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Abstract
LiDAR-based 3D object detection relies on the relatively rich information captured by LiDAR point clouds. How-
ever, computational efficiency often requires the downsampling of these point clouds. This paper studies the impact
of downsampling strategies on the robustness of a state-of-the-art object detector, namely PointPillars. We com-
pare the performance of the approach under random sampling and farthest point sampling, evaluating the model’s
accuracy in detecting objects across various downsampling ratios. The experiments were conducted on the popu-
lar KITTI dataset.

1. Introduction

Autonomous vehicles and advanced driver-assistance sys-
tems (ADAS) rely heavily on robust and accurate 3D object
detection for safe navigation. High-resolution LiDAR (Light
Detection and Ranging) sensors play a vital role in this task
by providing rich spatial information about the environment,
although the point resolution is lower compared to, e.g.,
cameras. PointPillars 1, a popular deep learning framework,
has emerged as a leader in LiDAR-based object detection 2

due to its efficiency and accuracy. However, processing raw
LiDAR point clouds can be computationally expensive. To
address this challenge, one can downsample the point cloud
to reduce the number of data points before feeding them into
the detection model.

While downsampling may increase processing speed, its
impact on detection performance remains a concern. This
paper explores the effect of downsampling strategies on the
robustness of PointPillars for 3D object detection. We fo-
cus on two common downsampling methods: random sam-
pling (RS) and farthest point sampling (FPS). By evaluat-
ing the model’s accuracy at various downsampling ratios for
each technique (Fig. 1), we aim to quantify the trade-off be-
tween computational or storage efficiency and detection per-
formance.
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Figure 1: 3D Bounding box mean Average Precision (mAP)
and detection speed of PointPillars-based object detection.
The results are shown for two popular downsampling tech-
niques (RS and FPS) and four downsampling ratios.

There are several benefits of building a 3D object detec-
tion system that is robust against downsampling:
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• Increased processing speed: Downsampling reduces the
number of data points that need to be processed, which
can significantly improve the speed of object detection.
This is especially important for real-time applications,
such as autonomous driving, where low latency is critical.

• Reduced memory requirements: Storing and process-
ing large LiDAR point clouds can be memory-intensive.
Downsampling can significantly reduce memory require-
ments, making it possible to run object detection on de-
vices with limited memory resources.

• Improved generalization: Downsampling can help to im-
prove the generalization performance of object detection
models as different datasets have different point cloud res-
olutions and characteristics. For example, a model trained
with high-resolution data is unlikely to generalize well to
low-resolution ones.

• Enhanced robustness to data loss: Models that are ro-
bust against downsampling should also be resilient to data
loss resulting from phenomena such as weather conditions
(e.g., rain 3) or targeted attacks 4.

This research offers valuable insights for researchers and
developers working on optimizing LiDAR-based object de-
tection for real-world applications in autonomous driving.
Understanding the sensitivity of PointPillars to downsam-
pling allows for a more informed approach when balancing
the need for speed or generalization with the requirement for
accurate object detection in complex environments.

1.1. Contributions

The contributions of the paper are as follows:

• We provide an in-depth analysis of the robustness of
LiDAR-based object detection, especially in the case of
PointPillars by quantifying the trade-off between effi-
ciency and accuracy. This information can be crucial to
practitioners.

• We identify optimal downsampling strategies for PointPil-
lars. By comparing the performance of PointPillars under
various downsampling scenarios, we point out which is
the most effective at maintaining accuracy while achiev-
ing significant computational gains.

• Guiding the development of robust and efficient PointPil-
lars variants. By analyzing our results, we aim to guide the
enhancement of PointsPillars to be more robust against
data loss.

1.2. Outline of the Paper

The paper is organized as follows: Section 2 surveys the re-
lated work. Section 3 describes our experiments’ methodol-
ogy, including downsampling techniques. Section 4 presents
our experimental results and evaluates them. Finally, Section
5 draws some conclusions and suggests future work.

2. Related Work

In this section, we first introduce the literature on LiDAR-
based object detection and motivate on chosing PointPillars
as a representative; then works about performance analysis
of object detection - with similar aim as our paper - are dis-
cussed.

2.1. LiDAR-based Object Detectors

Three main types of LiDAR-based object detectors can
be distinguished today: voxelization-based, point-based and
projection-based methods. Voxelization (e.g., 5, 6) converts
the point cloud into a 3D voxel grid, where each voxel repre-
sents a small region in space and aggregates the point cloud
data within it. Point-based approaches directly operate on the
raw LiDAR point cloud, treating each point as a separate en-
tity with spatial coordinates and additional information (e.g.,
intensity). Voxelization offers the advantage compared to
point-based approaches (e.g., 7, 8) in that the voxelized point
clouds can be processed by 3D convolutional neural net-
works. However, the conversion process can lead to the loss
of some details, and it can also be computationally inten-
sive compared to point-based approaches. Projection-based
approaches (e.g., 9, 10) project the LiDAR point cloud onto
a 2D image plane from a specific viewpoint (e.g., bird’s-
eye view). They can use well-established 2D convolutional
neural networks for object detection in the projected image
domain. In this way, they can be computationally efficient.
However, this simplification ignores the available informa-
tion from the 3rd dimension.

Instead of using 3D convolutions, PointPillars 1 treats the
pseudo-bird’s-eye view map as a virtual voxelized represen-
tation. This allows the entire model to be trained with ef-
ficient 2D convolutions. To achieve this, PointPillars uses
a simplified PointNet 11 architecture to extract features for
each individual point within vertical columns (pillars) of this
virtual voxel space.

As the review paper 2 and the current leaderboard of the
KITTI dataset state, PointPillars (,which merges the advan-
tages of different methodologies) continus to be of the fastest
methods (it enables real-time operation on computers with
relatively weak resources). It is also one of the most com-
monly used object detectors because of its easy and effi-
cient implementation. Therefore, we chose this algorithm to
examine 3D object detection robustness against downsam-
pling. On the one hand, as it is so popular in the research
community and among practitioners, studying it can be the
interest to a large community. On the other hand, having
already real-time running capabilities indicates that if the
method can be accelerated, then it can be adapted to new sen-
sors with short integration time (high measuring frequency)
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and low data point number (e.g., LIVOX Avia †) and in small
computers like Nvidia Jetson Nano ‡.

2.2. Surveys and Performance Comparisons related to
3D Object Detection

Resolution-agnostic object detection is not a new research
topic in autonomous driving 12. Previously, state-of-the-
art 3D object detectors were evaluated in different condi-
tions. E.g., in 13 VoteNet 14, MLCVNet 15, Groupfree 16

and 3DETR 17 were tested in different corruption severity
level. In 18 64-channel LiDAR data was downsampled to 32-
channel to test the compatibility of different data in object
detection. The same reason (generalization between differ-
ent datasets and LiDAR point cloud characteristics) guided
the research of 19, where different data was used for train-
ing. The performance of PointPillars was measured in 20 and
4 against adversarial attacks and common corruptions. The
above articles either examine different resolution LiDARs or
specific corruption types. The work in 21 downsamples after
pillarization, affecting only the consecutive processing steps.
To the best of our knowledge, the impact of downsampling
on Pointpillars have not been studied.

3. Methodology

This section provides a comprehensive analysis of our
methodology for evaluating the robustness of 3D object de-
tection against a decreased number of data points. First, we
introduce the downsampling approaches. Next, we describe
the dataset used and the implementation details.

3.1. Downsampling Approaches

Nowadays, machine learning-based approaches (e.g., CAS-
net 22 or Feat-FPS 23)can be applied to the point cloud sim-
plification problem. However, these are most often either
task-specific or learning-based solutions (do not help in gen-
eralization). For this reason, we used random sampling 24

and farthest point sampling 25, which are still relevant and
are still very popular today 26 11.

Random sampling 24 is a simple approach that involves
randomly selecting a certain number of points from the en-
tire dataset. Each point has an equal chance of being chosen.
Its main advantage is the computational efficiency. However,
it can lead to unevenly distributed points, especially in the
case of sparse datasets (like LiDAR data). Thus, points might
cluster in certain areas, leaving other regions unrepresented.

Farthest point sampling 25 is a more strategic approach
that aims for a more uniform distribution of the selected

† https://www.livoxtech.com/avia
‡ https://developer.nvidia.com/embedded/jetson-nano-developer-
kit

points. It works iteratively by repeatedly selecting the point
that is farthest away from the already chosen points until the
desired number of points is reached. It presents contrasting
features compared to random sampling; it is more computa-
tionally expensive, but it results in a more uniform distribu-
tion.

3.2. Dataset and Experiment Details

Dataset: In our experiments, we used the popular KITTI Vi-
sion Benchmark Suite 27, specifically, its 3D object detec-
tion dataset. This benchmark consists of 7481 training im-
ages, 7518 test images, together with same number of point
clouds, totaling about 80000 labeled objects. In our exper-
iments, only the labeled point cloud parts were used in the
usual division of 50-50 % split to training and validation data
of the original training set. The average precision was calcu-
lated to evaluate different type and degree downsampling.

The evaluation was done as the original KITTI evaluation
suggests. Thus, detections are considered only in the cam-
era field of view (FoV). For cars at least 70 %, while for
pedestrians and cyclists, at least 50 % of 3D bounding box
overlap was categorized as successful detection. Three dif-
ficulties were defined according to the benchmark proposal
(Easy, Moderate and Hard).

Experiment details: In our experiments, we used the py-
torch implementation of PointPillars § algorithm and our
trained model on the original KITTI object detection dataset.
All experiments were performed using a computer equipped
with Intel® Core™ i7-7820X CPU @ 3.60GHz × 16 and
NVIDIA GeForce GTX 1080 Ti 12GB. The point clouds
of the KITTI Object detection dataset were downsampled
with ratios of 2, 4, 8 and 16, using both random sampling
and farthest point sampling. After the downsampling (as the
KITTI dataset is labeled only in the camera FoV), only the
data points with positive X values were selected. (This re-
sulted in about only 1000 points as the input of the detection
model, in the case of the downsampling with the highest ra-
tio.) Finally, the detection model was evaluated according to
the KITTI’s proposal (introduced in the previous subsection)
for each downsampled validation point cloud.

4. Results and Discussion

The results of our analysis - according to the experiments de-
tailed in Section 3 - are shown in Table 1 and 2. The precision
of each category and different difficulty levels and also mean
Average Precision (mAP) across all categories are reported
in these tables. Besides, running time is provided for both the
downsampling methods (DS) and for the detection (Det.).

§ https://github.com/zhulf0804/PointPillars
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Ratio Method DS (s) Det. (s) mAP Car Pedestrian Cyclist
Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

1 0.032 68.85 90.03 87.72 85.39 60.83 54.87 50.86 79.31 63.98 60.23

2 RS 0.004 0.032 60.08 89.32 79.41 78.10 53.52 48.67 44.78 73.43 52.17 50.08
FPS 13.74 0.034 69.75 89.98 87.61 85.25 60.53 55.12 51.08 82.24 66.53 62.34

4 RS 0.003 0.028 47.78 87.53 69.72 67.78 39.46 37.38 34.00 52.90 36.23 34.57
FPS 6.89 0.028 65.68 89.98 87.14 79.50 49.11 46.30 43.18 78.83 63.62 59.00

8 RS 0.002 0.026 33.73 78.01 58.95 55.49 25.54 24.27 22.86 26.45 17.98 17.46
FPS 3.48 0.026 55.59 88.53 78.86 77.01 39.77 37.46 34.86 68.24 50.46 46.65

16 RS 0.001 0.024 7.65 19.45 13.77 13.04 9.09 9.09 9.09 0.09 0.08 0.08
FPS 1.80 0.024 37.89 81.18 72.49 65.50 19.78 17.28 16.86 33.66 23.89 22.16

Table 1: BEV detection results on the validation dataset of KITTI object detection benchmark

Ratio Method DS (s) Det. (s) mAP Car Pedestrian Cyclist
Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

1 0.032 61.29 86.15 76.53 69.10 51.77 46.27 42.75 78.17 61.06 58.73

2 RS 0.004 0.032 52.34 83.09 68.47 65.58 45.49 40.36 36.10 68.59 48.19 45.34
FPS 13.74 0.034 62.76 86.57 76.60 68.94 53.11 47.46 43.70 79.68 64.21 60.17

4 RS 0.003 0.028 38.78 74.63 56.56 49.12 29.24 27.11 25.12 48.67 32.67 30.92
FPS 6.89 0.028 57.56 86.38 73.56 67.50 40.91 38.94 35.49 76.39 60.18 56.52

8 RS 0.002 0.026 25.60 56.15 41.77 36.46 18.66 17.94 16.93 24.03 17.10 16.17
FPS 3.48 0.026 47.12 75.26 64.71 56.88 31.12 29.75 27.50 64.07 46.89 43.82

16 RS 0.001 0.024 4.57 2.98 4.55 4.55 9.09 9.09 9.09 0.07 0.07 0.07
FPS 1.80 0.024 25.43 48.28 43.52 38.48 11.54 11.90 10.65 28.63 20.86 19.56

Table 2: 3D bounding box detection results on the validation dataset of KITTI object detection benchmark

Figure 2: Example detections on unsampled point cloud



Golarits et al / Evaluating of LiDAR-based Object Detection

Table 1 contains Bird’s eye view (BEV) bounding box eval-
uations, while Table 2 shows the results of 3D Bounding Box
evaluations.

The tables reveal the following key observations:

1. Downsampling significantly affects precision.
For both downsampling methods (RS and FPS), precision
decreased as the downsampling ratio increased. The pre-
cision dropped considerably when the ratio was reached
16. For example, for 3D bounding box detection the mAP
value dropped to 4.57 (RS) and 25.43 (FPS) from the
61.29.

2. FPS generally outperformed RS.
FPS consistently produced higher mAP values compared
to RS. The advantage of FPS was more pronounced as
the ratio increased (Fig. 1). This is due to FPS generating
a more uniform point distribution than RS.

3. Precision can be even increased with downsampling.
This phenomenon of a slight increase of mAP can be ob-
served in the case of FPS and the downsampling ratio
2. This is beacuse ignoring less important points (points
close to each other can be redundant in terms of descrip-
tiveness) can reduce noise.

4. Downsampling, using either RS or FPS, can reduce infer-
ence time. As expected, both the downsampling time and
the detection time decreased with increasing downsam-
pling ratio. The decrease in inference time from 32 to 24
ms for a sampling ratio of 16, was small but significant
but significant. It increased the detection frequency from
about 31 Hz to 42 Hz.

5. Total processing time can be decreased with RS.
Only RS decreased the combined time for downsampling
and detection, this means reduction in overall processing
time.

In terms of detection accuracy, FPS generally appears to
be a better choice for downsampling in PointPillars than RS.
However, FPS does not enable real-time processing. For this
reason, new downsampling algorithms should be developed
to provide both computationally efficient and accurate 3D
object detection.

Fig. 3 illustrates downsampled point clouds with different
approaches and qualitative results about detections on them
from the original point cloud shown in Fig. 2.

Inspecting Figs. 2 and 3 together, one can see that the
number of detections significantly decreases to the point of
reaching the highest downsampling ratio. This is especially
true for the pedestrian class (which has the lowest num-
ber of points in general) and less true for the car category
(which has the highest number of points in general). Natu-
rally, the distance from the sensor also impacts the detections
as the point density of LiDAR point clouds decreases with
increasing range. It is also worth noting that the reliability
of the classification drops significantly, even in the cases of
smaller downsampling ratios. With a downsampling ratio of
2, classes are often confused. For example, pedestrians are

frequently categorized as cyclists. This can be explained by
the fact that objects (above ground) can be found, but bound-
aries between neighboring pedestrians are blurred by losing
points. Thus, human features in a bigger bounding box can
be mixed with cyclists.

5. Conclusions

This paper studied the impact of downsampling strategies
on the robustness of PointPillars for 3D object detection.
We evaluated the performance of PointPillars under random
and farthest point sampling techniques for various downsam-
pling ratios. Our analysis revealed that while FPS may im-
prove detection accuracy compared to random sampling, the
associated computational cost renders it impractical for real-
time applications. On the other hand, while random down-
sampling can improve overall runtime performance, its re-
sulting detection accuracy makes it unsuitable.

This work highlights the critical trade-off between accu-
racy and efficiency in LiDAR-based object detection. While
PointPillars exhibits some resilience to downsampling, sig-
nificant reductions in point cloud density ultimately lead to
performance degradation. Future research directions could
explore techniques to enhance PointPillars’ ability to han-
dle sparse data while maintaining real-time performance.
This could involve investigating lightweight network archi-
tectures specifically designed for downsampled point clouds
or incorporating mechanisms that prioritize informative data
points during downsampling.

By optimizing 3D object detection for efficient processing
of LiDAR data, we can pave the way for its better general-
ization and wider adoption in real-world applications.
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