
Swarmchestrate: Towards a Fully Decentralised

Framework for Orchestrating Applications in the Cloud-

to-Edge Continuum

Tamas Kiss1, Amjad Ullah2, Gabor Terstyanszky1, Odej Kao3, Soren Becker3,

Yiannis Verginadis4,5, Antonis Michalas6, Vlado Stankovski7, Attila Kertesz8, Elisa

Ricci9, Jörn Altmann10, Bernhard Egger10, Francesco Tusa1, Jozsef Kovacs1,11, Robert

Lovas11, 12
1 University of Westminster, London, UK, email:{kisst, terstyg, f.tusa,

j.kovacs}@westminster.ac.uk
2 Edinburgh Napier University, Edinburgh, UK, email: a.ullah@napier.ac.uk

3Technische Universitaet Berlin, Germany, email: {soeren.becker, odej.kao}@tu-berlin.de
4Institute of Communications and Computer Systems, National Technical University of

Athens, Greece email: jverg@aueb.gr
5School of Business, Department of Business Administration, Athens University of

Economics and Business, Greece

6Tampere University, Tampere, Finland, email: antonios.michalas@tuni.fi
7University of Ljubljana, Ljubljana, Slovenia, email: vlado.stankovski@fri.uni-lj.si

8FrontEndArt Software Ltd, Szeged, Hungary, email: attila.kertesz@frontendart.com
9Fondazione Bruno Kessler, Trento, Italy, email: eliricci@fbk.eu

10Seoul National University, Seoul, South Korea, email: jorn.altmann@acm.org,

bernhard@csap.snu.ac.kr
11Institute for Computer Science and Control (SZTAKI), Hungarian Research Network

(HUN-REN), Hungary, email: {jozsef.kovacs, robert.lovas}@sztaki.hu
12John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary

Abstract. Collecting and analysing large amounts of data in the Cloud-to-Edge computing

continuum raises novel challenges that traditional centralised orchestration solutions cannot

handle efficiently. To overcome the limitations of current centralised application management

approaches, this paper presents a fully decentralised application-level orchestrator, based on the

notion of self-organised interdependent Swarms. Application microservices are managed in a

dynamic Orchestration Space by decentralised Orchestration Agents, governed by distributed

intelligence that provides matchmaking between application requirements and resources, and

supports the dynamic self-organisation of Swarms. Knowledge and trust, essential for the

operation of the Orchestration Space, are managed through blockchain-based trusted solutions

and the utilisation of emerging methods such as Self-Sovereign Identities (SSI) and Distributed

Identifiers (DID). End-to-end security of the overall system is assured by utilising state-of-the-

art cryptographic and privacy-preserving data analytics algorithms. A digital twin, that runs in

parallel to the physical system, further improves its behaviour with predictive feedback. The

presented concept is going to be implemented in the EU-funded Swarmchestrate project that

starts in 2024.

mailto:vlado.stankovski@fri.uni-lj.si

1 Introduction

Orchestration is referred to as the coordination and management processes of

physical computational resources of an infrastructure environment to serve the

application requirements, as defined by Jiang et al. [1]. The definition of

infrastructure environment here is contextual. For example, Tomarchio et al. [2]

discussed cloud orchestration and, therefore, referred to it as coordination and

management processes of cloud resources, whereas Costa et al. [3] discussed this

within the context of the fog paradigm. Irrespective of the underlying infrastructure

environment, the overall goal of the orchestration system in terms of users’ business

requests is to ensure the meeting of Quality of Service (QoS) goals of applications.

Therefore, in the absence of a universally agreed definition, a Cloud-to-Edge

orchestration system is responsible for providing simultaneous access to the

heterogeneous resource landscape of the continuum for the automation of application

deployment and management over the resource landscape. It guarantees QoS goals,

by handling the required complex tasks of resource selection, allocation, deployment

and monitoring, and the run-time reconfiguration control of the resources and

applications.

Although there are several research efforts and even relatively mature solutions

providing orchestration capabilities, none of these can fulfil completely the highly

dynamic and complex requirements imposed by the Cloud-to-Edge continuum.

The efficient and effective management and processing of the large amounts of

data generated at the edges of the network must deal with versatile requirements.

Some data need to be processed locally due to regulations, privacy issues and/or

performance constraints, while some others may require access to long-term

sophisticated computational cloud resources. Applications running in such systems

have a wide range of requirements, including the execution of low-latency analytics

closer to the data source, privacy sensitivity, context awareness, time and location

awareness, as well as the need for simultaneous access to geographically distributed

arrays of sensors, remote localised heterogeneous computational resources, and large-

scale on-the-fly allocated multi-cloud infrastructure. Therefore, a new generation of

orchestration tools and solutions is needed to handle this complexity efficiently and

to take into consideration this dynamically changing set of complex requirements in

an intelligent way.

All currently available orchestration tools, responsible for deploying and managing

data processing applications in the Cloud-to-Edge computing continuum, are based on

a certain level of centralisation [4]. Such centralisation, while relatively easy to

implement, carries several disadvantages. The central component can become a single

point of failure, can be easily overloaded as the system scales, and provides a good

target for security attacks [5]. Additionally, such a centralised approach does not fit

well with the highly distributed and dynamically changing nature of the computing

environment. A centralised management approach cannot react fast enough to some

changes in local environments (e.g. volatility of resources) and cannot support fast

adaptation of resources and application requirements (e.g. due to the movement of

certain computing elements).

An alternative is a decentralised self-adaptive system that can be aware of its

surroundings and can organise and reorganise itself without any central control and

management. While the implementation of such a system is complex, recent advances

in various fields of computing, including Swarm computing, distributed AI,

distributed ledger systems and decentralised identity management, now enable the

efficient realisation of such an approach.

To address these challenges Swarmchestrate, a new EU-funded research project

kicking off in 2024, aims to combine and extend the above-mentioned emerging

technologies and create a completely decentralised autonomous and self-organised

application management system. The approach applied by Swarmchestrate is

fundamentally new to application orchestration and suitable to manage hyper-

distributed applications that span across large distances and the different layers of the

dynamic compute continuum.

The rest of this paper overviews the current efforts towards decentralised

orchestration, introduces the high-level concepts and fundamental building blocks of

the Swarmchestrate framework, and outlines its main components that need to be

implemented.

2 From Centralised to Decentralised Orchestration

Existing Cloud-to-Edge orchestration solutions can be divided into three

categories: static [6], rule-based [7] and machine learning (ML) based [8] intelligent

approaches. Static approaches place the burden on system engineers for structuring

the system, as they statically map the different parts of an application to different

resources of the compute continuum. Rule-based approaches embed some predefined

threshold-based rules that help in determining the selection of resources. Lastly, ML-

based approaches make informed decisions based on the collected data at runtime. For

a more detailed list of different orchestration solutions from these categories, refer to

Ullah et al. [9]. Most of these existing solutions, irrespective of their individual

characteristic and underlying implementation techniques, follow a centralised model

where a central entity, usually running in the cloud, collects data for further decision-

making from the entire compute continuum.

In contrast to the centralised model, there are only a few solutions that follow the

decentralised approach. Some examples include HYDRA [10] and Caravela [11] that

provide a peer-to-peer (P2P) network of nodes where each node is both orchestrator

and resource; mF2C [12] that follows a hierarchical architecture, where different

agents work at different layers of the ecosystem and facilitate proactive decision

making; Ozyar et. al. [13] that utilises Blockchain to ensure security, however, its

scope is limited to container placement at the edge layer; and finally, EPOS Fog [14],

a multi-agent system where each node has its own software agent that defines which

service is deployed on which host in the neighbourhood of the agent.

The Swarmchestrate project has the ambition to evolve the concept of

decentralised Cloud-to-Edge orchestration in dimensions: (1) Elaborate the concept of

decentralised orchestration from an application centric approach, in contrast to the

currently available resource-oriented orchestration solutions that target and optimise

resource provider objectives. (2) Develop novel standards and protocols for the

collaboration of the decentralised orchestrators based on Swarm computing principles

and the collaboration of multiple Swarms for the fulfilment of the overall objectives

of the target applications. (3) Develop novel deployment and reconfiguration

strategies with the aim of optimising application centric objectives based on certain

requirements, e.g. application topology, fault tolerance, performance goals and

various contextual constraints, such as resources, energy utilisation and geographical

location.

The developed algorithms and solutions will be utilised to transform a centralised

open-source Cloud-to-Edge orchestrator, called MiCADO-Edge [15], into a fully

decentralised solution based on Swarm computing principles. The new decentralised

orchestrator will then be applied in several use cases to improve wastewater manhole

management, create a metaverse digital twin of natural habitat, provide more efficient

parking space management, and improve video scene analytics in cities.

3 The Proposed Swarmchestrate Architecture

The Swarmchestrate project aims to develop a novel and innovative decentralised

application-level orchestration solution with the potential to change the fundamentals

of how applications are managed and executed in the highly dynamic Cloud-to-Edge

compute continuum. Within the decentralised orchestration spectrum,

Swarmchestrate’s approach follows an application-centric view in contrast to the

currently available resource-oriented orchestration solutions that target and optimise

resource provider objectives.

Fig. 1. High-level Architecture of Decentralised Orchestration in Swarmchestrate

The overall methodology of Swarmchestrate has been developed to address the

inherent highly decentralised nature of the compute continuum, which is formed of

several heterogeneous resources, spanning multiple administrative domains, that

exhibit highly dynamic behaviour in terms of capacity and availability. Therefore, the

development of intelligent mechanisms for the orchestration of applications deployed

within this continuum becomes essential. Application owners do not have to be aware

of the complexity of the underlying resource infrastructure. In fact, they can use a

single and uniform high-level and interoperable descriptor that incorporates both the

topology and the constraints of an application, as well as the related optimisation

goals and performance requirements. Swarmchestrate abstracts the low-level details

of the Cloud-to-Edge continuum and allows users to run their applications’

microservices in a multi-domain infrastructure while taking advantage of its built-in

trust and guaranteed security features.

Based on these essential aspects, Fig. 1 presents a high-level architecture, depicting

the overall vision of Swarmchestrate and how it works. From a structural viewpoint,

the overall system is divided into four distinctive parts, comprising of (1) Application

view – dealing with application specification, (2) Orchestration space – handling all

core functions of orchestration, (3) Trusted knowledge management – secure handling

and management of all system-wide knowledge and interface required to enable trust

and transparency, and (4) Resource layer – representing resources of the continuum

that span across multiple cloud environments and non-cloud layers. The technical

implementation of these parts is being realised using the following fundamental

concepts described below.

3.1 Application View

Within the Application view, DevOps can describe their applications, including

resource needs, governing policies and QoS requirements. There are several such

specification formats, especially for cloud computing environments, and these are

essential to ensure portability and avoid vendor lock-in. However, the emergence of

the Cloud-to-Edge model raises the quintessential need for the extension of such

cloud description languages. There are clear shortcomings when capturing

deployment, monitoring, contextualisation, and reconfiguration aspects of Cloud-to-

Edge applications. Current approaches cannot sufficiently cope with the concept of

decentralisation required in application management and orchestration, especially

when distributed Cloud-to-Edge continuum resources are involved.

To improve this, Swarmchestrate introduces modelling artefacts that can extend a

standards-based specification, such as TOSCA [16], to cover all the necessary

specification details, allowing the decentralised and automated DevOps platform to

manage and orchestrate microservices-based applications in the heterogeneous and

dynamic Cloud-to-Edge continuum. The project concentrates on enhancing the

specification for the entire application lifecycle, allowing application and resource

specification across the Cloud-to-Edge continuum, which is still missing at large.

In Swarmchestrate, an application can be of different types (e.g., batch-based, or

long-lasting services) and can consist of multiple container-based microservices,

whose blueprints are possibly hosted in different repositories. As represented in Fig.

1, by using the above-mentioned enhanced modelling features, application owners can

describe a deployment model of their applications consisting of the application

topology and the high-level description of its contextual requirements in terms of

resources (e.g., security, geographical constraints), the application optimisation

criteria and the related QoS goals in terms of performance (e.g., latency, trust). Such

an approach takes care of automating the instantiation of the required microservices

on the underlying Cloud-to-Edge infrastructure according to the given deployment

model, without the need of further involvement of the application owner.

3.2 Orchestration Space - Decentralisation, Swarms and Intelligence

In Swarmchestrate, the applications are submitted to the Orchestration Space,

which is a distributed entity with no central access point. The notion of Orchestration

Space is the confluence of three concepts – decentralisation, Swarms and intelligence

– for achieving efficient, optimised and trusted orchestration of applications in the

Cloud-to-Edge eco-system.

As it was analysed in Section 2, the majority of existing orchestration solutions are

typically based on centralised architectures. Whilst such centralised solutions have a

number of benefits, they do not fit well with the distributed nature of the Cloud-to-

Edge continuum, which requires a more decentralised orchestration approach.

Resources closer to the edge of the network are typically volatile, their network

connection may be lost from time to time, and their processing and data storage

capabilities are limited. Therefore, more emphasis must be put onto local decision-

making and to the collaboration of multiple interacting entities every time global

decisions related to the behaviour of applications need to be made. To address these

issues, Swarmchestrate follows a decentralised approach towards orchestration where

multiple players are responsible for executing the core functions of orchestration in

the Cloud-to-Edge ecosystem in place of a centralised entity. This notion of

decentralisation will be realised through the implementation of Swarms.

The key characteristic of Swarm computing [17] is the emergence of the collective

behaviour and intelligence of individual agents as a result of interactions between

them, rather than being explicitly controlled by a central entity. The usage of

distributed agents enables a self-organised, highly scalable, and adaptable

orchestration approach, which fits perfectly with the highly dynamic and distributed

nature of Cloud-to-Edge systems. The common goal that the distributed agents are

aiming to achieve in this scenario is the execution of orchestration functions for

the applications submitted to the Orchestration Space.

Swarms are commonly associated with the concept of close proximity [18]

meaning that agents geographically located near to each other can come together to

form a Swarm dynamically, in order to cooperate to the completion of a task.

However, in the Cloud-to-Edge compute continuum, an application – often consisting

of multiple interconnected microservices – requires simultaneous access to resources

distributed across the different layers of the compute continuum. Based on this aspect,

Swarmchestrate extends the concept of Swarm-formation from close proximity to

logical proximity [19]. This is determined based on the application’s requirements

and characteristics, i.e., resource requirements (such as CPU, memory, storage),

security requirements, locality, performance, availability, energy constraints, trust

factors, etc., instead of considering the resources’ geographical distribution only. In

this regard, we formalise the semantics for logical proximity based on application

requirements and characteristics of involved resources and further define the

mechanism of self-organisation based on logical proximity. We are also defining

protocols for intra- and inter-swarm coordination.

In Orchestration Space, Swarms can be formed based on the above-mentioned

concept of logical proximity. They are self-organised and fully dynamic, as resources

can join or leave a Swarm based on their changing requirements/availability (or

preferences) and/or dynamically changing application characteristics. Furthermore,

based on the notion of logical proximity, we also envision that a single resource may

be part of more than one Swarm. Each Swarm aims to fulfil the requirements of a

particular application within the Orchestration Space. Hence, a Swarm provides this

notion of Application Space (see Fig. 1) that is potentially changing at any point in

time, based on application requirements and resource behaviours. Although Swarms

can change, the overall lifetime of the Application Space is directly correlated with

the application’s lifetime. After completing/terminating the application, the Swarm

dissolves as a result of collective self-organising decisions.

Swarms within Orchestration space are aware of each other, hence, they can also

influence each other’s behaviour. For example, a resource that is part of multiple

Swarms can become overloaded as a result of the load in one particular Swarm,

ultimately affecting the performance of other Swarms too. Therefore, strategies for

inter-Swarm coordination are further formalised to achieve the overall objectives at

global level.

From a technical viewpoint, Orchestration Agents (OA) in Swarms are responsible

for picking up submitted applications and their microservices, and carrying out the

tasks. OAs are attached to microservices and responsible for the self-organisation of

the Swarms and for the inter-Swarm communication, as described above. In the

absence of a central entity, these agents interact with each other based on certain

simple principles and are able to share information within and across Swarms.

Through the holistic intelligence based on the interaction and cooperation amongst

OAs, the application-level objectives can be achieved.

Swarmchestrate exploits the use of distributed AI techniques to establish Swarm

intelligence systems with an aim to optimise the overall dynamics of Swarms. This

includes aspects such as the dynamic formation of Swarms, the individualistic

behaviour of OAs, principles for intra- and inter-Swarm coordination, interaction with

the environment, information sharing, and adaptation in case of changes in the

operating conditions.

3.3 Trusted Knowledge Management

Trust in a decentralised environment is difficult to achieve. Swarmchestrate intends

to generate various verifiable credentials/presentations and proofs that can be used in

the context of obtaining and providing trust (e.g. proof of presence, proof of location,

proof of computing capabilities). The possibility to generate various Zero-Knowledge

proofs is considered across all levels of the applications. Swarmchestrate deals with

trust as the most essential and fundamental pillar of the platform.

For this purpose, and to support the overall philosophy of decentralisation,

Swarmchestrate develops a Blockchain-based decentralised knowledge and trust

engine/infrastructure, which is shown on the right-hand side of Fig. 1. The role of this

infrastructure is twofold: it is responsible for the global handling and management of

knowledge, as well as for facilitating overall transparency and assuring trust amongst

the system, the distributed resource layer and the users’ applications running on the

Swarmchestrate platform. The functionalities of this persistent trusted knowledge

management infrastructure are available and used by both the Resource and the

Orchestration Space layers.

Relevant sets of trust attributes, essential for the transparent and trustworthy

interactions amongst the entities of the system within the context of orchestration in

the Cloud-to-Edge compute continuum, are the subject of an initial investigation

carried out by the project. This aims at the development of formal models of

trustworthiness that help us in guaranteeing the dependable and trusted interaction

between entities, stakeholders and services in a decentralised environment. These

formal models provide foundation to the development of evidence- and blockchain-

based trust management solutions using methods of SSI (Self-Sovereign Identity) [20]

and DID (Decentralised Identifier) [21]. Using such a solution, identities are created

and associated with various functionalities when resources join Swarmchestrate, so

that these can only operate under circumstances where proper rights are given to

them. Hence, it will be demonstrated that full transparency, traceability and privacy-

preserving identity and role management can be achieved based on the above

mechanisms.

Furthermore, the Blockchain-based knowledge base manages the overall

information related to resource descriptions, system interactions and decision making,

as well as applications using smart contracts and decentralised oracles. Therefore, at

any point in time, the resources can be discoverable based on various contextual

attributes and trust factors for Swarms’ formation, as well as for the verification of

system and application-level claims through external entities.

3.4 Resources Layer

In the Swarmchestrate concept, a resource is referred to as any computational

resource ranging from a dynamically created virtual machine in the cloud, or a

physical node that exists at any layer of the compute continuum, to an intelligent

sensor with processing capability. Furthermore, a resource can also be a pre-deployed

software service running on some dedicated hardware. These resources, shown at the

bottom of Fig. 1, can be heterogeneous and can belong to different administrative

domains. A resource can be characterised by various contextual attributes such as

hardware characteristics, supported operating system, geographical location, mobility

and battery power. Such characteristics are used to identify the suitability of a

resource for a particular task at any given time.

In Swarmchestrate, a resource can be considered as a trusted resource, once it gets

registered using DID-based identities and becomes able to produce proofs for each of

the claims, i.e., the assertions made regarding its characteristics. These proofs are

verified before the formation of the Swarm and/or when the resource joins a particular

Swarm. The verification aims to establish the truth of the above claims to ensure the

suitability of that resource for a particular Swarm.

4 Implementation of the Swarmchestrate Concept

The implementation of the above-mentioned fundamental concepts of

Swarmchestrate is being achieved through a set of independent technical components

that interwork to realise the overall vision of the project. Fig. 2 shows these

components as pluggable blocks from which the overall framework is built. A short

description of each component is provided below.

Fig. 2. Components of the Swarmchestrate Framework

Context-aware Semantics for Application Specification. This component

supports the modelling of fog and edge nodes in addition to cloud resources.

Moreover, it focuses on modelling entities that are necessary from the viewpoint of

decentralisation and AI-enabled operations, such as the specification of context-aware

attributes and aspects of reconfiguration. The modelling approach is being enhanced

with suitable constructs related to the decentralised concept of the Swarmchestrate

platform to allow the parallel deployment of topology by decentralised orchestrators

in the application space.

Decentralised Orchestration Framework. The component is responsible for

producing the overall integrated orchestration solution, in line with the decentralised

vision of Swarmchestrate. The implementation of the component substantially

transforms and extends an existing open-source Cloud-to-Edge orchestrator, called

MiCADO [22], into a fully decentralised solution by utilising the developed

algorithms and solutions implemented in other technical components of the

framework.

Swarms Management. It is responsible for managing the ad-hoc formation of

Swarms from the available resources, which are then used for the deployment and

execution of an application. In contrast to traditional Swarm computing management

tasks, the utilised resources are located in different dimensions of the Cloud-to-Edge

continuum, which requires a peer-to-peer overlay network protocol to enable

communication between them. Subsequently, this component implements such a

protocol in each of the participating resources to enable a discovery and connection

establishment process that automates the formation of a common overlay network,

independently from the underlying network architectures.

AI-Driven Decentralised Intelligence. This component comprises of solutions for

enabling effective and flexible utilisation of AI algorithms, in support of decentralised

orchestration decisions. The AI algorithms serve two different but related purposes.

First, the distributed algorithms are executed throughout the Cloud-to-Edge

computing continuum to provide matchmaking functionality between the

requirements of the application’s microservices and the available resources. The

matchmaking is performed both at deployment and also at run-time to support the

continuous reconfiguration of applications to fulfil QoS requirements. Second, the AI

algorithms support the Swarms Management module when considering the formation,

reformation and interactions between multiple Swarms.

Energy Optimisation. The component provides an allocation schema for all

application microservices onto the available resources, focusing on energy

preservation and utilising the AI-driven decentralised intelligence described above.

The calculation of the energy optimisation solution requires detailed input

information about the available devices in the distributed system (technical aspects)

and the applications to be executed (economic aspects). With this input, the

component can consider cross-layer energy optimisation issues (e.g., hardware,

software, and networking) for all types of Cloud-to-Edge devices and application-

specific energy issues (e.g., urgency expressed by a high willingness to pay for

computing services). As the calculation of the optimisation solution (even with the

help of heuristics for multi-objective optimisation algorithms) is computationally too

expensive, time-consuming, and not accounting for the highly dynamic environment

of the envisioned Cloud-to-Edge ecosystem, continuous learning approaches will be

applied.

Simulation and Digital Twin Modelling. This component is responsible for

modelling decentralised self-organising orchestration services using simulation. The

component is based on the open-source DISSECT-CF-Fog simulator [23], which is

able to utilise a multi-layered Cloud-to-Edge infrastructure. However, new modelling

constructs are being defined to incorporate decentralised resource management and

decision-making by introducing an orchestration layer and a Swarm manager

component to the simulation architecture. Later in the project, the simulator will be

further enhanced into a digital twin solution that runs in parallel to the real system,

evaluates its behaviour in real-time based on possible alternative scenarios, and

initiates certain reconfiguration decisions, if required.

Decentralised Trusted Knowledge Management. The component provides a

persistent and trusted knowledge base for the global management of application-

descriptors and market-tradable resources and services in the Cloud-to-Edge

continuum. It is based on standard compatible and blockchain-based self-sovereign

identities that describe all participating entities in the fully distributed environment.

The component is being implemented by following the principles of Decentralised

Identities (DID) and Verifiable Credentials. as defined by the W3C [24].

Secure computing and privacy. The secure computing and privacy layer provides

end-to-end security for the orchestrator and the targeted and managed applications. It

utilises several modern encryption techniques, e.g. Functional Encryption (FE) and

Hybrid Homomorphic Encryption (HHE), to analyse encrypted data stored in

distributed locations as if they were unencrypted (i.e., in a privacy-preserving way). It

also provides a decentralised trust management solution using blockchain-based FE

mechanism to facilitate overall transparency and assure trust amongst the system, the

distributed computing infrastructure, and the storage resources. Finally, it aims to

provide an anonymous Sybil-resistant DID solution so that each entity can only get

one ID.

5 Conclusions and Further Steps

Due to the increasing adaptation of the Cloud-to-Edge continuum by applications

with complex and changing requirements, it is crucial to develop novel mechanisms

for the management of large microservices-based applications in such environments.

Traditional centralised application management and orchestration approaches are

quickly becoming bottlenecks in these scenarios. To tackle this challenge, the

Swarmchestrate project developed the concept of a novel fully decentralised

application-focused orchestration framework that is based on Swarm computing

principles and utilises distributed AI and self-sovereign identities for application life-

cycle management.

The project starts in 2024, and after conducting a detailed analysis of currently

available technologies, it will develop its framework using an incremental and

iterative methodology. Swarmchestrate will demonstrate its results by reengineering

an existing centralised orchestrator and implementing four real-life use cases.

References

1. Y. Jiang, Z. Huang, D. H. Tsang, Challenges and Solutions in Fog Computing Orchestration,

IEEE Network (2018). doi:10.1109/MNET.2017.1700271.

2. O. Tomarchio, D. Calcaterra, G. D. Modica, Cloud resource orchestration in the multi-cloud

landscape: a systematic review of existing frameworks, Journal of Cloud Computing (2020).

doi:10.1186/s13677-020-00194-7.

3 B. Costa, J. Bachiega Jr, L. R. de Carvalho, A. P. Araujo, Orchestration in fog computing: A

comprehensive survey, ACM Computing Surveys (CSUR) 55 (2) (2022) 1–34.

4. Svorobej, S., Bendechache, M., Griesinger, F., Domaschka, J.: Orchestration from the Cloud

to the Edge. The Cloud-to-Thing Continuum: Opportunities and Challenges in Cloud, Fog

and Edge Computing 61–77 (2020)

5. Hong, C. H., & Varghese, B. (2019). Resource management in fog/edge computing: a survey

on architectures, infrastructure, and algorithms. ACM Computing Surveys (CSUR), 52(5),

1-37.

6. Kumara, I., Mundt, P., Tokmakov, K., Radolović, D., Maslennikov, A., González, R. S., ... &

Meditskos, G. (2021). Sodalite@rt: orchestrating applications on cloud-edge infrastructures.

Journal of Grid Computing, 19, 1-23.

7. X. Masip‐bruin et al., “Managing the cloud continuum: Lessons learnt from a real

fog‐to‐cloud deployment,” Sensors, vol. 21, no. 9, May 2021.

8. Verginadis, Y., Apostolou, D., Taherizadeh, S., Ledakis, I., Mentzas, G., Tsagkaropoulos,

A., ... & Paraskevopoulos, F. (2021). Prestocloud: a novel framework for data-intensive

multi-cloud, fog, and edge function-as-a-service applications. Information Resources

Management Journal (IRMJ), 34(1), 66-85.

9. Ullah, A., Kiss, T., Kovács, J., Tusa, F., Deslauriers, J., Dagdeviren, H., ... & Hamzeh, H.

(2023). Orchestration in the Cloud-to-Things compute continuum: taxonomy, survey and

future directions. Journal of Cloud Computing, 12(1), 135.

10. Jimenez, L. L., & Schelen, O. (2020). HYDRA: Decentralised location-aware orchestration

of containerized applications. IEEE Transactions on Cloud Computing, 10(4), 2664-2678.

11. Pires, A., Simão, J., & Veiga, L. (2021). Distributed and decentralised orchestration of

containers on edge clouds. Journal of Grid Computing, 19, 1-20.

12. Masip-Bruin, X., Marín-Tordera, E., Sánchez-López, S., Garcia, J., Jukan, A., Juan Ferrer,

A., ... & Kennedy, J. (2021). Managing the cloud continuum: Lessons learnt from a real fog-

to-cloud deployment. Sensors, 21(9), 2974

13. Özyar, U. C., & Yurdakul, A. (2022, August). A Decentralised Framework with Dynamic

and Event-Driven Container Orchestration at the Edge Espoo, Finland, 2022, pp. 33-40,

doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics55523.2022.00017.

14. Nezami, Z., Zamanifar, K., Djemame, K., & Pournaras, E. (2021). Decentralised edge-to-

cloud load balancing: Service placement for the Internet of Things. IEEE Access, 9, 64983-

65000.

15. Ullah, A.; Dagdeviren, H.; Ariyattu, R.; DesLauriers, J.; Kiss, T.; Bowden, J. MiCADO-

Edge: Towards an Application-level Orchestrator for the Cloud-to-Edge Computing

Continuum. Journal of Grid Computing 2021, 19. doi:10.1007/s10723-021-09589-5.

16. Tsagkaropoulos, Andreas, et al. "Extending TOSCA for Edge and Fog Deployment

Support. Electronics 2021, 10, 737.

17. K. Kaur and Y. Kumar, "Swarm Intelligence and its applications towards Various

Computing: A Systematic Review," 2020 International Conference on Intelligent

Engineering and Management (ICIEM), London, UK, 2020, pp. 57-62, doi:

10.1109/ICIEM48762.2020.9160177.

18. I. Lera, C., et al. “Availability-Aware Service Placement Policy in Fog Computing Based

on Graph Partitions,” IEEE Internet Things J., vol. 6, 2019.

19. Sharma, V., Kumar, R., & Rathore, N.. Topological Broadcasting Using Parameter

Sensitivity-Based Logical Proximity Graphs in Coordinated Ground-Flying Ad Hoc

Networks. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl., 2015

20. Preukschat, Alex, and Drummond Reed. Self-sovereign identity. Manning Publications,

2021.

21. [on-line] Decentralised Identifiers (DIDs) v1.0: https://www.w3.org/TR/did-core/, accessed

10/12/2023.

22. Kiss T., Kacsuk P., Kovacs J., Rakoczi B., Hajnal A, Farkas A., Gesmier G., Terstyanszky

G., MiCADO - Microservice-based Cloud Application-level Dynamic Orchestrator, Future

Generation Computer Systems, Volume 94, pp 937-946 (2019).

23. Markus, A., Kertesz, A. (2021). Investigating IoT Application Behaviour in Simulated Fog

Environments. In: Ferguson, D., Pahl, C., Helfert, M. (eds) Cloud Computing and Services

Science. CLOSER 2020. Communications in Computer and Information Science, vol 1399.

Springer, Cham.

24. Sporny, M., Longley, D., & Chadwick, D. (2022, March 3). Verifiable credentials data

model V1.1. W3C. Retrieved March 18, 2023, from https://www.w3.org/TR/vc-data-model

https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model

