharpening of the pencil
is critical.

The paper describes in detail the algorithm of the force-
based control for the marker and pencil versions. The
calculations and the actual control are executed by a Java-
based program on a computer connected to the robot, which
has the advantage that it provides a comprehensive set of
software tools with which any application can be run on the
robot virtually. The design and implementation of this
architecture is also outlined in the paper.

For line drawing, the order of the to-be-drawn lines is
irrelevant, however it heavily affects the execution time. To
overcome this phenomenon, a fast-sequencing algorithm is
used for sequencing the lines before the robot is moving to
start the drawing process.

Designing the robotic cell for easy transportation
generated additional challenges. The paper briefly discusses
the cell built up and the steps for putting it into operation after
transportation.

Keywords: robot application; image processing; artificial
intelligence; portrait drawing; force control

1. INTRODUCTION

There is an ever-increasing expectation in public research
institutions that the engineering systems and results, that are
produced in research and industrial projects should be
presented in a way that is understandable to the wider public.
Artificial intelligence (AI), and robotics in particular are areas
where it is necessary to provide people real examples for the
potentials and limitations of engineering solutions, rather
than fictions. This is how robotic portraiture emerged, where
the task is clear to all, but the technical solution poses serious
challenges. In order not to disconnect the development from
the current research and development activities, an additional
aspect was the reuse of previous algorithms and softwares
(e.g. URMover core, URSztaki_2.0) already proven in
industrial projects, which also reduced development time and
effort.

The first design was an add-on to an existing robotic cell,
where the robot drew on an erasable whiteboard with a
marker pen, but due to the wide interest, it soon became clear
that a portable design was needed, so it could be taken to
various events, and that users wanted to take the drawings
with them, so they had to be drawn on paper.

In addition to the detailed design of the AI system that
generates the lines from the image, many smaller but essential
control and measurement problems had to be solved. The
quality of the drawing turned out to be very sensitive to
lighting conditions, the correct movement speed of the robot
while drawing, the drawing of small radius arcs, the correct
choice of the drawing sequence of the necessary lines, the
precise calibration, and the stability of the grip of the drawing
tool were all tasks that had to be tackled throughout the
development.

Many inspiring and exciting ideas came from the visitors,
especially from the children, who asked for group drawings,
or stood in profile in front of the camera, occasionally even
grimacing.
After the design of the mobile system, the idea of creating the
portrait by shading instead of line drawing arose, which
presented new challenges: the use of pencil instead of pen,
the angle of the pencil when drawing, the pressure needed to
achieve the shades, what kind of pencil to use on what kind
of paper, how to stretch the paper, etc.

2 of 6

1.1. Existing drawing robot experiences

Robotic portraiture has appeared in recent years on a wide
variety of platforms and in many different contexts. Technical
and artistic aspects must be reconciled with the quality and
the speed/efficiency of the drawing, for which a variety of
solutions have been developed. The robots used are also
diverse, ranging from simple 3-4 DOF devices to industrial
robotic arms and even humanoid robots for portrait drawing.
There is even a simple commercial device that can be used to
draw portraits based on the image taken by the device [1].

Similar to our application, Nasrat et al. [2] and Wang et
al. [3] among others were also using industrial robot arms.
The first article also shows a wide range of examples of
portrait painting by collecting ready-made pictures and
drawing times. The summary shows that there are solutions
ranging from those that take less than a minute to those that
produce a photo-quality black and white image in 17 hours.
The second paper is similar to Piktor-o-bot in that it also uses
an UR5 robot, but the avatar to be drawn is rather schematic,
which is how they achieve fast drawing times.

Shading is a more difficult and less frequently targeted
application. An early and well-known example is Paul the
robot [4], which was first introduced back in 2011. It draws
using a very exciting iterative process, because it occasionally
analyses its own work in progress and uses that to determine
how to proceed. It doesn't do colouring; it uses a lot of lines
to make some areas dark. The robot of Adamik et al. [5]
works on a similar principle, using a special pencil gripper
and frequent calibration on the fly to create very lifelike
portrait using thousands of lines.

The realisation of nuances can only be achieved by
controlling the printing force; O'Dowd [6] presents a detailed
analysis and a working system, but his system does not focus
on expressive portraiture, but on reconstructing an image as
accurately as possible with a robot-mounted pencil. He
describes many of the difficulties also faced by the Piktor-o-
bot.

2. PROBLEM STATEMENT

The motivations of the demonstrator required an easy to
setup, easy to use, but versatile robotic application, hence was
portrait drawing chosen. It is complicated enough even for
not-talented people as well, but intuitive so the subtasks are
understandable to everyone.

When a person wants to draw a portrait of themself, the
first step is taking a photograph of them. Then, carefully
designed image processing algorithms convert this image to
a line art-like drawing, that is further processed to a
representation that the robot controller can handle. The robot
can then draw on a paper or whiteboard surface, depending
on the choice of the user. Force control can be utilized if
needed and the drawing takes one or two minutes of time, so
many people could have access to the demonstration at busy
exhibitions.

While developing the demonstrator, many aspects needed
careful considerations. Short drawing time was one
requirement that needed special attention, including fast
image processing as well as optimal ordering of the drawn
lines. Not only the drawing needs to be fast, but the
development of the application as well, because through
many exhibitions lot of feedback was gathered, that was
incorporated into the demonstrator. To achieve rapid

prototyping regarding the image processing as well as the
workflow of the demo, a versatile robotic system is needed
including both the software and hardware. As both the
calibration and pencil drawing process require accurate force
feedback, the inclusion of a force-torque sensor was
inevitable. Apart from education, entertainment is also the
goal of the demonstrator, and we would not want to displease
visitors with unattractive drawings, hence aspects that form
the finished look of the drawing needed special attention:
adaption of the drawing speed for accurate curves and
handling parts of the face with special care. Finally, as the
demonstrator gained popularity, it became clear that a
portable setup is required which affects both hardware and
software design considerations. These unique aspects are
detailed in Section 4.

3. SYSTEM ARCHITECTURE

In this section, we describe the hardware and software
elements that build up the demonstrator and enable the
creation of nice and quick drawings. The drawing process is
also detailed, so in later sections the unique characteristics of
the demonstrator can be easily understood.

3.1. Key hardware components

A 6-axis robotic arm with a gripper and a force sensor is
used with a purpose-built environment. A well renowned
robot was selected for the task, a Universal Robots UR5. It is
versatile, easy to program and most importantly, can be safely
operated around people as it is a collaborative robotic arm. A
RobotiQ force-torque sensor is mounted to the robot, so easy
calibration procedure can be used and some of the drawing
versions require force feedback. A RobotiQ two finger
gripper is used for holding the drawing tools, as those range
from pencils through brush pens to whiteboard markers. The
camera (IDS uEye SX) is mounted on the robot arm as well,
so the robot can quickly adapt the photo pose to people with
different heights.

Figure 1 Hardware elements of the Piktor-o-bot.

There are two fixed drawing surfaces, one for the brush
pen drawings and the other for the force-controlled pencil
drawings. Both surfaces can hold an A4 sized paper. There
are fixed slots for the drawing tools next to the drawing
surfaces.

The robot is mounted on a movable aluminum frame, that

3 of 6

encloses all computing devices. The drawing surface and the
robot can be folded onto the frame, which enables easy
transportation. The hardware elements are shown on Figure
1, while the structural design is discussed in Section 5.

3.2. Software architecture

Not only the robot, but also its controller software needs
to be versatile. The heart of the process is the URMover
framework (see Figure 2), that is a universal purpose robot
controller, developed for easy prototyping of high-level
manipulation tasks. It provides the functionalities for the
Piktor-o-bot core library to interact with the image processing
pipeline, the robot controller, the sequence planner, as well as
the peripherals (camera, gripper, etc.).

Figure 2 Software architecture of the Piktor-o-bot.

The URSztaki_2.0 middleware layer is a request-response

communication service enabling high level programming
languages to command and monitor the robot. The server
component of this layer is implemented in URScript language
and runs on the robot controller. The client (proxy) library of
this layer is implemented in Java-SE language. The
middleware layer can run complex commands on the robot in
a sequential synchronized way or move the robot along an
online on-the-fly computed trajectory.

The goal of the AI-based image processing pipeline is to
generate a set of lines from the image taken by the camera,
while keeping the characteristics of the person photographed.
Its input is the colour image, and the output is a binary image
with a set of lines. A vectorization step is also required to
translate the lines for the robot. Section 4.1 describes the
pipeline in more detail, while Section 4.2 discusses the
problem of line ordering with the goal of minimizing the
drawing time.

The subsystems are managed by the Piktor-o-bot core
application, that controls the whole demonstration process.

3.3. Drawing process

The pictures are taken by the robot moving into a
predefined photo pose, while the human stands in front of the
camera. The robot finds the optimal height by moving the
camera up and down. A real-time face detector [7] is used to
adjust the height of the camera, achieving a centred face
position on the image taken. After taking the image, the AI-
based image processing algorithms produce the to-be-drawn
lines and the drawing itself starts.

First that drawing tool is picked up, then the continuous
lines are drawn on the surface. In between lines, the tool is
lifted away from the surface by a few millimetres, then the
next line is drawn. After finishing the last line, the drawing
tool is put back to its slot.

4. UNIQUE CHALLENGES / IMPLEMENTATION
DETAILS

In this section, we discuss the unique implementation
details of the application, that enabled us to solve the arising
problems discussed in Section 2.

4.1. Image processing

As mentioned earlier, an appealing final drawing is one of
the main goals of this demonstrator. This requires a carefully
crafted image processing pipeline, which is described more in
detail in [8]. For summary, a brief description of the steps is
given and shown on Figure 3 [9].

For the first step, the image is cropped to contain only the
face (or faces in case of group drawings), and the background
is removed. Then, edges are detected using a neural network
(DexiNed [10]). This gives the core of the final image.

Showcasing the demonstrator at several exhibitions and
meeting unexpected poses, facial expressions, etc. we
realized that few parts of the face need special care. A
segmentation is needed for handling these special cases,
which is solved by RTNet [11]. The following parts of the
face are handled separately: the teeth are removed, as we
experienced that even nice smiles became horrifying after
drawing and only the outline of the hair and the eyebrows are
drawn. The eyes are considered with more details to create a
more lifelike end result. The iris and the pupil are detected
using the MediaPipe framework [12] and added to the to-be-
drawn image. These parts of the image processing pipeline
required significant computing power to run quickly,
therefore a GPU was installed in the controller PC.

The results of the segmented parts and the full face are
merged in one image, then skeletonization is carried out to
facilitate the vectorization step, which is carried out by the
autotrace library [13]. The output of this last step is a set of

Figure 3 Image processing pipeline of the Piktor-o-bot [9].

4 of 6

lines represented by cubic curves, that are tessellated into
high fidelity polygons using the Bézier algorithm.

4.2. Sequence planning

The drawing process must be as fast as possible so the
trajectory must be optimized for time. The model chosen for
the trajectory is the set of polygons.

For the optimization model the final timed trajectory in
3D space could also be chosen taking account the robot
dynamics and capabilities (speed, acceleration, etc.), but that
would have been a much more complex problem and
fortunately the dynamics are negligible. Similarly to a
planned optimal route for a vehicle to go from point A to point
B, only the topology of the roads matters, not the dynamics
of the vehicle.

Figure 4 Optimized trajectory for an example polygon set

(black lines mark the to-be-drawn lines, and blue lines the in-
air-moves between them).

Drawing a single continuous line always takes the same

amount of time according to that line, so what really matters
is in which order the lines are drawn and in which direction
each line is drawn (reversed or not). Basically, what
determines the final drawing time is the time moving in the
air with raised pen between the lines.

To calculate the optimal trajectory, the problem can be
formulated as a General Traveling Salesperson Problem
(GTSP). Solvers are readily available for this kind of task,
and the ProSeqqo solver [14] was chosen.

When constructing the optimization problem, the actual

speed characteristics along a line are discarded and constant
speed is used. The cost of lifting and putting down a pen
between two drawn lines is also incorporated into the model.
The actual parameters for the selected robot speeds were
specified through experiments on the robot.

The ProSeqqo solver is called only when the drawing is
initiated, running parallel with the robot picking up the pen
from its slot and moving in front of the drawing area. The
solver usually finishes before the robot finishing its
movements, so it is quite a streamlined experience from the
users’ perspective. An example sequence is shown on Figure
4, where black lines mark the to-be-drawn lines, and blue
lines the in-air-moves between them. More details one the
problem representation and experiments are available in the
paper [14].

4.3. Adaptive speed control over the trajectory

A well-designed plan still requires excellent realization;
therefore, the trajectory needs to be carefully planned. The
robot needs to follow the generated lines as close as possible,
which requires that the robot’s dynamic behaviour is
controlled while the trajectory is planned.

As described earlier, the drawing is represented as a list
of 2D polygons. To draw a line in 3D space the lines are
projected to the 3D drawing board becoming 3D polygons.
Before drawing, a trajectory is computed for the robot to go
over this polygon with a given maximum speed and given
acceleration/deceleration which come from the dynamics of
the robot. The UR5 robot is controlled at a 125Hz frequency,
which means that a new target position needs to be fed at
every 8th millisecond.

The accuracy of the final drawing is depending on the
curvature and the speed of the robot at given point on the
polygon. Hence, the final trajectory takes time into account
and has variable speed. The trajectory of a continuous curve
starts and ends with zero speed and in every timestamp the
speed must match the curvature of the polygon.

This is an important calculation that determines the
accuracy of the final drawing and the drawing time. In the
trajectory, it is necessary to decelerate in time before
approaching sharp turns, based on actual speed, deceleration,
distance to the turn and the curvature. Otherwise, the robot
can accelerate to maximum speed.

4.4. Force-controlled shaded drawing

The versatility of robotic solutions can be presented very
well with force-feedback applications. Therefore, a shaded,
pencil drawing mode is developed. This mode fills regions

Figure 5 An image with the processed result for brush pen and shaded drawing.

5 of 6

with pencils instead of drawing lines. As a first step, grayscale
drawings are considered, which means that the “colour”, the
intensity is defined by the pressure with which the pencil is
pressed to the paper. Thus, a different image processing
method is required to generate the regions as well as force
control is required to create the different intensity levels.

The force control is based on the force-torque sensor
measurements. The force values are continuously read by the
robot and sent to the high-level controller through the
middleware. The processing of the force signals and the
actions based on them are done in the high-level controller
java thread. The paradigm of the force control is to maintain
a target force perpendicular to a spatial plane. In the case of
drawing this plane is the drawing surface. The force control
is implemented as a tunable PID controller thread that
modifies the online trajectory based on the force vector
awakening at the tip of the pencil. The objective is to maintain
a constant force value in the direction perpendicular to the
drawing surface.

The shaded drawing mode required a separate image
processing method. With our hardware setup, four gray
intensities can be robustly created, and four shades seem to
be enough for humans to enjoy a grayscale drawing. The
image processing in this case is a colour reduction type
vectorization preceded by background removal. Background
is always matched with the whiteness of the paper. The output
is generated with the autotrace tool, and it is a set of closed
polygons, each with a gray intensity.

The gray intensities are converted to target force values.
Intuitively darker gray is matched with larger target force.
The lower intensities are drawn with a type H pencil tilted
with 60 degrees with force 2N-8N. Higher intensities are
drawn with type B pencil tilted with zero degrees (held
perpendicular to the surface) with force 8N-16N. The reason
is that type H pencil can shade paler shades, the tilting can
cover larger area meaning quicker shading speed, but the
pencil tip may break at greater forces. Type B pencil has
softer tip resulting in stronger shades and covering greater
area and it can tolerate larger forces when held perpendicular.
A type B pencil pushed with 16N force leaves a near black
shade on paper.

For generating the robot trajectory, the polygon areas are
filled with zig-zag pattern lines. Each line is matched the
target force of the corresponding region. The drawing is
organized in a way, that the robot begins with the lower
intensity regions, then switches pencil and finishes with the
darker regions.

An example portrait is shown on Figure 5 with the taken
image, and the processed results for the brush pen drawing
and the shaded pencil drawing versions.

5. TRANSPORTATION CHALLENGES

As the demonstrator gainer popularity, it became clear,
that frequent transportation of the robotic cell requires
attention from hardware and software aspects as well. An
easily transportable, but rigid structure is needed. From the
design point of view, it is easier to calibrate the drawing
surface at each setup, rather than constructing a too precise
cell setup. The robot is equipped with a force-torque sensor
anyways; thus, the only requirement is that the calibration
needs to be quick and easy to do.

5.1. Hardware solutions

The physical robotic cell is constructed from aluminum
profiles (see Figure 6). On top of the frame, there is a drawing
board that provides two fixed drawing areas: one for drawing
with low force and another for pencil drawings with high
force. Both surfaces are suitable for A4-sized paper. The
drawing surface designed for high-force applications securely
holds the paper with four strong clamps, while the low-force
side employs easily detachable linear jaw clamps for simple
paper replacement. Attached to this drawing board is a fixture
for holding pencils and pens, from which the robot can pick
up the desired drawing tool.

Great emphasis was placed on ensuring maximum rigidity
of the aluminum frame structure to avoid vibration and
undesired effects from frame movement or deformation.
However, the mass of the cell frame alone does not provide
sufficient stability, thus additional weights need to be placed
at the bottom of the robot mounting bracket. This does not
compromise the portability and ease of movement as the
weights are removable for transportation. The structure can
be moved on the six lockable rubber wheels located at the
base of the unit. The cell enclosure is made of metal-coated
sandwich panels. Inside the frame, all necessary equipment
for operating the cell is housed, including the robot controller,
PC, networking equipment, cooling system, and the weights.
For transportation, the drawing board can be folded down, the
monitor mounting profile can be dismantled, and all
necessary accessories such as pens, pencils, papers, mouse,
keyboard, screws, fasteners, and fixtures can be packed into
a custom EPE (expanded polyethylene) foam system. The
entire packed cell also comes with a durable and waterproof
external cover to protect it during transportation.

5.2. Software solutions

With the frequent disassembly and assembly of the
demonstrator, it is not possible to achieve the accuracy
required by the robot for the drawing area setup (or only with
a budget that cannot be justified). Therefore, an easy-to-use
calibration is developed.

The calibration consists of recording the marker, pencil
pickup poses, tactile scanning the drawing areas, determining
the hotspot offset poses of the marker/pencil tips relative to
the robot effector coordinate system grasping the marker/pen,
recording the photo pose, and allowed vertical photo pose

Figure 6 CAD model of the demonstrator in folded state for
transportation.

6 of 6

range, and recording joint waypoints moving between photo
poses and drawing poses to prevent invalid robot movements.

The main Java program is also a robot teaching
framework (the drawing module is basically a submodule of
the framework), this way the calibration is an integrated
wizard-like process, using the moving, touching, pose
managing-computing functions of the framework.

6. EXPERIENCES AND CONCLUSIONS

The Piktor-o-bot demonstrator has been showcased at 60+
events (a third of them by moving off-site to national and
international exhibitions and expos in the last years, including
the 2nd Stuttgart Science Festival.) The design choices that
have been made in the construction of the demonstrator have
resulted in a device that is relatively easy to set up. From the
moment of arrival until the first portrait is drawn, the setup
can be completed in under an hour, and the disassembly takes
similar amount of time. The biggest advantage of the flexible
design is that it was easy to adapt to the different conditions
at each location. We were able to adapt to the local lighting
conditions by being able to choose different photo positions
at the different locations.

The demonstrator gained large attention and sparked
numerous discussions on the various aspects of automation,
robotics, and artificial intelligence. During these events we
found that children were more likely to take the initiative in
requesting a portrait. Adults, on the other hand, were more
inclined to wait for someone else to be drawn, but then asked
more questions and initiated more conversations. In most
cases these, questions were directed at the applications for
this demonstrator, which often resulted in disputing the
underlying technologies. These discussions demonstrate that
the primary objectives of education and the generation of
discourse surrounding the Piktor-o-bot demonstrator are
continuously achieved at public appearances.

ACKNOWLEDGMENTS

Acknowledgement shall be expressed to the International
Measurement Confederation (IMEKO), especially to the
organizers, of the XXIV. IMEKO World Congress for
cooperating in the demonstration of the Piktor-o-bot robot at
the IMEKO World Congress in Hamburg, Germany, 26-29
Augustus 2024.

FUNDING STATEMENT

This work was supported by European Union within the
framework of the National Laboratory for Artificial
Intelligence (RRF-2.3.1-21-2022-00004) and by the EPIC
Centre of Excellence in Production Informatics and Control
Horizon 2020 research and innovation programme under
grant agreement No 739592

REFERENCES

[1] ‘Draw Me Bot: The AI-Based Drawing Robot Photo
Booth’. Foto Master. Accessed: Apr. 10, 2024.
[Online]. Available:
https://fotomaster.com/products/draw-me-bot/

[2] S. Nasrat, T. Kang, J. Park, J. Kim, and S.-J. Yi,
‘Artistic Robotic Arm: Drawing Portraits on Physical

Canvas under 80 Seconds’, Sensors, vol. 23, no. 12,
Art. no. 12, Jan. 2023, doi: 10.3390/s23125589.

[3] T. Wang et al., ‘RoboCoDraw: Robotic Avatar
Drawing with GAN-Based Style Transfer and Time-
Efficient Path Optimization’, Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 06,
Art. no. 06, Apr. 2020, doi: 10.1609/aaai.v34i06.6609.

[4] P. Tresset and F. Fol Leymarie, ‘Portrait drawing by
Paul the robot’, Computers & Graphics, vol. 37, no. 5,
pp. 348–363, Aug. 2013, doi:
10.1016/j.cag.2013.01.012.

[5] M. Adamik, J. Goga, J. Pavlovicova, A. Babinec, and I.
Sekaj, ‘Fast robotic pencil drawing based on image
evolution by means of genetic algorithm’, Robotics and
Autonomous Systems, vol. 148, p. 103912, Feb. 2022,
doi: 10.1016/j.robot.2021.103912.

[6] P. O’Dowd, ‘A Robot That Draws and Shades with
Tactile Force Feedback Sensed Through a Pencil’,
presented at the Proceedings of EVA London 2019,
BCS Learning & Development, Jul. 2019. doi:
10.14236/ewic/EVA2019.19.

[7] G. Bradski, ‘The OpenCV library’, Dr. Dobb’s Journal
of Software Tools, 2000.

[8] A. T. Hoang, J. Csempesz, T. Cserteg, and Zs. J.
Viharos, ‘PIKTOR-O-BOT: Integrated image
processing algorithms for portrait drawing robot
applications’, presented at the XXIV IMEKO World
Congress, ‘Think Metrology’, Hamburg, Germany,
Aug. 2024.In press.

[9] T. Cserteg, A. T. Hoang, K. Kis, J. Csempesz, and Z. J.
Viharos, ‘Piktor-O-bot: The robotic face-Drawing
solution’, ERCIM NEWS, no. 132. EUROPEAN
RESEARCH CONSORTIUM INFORMATICS &
MATHEMATICS, 2004, ROUTE LUCIOLES, BP 93,
SOPHIA ANTIPOLIS CEDEX, 06902, FRANCE, pp.
24–25, Jan. 2023.

[10] X. Soria, A. Sappa, P. Humanante, and A. Akbarinia,
‘Dense Extreme Inception Network for Edge
Detection’, Pattern Recognition, p. 109461, Feb. 2023,
doi: 10.1016/j.patcog.2023.109461.

[11] Y. Lin, J. Shen, Y. Wang, and M. Pantic, ‘RoI Tanh-
polar transformer network for face parsing in the wild’,
Image and Vision Computing, vol. 112, p. 104190,
Aug. 2021, doi: 10.1016/j.imavis.2021.104190.

[12] C. Lugaresi et al., ‘MediaPipe: A Framework for
Perceiving and Processing Reality’.

[13] W. Martin, ‘autotrace’. Accessed: Apr. 01, 2024.
[Online]. Available:
https://github.com/autotrace/autotrace

[14] L. Zahorán and A. Kovács, ‘ProSeqqo: A generic
solver for process planning and sequencing in industrial
robotics’, Robotics and Computer-Integrated
Manufacturing, vol. 78, p. 102387, Dec. 2022, doi:
10.1016/j.rcim.2022.102387.

