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The notion of P -stability of an infinite set of degree sequences 
plays influential role in approximating the permanents, 
rapidly sampling the realizations of graphic degree sequences, 
or even studying and improving network privacy. While there 
exist several known sufficient conditions for P -stability, we 
don’t know any useful necessary condition for it. We also do 
not have good insight of possible structure of P -stable degree 
sequence families.
At first we will show that every known infinite P -stable degree 
sequence set, described by inequalities of the parameters 
n, c1, c2, Σ (the sequence length, the maximum and minimum 
degrees and the sum of the degrees) is “fully graphic” meaning 
that every degree sequence from the region with an even 
degree sum, is graphic. Furthermore, if Σ does not occur in 
the determining inequality, then the notions of P -stability 
and full graphicality will be proved equivalent. In turn, this 
equality provides a strengthening of the well-known theorem 
of Jerrum, McKay and Sinclair about P -stability, describing 
the maximal P -stable sequence set by n, c1, c2. Furthermore 
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we conjecture that similar equivalences occur in cases if Σ also 
part of the defining inequality.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

In this paper we explore the connection between P-stability and the “fully graphic” 
property of specific regions of degree sequences, establishing a close relationship between 
these concepts.

We start the section with recalling and introducing some notions and notations. If 
n > c1 ≥ c2 and Σ are natural numbers with n · c1 ≥ Σ ≥ n · c2, let

D(n, c1, c2) = {(d1, . . . , dn) ∈ Nn : c1 ≥ d1 ≥ · · · ≥ dn ≥ c2,
∑n

i=1 di is even},

D(n,Σ, c1, c2) = {(d1, . . . , dn) ∈ D(n, c1, c2) :
∑n

i=1 di = Σ}.

We will refer the elements of D(n, c1, c2) as degree sequences. As usual, an element of 
D(n, c1, c2) is graphic if there is a simple graph with these degrees. Otherwise the element 
is non-graphic. We say that a collection D of degree sequences is a simple degree sequence 
region if and only if there exists a property ϕ(n, Σ, c1, c2) such that

D = D[ϕ] :=
⋃

{D(n,Σ, c1, c2) : n > c1 ≥ c2 and ϕ(n,Σ, c1, c2) holds} . (SR)

Similarly, we say that a collection D of degree sequences is a very simple degree sequence 
region if and only if there exists a property ψ(n, c1, c2) such that

D = D[ψ] :=
⋃

{D(n, c1, c2) : n > c1 ≥ c2 and ψ(n, c1, c2) holds} . (VSR)

We will use the expression (very) simple region for short.

A (very) simple region D will be called fully graphic if and only if every degree sequence 
from the region is graphic. D is almost fully graphic if and only if D \ D is fully graphic 
for some finite D.

Given a graphic degree sequence D of length |D| = n, denote G(D) the set of all 
realizations of graphic sequence D and let

∂(D) =
∑

1≤i<j≤n

|G(D + 1−i
−j)|/|G(D)|, (1)

where the vector 1−i
−j is comprised of all zeros, except at the ith and jth coordinates, 

where the values are −1. The operation D �→ D+1−i
−j is called a perturbation operation

on the degree sequences. We define two more similar operations: D + 1−i
+j and D + 1+i

+j

http://creativecommons.org/licenses/by-nc-nd/4.0/
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analogously. Let us emphasize that we do not assume that i and j are different, so for 
example the operation D + 1+j

+j is also defined, and it adds 2 to the jth coordinate.
We say that a family D of degree sequences is P-stable if there is a polynomial p(n)

such that ∂(D) ≤ p(|D|) for each graphic element D of D. Let us emphasize that we 
do not require every element of a P-stable family to be graphic. The P-stability has 
alternative, but equivalent definitions using different perturbation operations. In the 
Appendix of this paper, we describe a short history of these definitions, and prove their 
equivalence. (As far as we are aware, this is the first explicit discussion of this topic in 
writing.)

The P-stability of an infinite family of degree sequences is an important property. 
It would be enough to mention one result: the switch Markov Chain process rapidly 
mixes on P-stable families (see [5, Theorems 8.3]). Furthermore, that P-stability plays 
an influential role in approximating the permanent, and even studying and improving 
network privacy.

Determining whether a particular family is P-stable is typically challenging. There 
exist only a few results establishing the P-stability of families of degree sequences for 
simple graphs. First, we examine three of them which implicitly considered simple and 
very simple regions.

(P1) (Jerrum, McKay, Sinclair [11]) The very simple degree sequence region D[ϕJMS] is 
P-stable, where ϕJMS ≡ (c1 − c2 + 1)2 ≤ 4c2(n − c1 − 1).

(P2) (Greenhill, Sfragara [9]) The simple degree sequence region D[ϕGS ] is P-stable, 
where ϕGS ≡ (2 ≤ c2 and 3 ≤ c1 ≤

√
Σ/9). (This result was not announced 

explicitly, but [9, Lemma 2.5] clearly proved this fact.)
(P3) (Jerrum, McKay, Sinclair [11]) The simple degree sequence region D[ϕ∗

JMS] is P-
stable, where ϕ∗

JMS ≡ (Σ −nc2)(nc1−Σ) ≤ (c1−c2)
{
(Σ −nc2)(n −c1−1) +(nc1−

Σ)c2
}
.

In contrast with P-stability, the classical theorem of Paul Erdős and Gallai ([3]) makes 
it easy to check if a certain sequence is graphic or not. As an extension of this re-
sult, in Section 2 we show that every simple region D(n, Σ, c1, c2) contains exactly one
primitive element, (i.e. a sequence in the form (c1, . . . , c1, a, c2, . . . c2)), and the region 
D(n, Σ, c1, c2) is fully graphic if and only if its primitive element is graphic (see Theo-
rem 2.5).

In this way we have established a machinery to decide whether certain (very) simple 
regions are fully graphic or not. Using that machinery, in Theorems 3.1, 3.4 and 3.6 we 
show the following

(P1∗) The very simple region D[ϕJMS ] is fully graphic.
(P2∗) The simple region D[ϕGS ] is fully graphic.
(P3∗) The simple region D[ϕ∗

JMS ] is fully graphic.
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When comparing statements (P1) and (P2) with their counterparts (P1∗) and (P2∗), 
a fundamental question arises, serving as the central focus of this paper: What is the 
connection between P-stability and the fully graphic property of specific (very) simple 
regions?

Concerning the “fully graphic −→ P-stable” direction, if we consider very simple 
regions, then we can prove the following strengthening of (P1) which is actually the 
strongest possible result (Theorem 4.2):

Theorem. The largest fully graphic very simple region

Dmax :=
⋃

{D(n, c1, c2) : D(n, c1, c2) is fully graphic}

is P -stable, and so the switch Markov chain is rapidly mixing on Dmax.

We do not know whether a similar statement holds for simple regions.

Problem 1.1. Is it true that the largest fully graphic simple region

D′ =
⋃

{D(n,Σ, c1, c2) : D(n,Σ, c1, c2) is fully graphic}

is P -stable?

Concerning the “P-stable −→ fully graphic” direction, we have a partial result claiming 
that a P-stable very simple region should contain large fully graphic very simple regions 
provided the region satisfies some natural restrictions. To formulate our result precisely, 
let us say that a very simple region D is a cone region if and only if for some functions 
f, g ∈ NN we have

D = D(f, g) :=
⋃

{D(n, g(n), f(n)) : n ∈ N}.

In Section 5 we prove the following results (Theorem 5.10 and Corollary 5.11)

Theorem. Assume that f, g, h ∈ NN are increasing functions. If the cone region D(f, g)
is P-stable, then D(f + h, g − h) is almost fully graphic provided

(1) f(n + k) ≤ f(n) + k for each n, k ∈ N,
(2) limn→∞h(n)/ ln(n) = ∞.

Corollary. Assume that 0 ≤ ε2 < ε′2 < ε′1 < ε1 ≤ 1. If the very simple region D :=⋃
n∈N D(n, 	ε1 ·n
, �ε2 ·n�) is P-stable, then the region D′ =

⋃
n∈N D(n, 	ε′1 ·n
, �ε′2 ·n�)

is almost fully graphic.
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This is a partial answer for the problem raised in the Abstract: the structure of each very 
simple P -stable region is essentially fully determined. The proof of the previous theorem 
is based on some observations concerning split graphs and Tyshkevich product.

In Section 4, besides proving that the largest graphic very simple region is P-stable, 
we also construct new P-stable simple regions. To do so we improved a method which 
was developed in [11] to prove (P1). In [11] to obtain (P1) Jerrum, McKay and Sinclair 
actually proved that ∂(D) ≤ n10 for each D ∈ D(n, c1, c2) provided ϕJMS(n, c1, c2) holds. 
Using a finer analysis we can estimate ∂(D) for a single degree sequence under milder 
assumptions. Namely, we will prove the following statement (Theorem 4.4):

Theorem. If a graphic degree sequence D = (d1, d2, . . . , dn) satisfies

∀k ∈ [1, n]
k∑

i=1
di ≤ k · (k − 1) + dn · (n− k) + 1, (46)

then ∂(D) ≤ 3 · n9.

In [11] the authors proved that D[ϕJMS] ⊂ D[ϕ∗
JMS ], i.e. (P3) is a stronger statement 

than (P1). However, the following result (Theorem 4.8) shows that there exist simple 
P -stable regions which are completely disjoint from (P3):

Theorem. The simple region

D0 =
⋃

{D(2m, 4m,m, 1) : m ≥ 4} (2)

is fully graphic and P-stable, but D0 ∩D[ϕ∗
JMS ] = ∅.

2. Characterization of fully graphic regions D(n, Σ, c1, c2)

In this section we study fully graphic simple degree sequence regions.

Definition 2.1. A non-increasing sequence (d1, . . . , dn) has the Erdős-Gallai property if 
and only if for each 1 ≤ k ≤ n,

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di, k). (EGk)

The next statement is almost trivial, but will be very convenient later on.

Proposition 2.2. For all D ∈ D(n, Σ, c1, c2), property (EGk) holds for each k ≤ c2 and 
k > c1.
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Proof. When k ≤ c2 then

k∑
i=1

di ≤ kc1 ≤ k(n− 1) = k(k − 1) + (n− k)k.

If k > c1 then kc1 ≤ k(k − 1). �
We denote by (a)m the constant a sequence of length m.

Definition 2.3. If n > c1 ≥ c2 are natural numbers, we say that a sequence D =
(d1, . . . , dn) ∈ D(n, c1, c2) is primitive if and only if D has the form

D = c1, . . . , c1︸ ︷︷ ︸
k

, a, c2, . . . , c2︸ ︷︷ ︸
(n−1)−k

, (3)

for some 1 ≤ k ≤ n and c2 ≤ a ≤ c1.

Definition 2.4. If n > c1 ≥ c2 and Σ are natural numbers with n · c1 ≥ Σ ≥ n · c2, we 
define the least Erdős-Gallai sequence LEG(n, Σ, c1, c2) of length n with the given sum 
Σ and with given maximum and minimum elements c1 and c2 as follows:

If c1 = c2, then let LEG(n, Σ, c1, c2) = (c1)n. If c2 < c1, then let

LEG(n,Σ, c1, c2) = c1, . . . , c1︸ ︷︷ ︸
α

, a, c2, . . . , c2︸ ︷︷ ︸
(n−1)−α

, (4)

where

α =
⌊

Σ − n · c2
c1 − c2

⌋
(5)

and

a = Σ −
(
α · c1 + (n− 1 − α) · c2

)
. (6)

Theorem 2.5. Assume that n > c1 ≥ c2 and Σ are natural numbers with n ·c1 ≥ Σ ≥ n ·c2, 
Σ is even.

(1) LEG(n, Σ, c1, c2) ∈ D(n, Σ, c1, c2) and it is primitive.
(2) If LEG(n, Σ, c1, c2) is Erdős-Gallai, then every element of D(n, Σ, c1, c2) is Erdős-

Gallai.

Proof of Theorem 2.5 (1). Clearly, 
∑

LEG(n, Σ, c1, c2) = Σ, and LEG(n, Σ, c1, c2) is 
primitive by its definition.
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Since α · c1 + (n − 1 − α) · c2 = α · (c1 − c2) + (n − 1) · c2, we have

a ≥ Σ − Σ − n · c2
(c1 − c2)

(c1 − c2) + (n− 1) · c2 = c2. (7)

Moreover, (Σ − n · c2)/(c1 − c2) − 1 < α, hence

a = Σ − (α · (c1 − c2) + (n− 1) · c2) ≤

≤ Σ −
((

Σ − n · c2
c1 − c2

− 1
)
· (c1 − c2)

)
+ (n− 1) · c2 = c1. (8)

Putting together (7) and (8), we obtain c1 ≥ a ≥ c2. So LEG(n, Σ, c1, c2) is really an 
element of D(n, c1, c2). �
Before proving Theorem 2.5 (2), we need some preparation. Denote �lex the lexicographi-
cal order on finite sequences (i.e. (d1, . . . , dn) �lex(e1, . . . , en) if and only if dj < ej , where 
j = min{i : di �= ei}).

Lemma 2.6. Assume that D = (d1, . . . , dn) ∈ D(n, Σ, c1, c2), and 1 ≤ � < m ≤ n with 
d� < c1 and dm > c2. Write D′ = D + 1+�

−m.

(1) D′ ∈ D(n, Σ, c1, c2) and D�lex D
′.

(2) If D′ is Erdős-Gallai, then so is D.

Proof. (1) It is trivial from the construction.

(2) Assume that (EGk) fails for D: 
k∑

i=1
di > k(k − 1) +

n∑
i=k+1

min(di, k).

We will show that (EGk) fails for D′ = (d′1, . . . , d′n). We should distinguish three cases:
Case 1. k < �.

If min(k, d�) < min(k, d′�), then min(k, d�) +1 = min(k, d� +1), and so d� < k. Hence, 
min(d′m, k) = min(dm − 1, k) = dm − 1. Thus, min(k, d′�) + min(k, d′m) = min(k, d�) +
min(k, dm). If min(k, d�) = min(k, d′�), then min(k, d′�) + min(k, d′m) ≤ min(k, d�) +
min(k, dm).

Thus, 
∑n

i=k+1 min(k, di) ≥
∑n

i=k+1 min(k, d′i), and so

k∑
i=1

d′i =
k∑

i=1
di > k(k − 1) +

n∑
i=k+1

min(k, di) ≥ k(k − 1) +
n∑

i=k+1

min(k, d′i). (9)

Case 2. � ≤ k < m.
Then d′i ≥ di for i ≤ k and d′i ≤ di for k + 1 ≤ i ≤ n, so

k∑
d′i ≥

k∑
di > k(k − 1) +

n∑
min(k, di) ≥ k(k − 1) +

n∑
min(k, d′i). (10)
i=1 i=1 i=k+1 i=k+1
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Case 3. m ≤ k.
Since � < m, d′� = d� + 1 and d′m = dm − 1, we have 

∑k
i=1 d

′
i =

∑k
i=1 di + 1 − 1 =∑k

i=1 di. Moreover, d′i = di for k + 1 ≤ i ≤ n. Thus

k∑
i=1

d′i =
k∑

i=1
di > k(k − 1) +

∑
i=k+1

min(k, di) = k(k − 1) +
∑

i=k+1

min(k, d′i). (11)

Hence, (EGk) really fails for D′. �
Lemma 2.7. D(n, Σ, c1, c2) contains just one primitive element, LEG(n, Σ, c1, c2), which 
is the �lex-maximal element of D(n, Σ, c1, c2).

Proof. We know that LEG(n, Σ, c1, c2) is a primitive element of D(n, Σ, c1, c2) by The-
orem 2.5 (1). Observe now that D(n, Σ, c1, c2) can not contain two different primitive 
elements.

Indeed, assume that A = (c1)ka(c2)n−k−1 and B = (c1)�b(c2)n−�−1 are from 
D(n, Σ, c1, c2). If Σ = c1 · n, then D(n, Σ, c1, c2) contains just one element: the (c1)n
sequence. So we can assume that Σ < n · c1, and so we can assume that a, b < c1.

If k = �, then a = Σ − (kc1 + (n − k − 1)c2) = Σ − (�c1 + (n − � − 1)c2) = b, so the 
two sequences are the same. Assume that k < �. Using that a < c1, we obtain∑

A = kc1+a+(n−k−1)c2 < (k+1)c1+(n−k−1)c2 ≤ �c1+b+(n−�−1)c2 =
∑

B,

(12)
contradiction. We proved the observation.

The �lex-maximal element of D(n, Σ, c1, c2) is primitive by Lemma 2.6(1), so it must 
be LEG(n, Σ, c1, c2). �
Proof of Theorem 2.5 (2). Assume that the set

D = {D ∈ D(n,Σ, c1, c2) : D is not Erdős-Gallai}

is not empty. Let D∗ be the �lex-maximal element of D. If D∗ is not primitive then let 
� = min{i : 1 ≤ i ≤ n : c2 < di < c1} and m = max{i : 1 ≤ i ≤ n : c2 < di < c1}. Then 
� < m and so D∗ +1+�

−m ∈ D and D∗ �lex D
∗ +1+�

−m by Lemma 2.6. Contradiction, and so 
the maximal element of D is primitive. So, by Lemma 2.7, LEG(n, Σ, c1, c2) is in D. �
Corollary 2.8. A simple region D is fully graphic if and only if LEG(n, Σ, c1, c2) is graphic 
whenever D(n, Σ, c1, c2) �= ∅, and, consequently, D(n, Σ, c1, c2) ⊂ D.

Proof. If D ∈ D is not graphic, then D ∈ D(n, Σ, c1, c2) ⊂ D for some parameters 
n, Σ, c1, c2, and LEG(n, Σ, c1, c2) is not Erdős-Gallai by Theorem 2.5(2). �
The following, easy to prove statement will simplify some arguments in Section 4.
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Lemma 2.9. Let D(n, c1, c2) be fully graphic. Then, ϕFG(n, c2, c1) holds, where

ϕFG(n, c1, c2) ≡ ∀k ∈ [1, n] c1 · k ≤ k · (k − 1) + c2 · (n− k) + 1. (13)

Indeed, fix k. If D(n, c1, c2) is fully graphic, then either c1k+(n −k)c2 or c1k+(n −k)c2+1
is even, so either the sequence (c1)k(c2)n−k, or the sequence (c1)k(c2 + 1)(c2)n−k−1 is in 
D(n, c2, c1), and so it is graphic. We apply the Erdős-Gallai theorem. In the first case 
the inequality holds with 1 surplus. In the second case the displayed inequality holds.

3. The known P -stable, simple degree sequence regions are fully graphic

In this section we will show that some known P -stable degree sequence regions are 
also fully graphic.

3.1. Sequences defined by minimum and maximum degrees

Our first result below clearly implies the statement (P1∗) from the Introduction. In 
the proof we will use the machinery we developed in Section 2.

Theorem 3.1. If n > c1 ≥ c2 are natural numbers such that

(c1 − c2 + 1)2 ≤ 4c2(n− c1 − 1), (14)

then every sequence from D(n, c1, c2) has the Erdős-Gallai property.

Before proving this result we have to point out that this result was already proved by 
Zverovich and Zverovich ([17]) in 1992. It was somewhat strengthened in [2] by Cairns, 
Mendan and Nikolayevsky. Actually they used the inequality 4nc2 ≥ (c1 + c2 + 1)2 and 
neither paper recognized that this is identical with (14). However, our proof is new, and 
as construction (58) shows, it also provides a slightly larger always graphic region.

Before we continue our proof we should recall the following theorem. As the authors 
remarked in the first lines of the proof of the “Theorem” in [14], they actually proved 
the following statement.

Theorem 3.2 (Tripathi-Vijay [14]). Assume that D = (d1, d2, . . . , dn) is a non-increasing 
sequence of non-negative integers and n > d1. Then the following two statements are 
equivalent:

(1) D has the Erdős-Gallai property,
(2) (EGk) holds for k ∈ {j : 1 ≤ j ≤ n and dj > dj+1}.

Proof of Theorem 3.1. Assume on the contrary that D = (d1, . . . , dn) ∈ D(n, c1, c2) is 
not Erdős-Gallai. Write Σ =

∑n
i=1 di. By Theorem 2.5(2), E = LEG(n, Σ, c1, c2) ∈
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D(n, c1, c2) is not Erdős-Gallai, as well. E has the form (c1)ka(c2)n−1−k, where c1 ≥ a ≥
c2. Applying Theorem 3.2 for E we obtain that either (EGk) or (EGk+1) fails, and, by 
Proposition 2.2, we have c2 ≤ k ≤ c1.
In the first case:

kc1 > k(k − 1) + a + (n− k − 1)c2. (15)

Since a ≥ c2, we obtain

kc1 > k(k − 1) + c2 + (n− k − 1)c2. (16)

Rearranging, we obtain

0 > k2 − (c2 + c1 + 1)k + nc2. (17)

If we have two roots, then the discriminant of (17) should be positive:

(c1 + c2 + 1)2 − 4nc4 > 0 (18)

Reordering (14) we obtain

0 ≥ (c1−c2 +1)2−4c2(n−c1−1) = c21 +c22 +1−2c1c2 +2c1−2c2−4nc2−4c1c2−4c2 =

c21 + c22 + 2c1c2 + 2c1 + 2c2 + 1 − 4nc2 = (c1 + c2 + 1)2 − 4c2n,

which contradicts (18)
In the second case:

kc1 + a > k(k + 1) + (n− k − 1)c2. (19)

Since a ≤ c1, we obtain

(k + 1)c1 > k(k + 1) + (n− k − 2)c2. (20)

Let � = k + 1. We obtain

�c1 > �(�− 1) + (n− �− 1)c2. (21)

Rearranging, we obtain

0 > �2 − (c2 + c1 + 1)� + nc2. (22)

But (22) is just (17), which leads contradiction again. �
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3.2. Sequences defined by extremal degrees and degree sums

Concerning (P2) we could prove the following theorem which is stronger than (P2∗), 
where the restriction concerning c1 was 3 ≤ c1 ≤ 1

3
√

Σ.

Definition 3.3. For any real ε > 0 define the property ϕε as follows:

ϕε(n,Σ, c1, c2) ≡ 2 ≤ c2 and 3 ≤ c1 ≤
√

(1 − ε)Σ. (23)

Theorem 3.4. For each positive ε, the simple region D[ϕε] is almost fully graphic.

Proof. Assume that D ∈ D[ϕε] is not graphic. Then D ∈ D(n, Σ, c1, c2) ⊂ D for some pa-
rameters n, Σ, c1, c2 with ϕε(n, Σ, c1, c2), and by Theorem 2.5(2), A = LEG(n, Σ, c1, c2)
is not Erdős-Gallai.

Then sequence A has the form (c1)ka(c2)n−1−k, where c1 ≥ a ≥ c2. Applying Theo-
rem 3.2 for A we obtain that either (EGk) or (EGk+1) fails.
In the first case, when (EGk) fails, we obtain

kc1 > k(k − 1) + a + (n− k − 1)c2. (24)

Since a + (n − k − 1)c2 = Σ − kc1, we have

kc1 > k(k − 1) + Σ − kc1. (25)

Rearranging, we obtain

0 > k2 − (2c1 + 1)k + Σ, (26)

and so, using c1 ≤
√

(1 − ε)Σ, we have

0 > k2 − (2
√

(1 − ε)Σ + 1)k + Σ. (27)

Thus, the discriminant of (27) should be positive:

(
2
√

(1 − ε)Σ + 1
)2

− 4Σ > 0. (28)

In the second case, when (EGk+1) fails, we obtain

kc1 + a > k(k + 1) + (n− k − 1) (29)

Using Σ − (kc1 + a) = (n − k − 1)c2, we obtain

kc1 + a > k(k + 1) + (Σ − (kc1 + a)) (30)
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Rearranging, we obtain

0 > k2 − (2c1 − 1)k − 2a + Σ ≥ k2 − (2c1 + 1)k + Σ, (31)

and so

0 > k2 − (2
√

(1 − ε)Σ + 1)k + Σ. (32)

Thus, the discriminant of (32) should be positive:

(
2
√

(1 − ε)Σ + 1
)2

− 4Σ > 0. (33)

So far we established the following statement:

If D ∈ D(n,Σ, c1, c2) ⊂ D[ϕε] is not graphic, then
(
2
√

(1 − ε)Σ + 1
)2

− 4Σ > 0. (34)

But 
(
2
√

(1 − ε)Σ + 1
)2

−4Σ > 0 if and only if Σ < 1
4(1−

√
1−ε)2 . Since Σ ≥ 2n, we obtain

If D ∈ D(n,Σ, c1, c2) ⊂ D[ϕε] is not graphic, then n <
1

8(1 −
√

1 − ε)2
. (35)

So we proved there is a natural number nε such that every element of D with length at 
least nε is graphic. This completes the proof. �
Remark 3.5. Using (35) one could estimate the value nε for concrete real numbers. For 
example, in the case of (P2∗) we have 1 − ε = 1/9 and then n8/9 is 1.

Next we prove the statement of (P3∗).

Theorem 3.6. The simple degree sequence region D[ϕ∗
JMS] is fully graphic.

Proof. Assume that D ∈ D[ϕ∗
JMS ], where

ϕ∗
JMS ≡ (Σ − nc2)(nc1 − Σ) ≤ (c1 − c2) {(Σ − nc2)(n− c1 − 1) + (nc1 − Σ)c2} .

We need to prove that D is Erdős-Gallai. Fix parameters n, Σ, c1, c2 with D ∈
D(n, Σ, c1, c2) ⊂ D[ϕ∗

JMS ]. By Theorem 2.5(2), it is enough to prove that the sequence 
A = LEG(n, Σ, c1, c2) is Erdős-Gallai.

The sequence A has the form (c1)ka(c2)n−1−k, where c1 ≥ a ≥ c2. Applying Theo-
rem 3.2 for A we obtain that A is Erdős-Gallai if and only if (EGk) and (EGk+1) holds. 
Since we can assume c2 ≤ k ≤ c1 by Proposition 2.2, (EGk) and (EGk+1) have the 
following form:
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kc1 ≤ k(k − 1) + (n− k)c2 + (min{a, k} − c2), (EGk)

and

kc1 + a ≤ (k + 1)k + (n− k − 1)c2, (EGk+1)

which can be rearranged as

kc1 ≤ k(k − 1) + (n− k)ck + (2k − c2 − a). (EG∗
k+1)

Consider the ϕ∗
JMS inequality. Using the notation b = a − c2, we have

Σ = kc1 + a + (n− k − 1)c2 = nc2 + k(c1 − c2) + b.

So, taking x = b
c1−c2

, the LHS of ϕ∗
JMS can be written as follows:

LHS =
[
k(c1 − c2) + b

][
(n− k)(c1 − c2) − b

]
=

(nk − k2)(c1 − c2)2 + (n− 2k)b(c1 − c2) − b2 =

(c1 − c2)2
[
nk − k2 + (n− 2k)x− x2]. (36)

Now consider the RHS of ϕ∗
JMS:

RHS = (c1 − c2)
{[

(k(c1 − c2) + b
]
(n− c1 − 1) +

[
(n− k)(c1 − c2) − b

]
c2

}
=

(c1 − c2)2
[
(k + x)(n− c1 − 1) + (n− k − x)c2

]
. (37)

Since c1 − c2 > 0, putting together (36) and (37) we obtain

nk − k2 + (n− 2k)x− x2 ≤ (k + x)(n− c1 − 1) + (n− k − x)c2,

which can be rearranged as:

kc1 ≤ k(k − 1) + (n− k)c2 + x(2k + x− c1 − 1 − c2). (38)

To derive (EGk) we can assume that c2 ≤ k ≤ c1 or (EGk) holds as we proved it 
in Proposition 2.2. Moreover, it is enough to show that the RHS of (38) is less than, or 
equal to RHS of (EGk), that is,

x(2k + x− c1 − 1 − c2) ≤ min{a, k} − c2. (39)

Since 0 ≤ x < 1, we have

x
(
2k + x− (c1 + c2) − 1

)
≤ 2k − (c1 + c2) = (k − c1) + (k − c2) ≤ k − c2. (40)
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Since x = b
c1−c2

≤ 1 and k ≤ c1, we have

x(2k + x− c1 − 1 − c2) = b
2k + x− c1 − 1 − c2

c1 − c2
=

b
(c1 − c2) + (2k − 2c1) + (x− 1)

c1 − c2
≤ b

c1 − c2
c1 − c2

= b. (41)

Since min(a, k) − c2 = min(b, k − c2), putting together (41) and (40) we obtain (39), 
which implies that (EGk) holds.
To derive (EGk+1) we can assume that c2 ≤ k + 1 ≤ c1 by Proposition 2.2, and it is 
enough to show that RHS of (EG∗

k+1) is greater than, or equal to RHS of (38):

x(2k + x− c1 − 1 − c2) ≤ 2k − c2 − a. (42)

But 0 ≤ x ≤ 1, so

x(2k + x− c1 − 1 − c2) = x(2k − c1 − c2 + (x− 1)) ≤ (2k − c1 − c2) (43)

so (43) holds which implies (EG∗
k+1), and so (EGk+1) as well. This finishes the proof 

that the region D[ϕ∗
JMS ] is fully graphic. �

Gao and Greenhill proved in [8] that for any given parameter γ > 2 the infinite set of 
scale free degree sequences with the given parameter is P -stable. However this set is 
clearly not a degree sequence region. However we believe that this set can be embedded
into a P -stable simple degree region.

4. P -stable degree sequences

In this section we are considering fully graphic, very simple degree sequence re-
gions, and want to prove that they are also P -stable regions. Along this process we 
will strengthen Jerrum, McKay and Sinclair’s theorem (P1).

4.1. Every fully graphic very simple degree sequence region is P -stable

In Section 1 the statement (P1) quoted the seminal result of Jerrum, McKay and 
Sinclair from 1992:

Theorem 4.1 ([11, Theorem 8.1]). The very simple region

D = D[ϕJMS ] :=
⋃{

D(n, c1, c2) : (c1 − c2 + 1)2 ≤ 4c2(n− c1 − 1)
}

(44)

is P -stable.
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Since in Theorem 3.1 we proved that the very simple region D[ϕJMS] is fully graphic, 
therefore the next statement is a powerful strengthening of Theorem 4.1:

Theorem 4.2. The largest fully graphic very simple region

Dmax :=
⋃

{D(n, c2, c1) : D(n, c2, c1) is fully graphic}

is P -stable, and so the switch Markov chain is rapidly mixing on Dmax.

Careful study of the proof of [11, Theorem 8.1] reveals, that Jerrum, McKay and Sinclair 
actually proved the following, slightly stronger result.

Theorem 4.3. The very simple region D[ϕ◦
JMS] is P-stable, where the property ϕ◦

JMS is 
defined as follows:

ϕ◦
JMS ≡ ∀k ∈ [1, n] c1 · k ≤ k · (k − 1) + c2 · (n− k). (45)

Unfortunately, Theorem 4.3 does not yield Theorem 4.2 because the assumption that 
“every element of D(n, c2, c1) is graphic” does not imply (45). Fortunately, as we already 
proved (see Lemma 2.9), that the following, slightly weaker inequality holds for a fully 
graphic D(n, c2, c1):

ϕFG(n, c2, c1) ≡ ∀k ∈ [1, n] c1 · k ≤ k · (k − 1) + c2 · (n− k) + 1.

Using this observation, the following result, which is a direct strengthening of Theo-
rem 4.3, already yields Theorem 4.2.

Theorem 4.4. If a graphic degree sequence D = (d1, d2, . . . , dn) satisfies

∀k ∈ [1, n]
k∑

i=1
di ≤ k · (k − 1) + dn · (n− k) + 1, (46)

then ∂(D) ≤ 3 · n9.

Proof. Given a graph G = 〈V, E〉, an alternating trail of length � is a sequence of vertices 
v0, . . . , v� such that {vivi+1} is edge if and only if i is even, and the pairs {{vi, vi+1} :
i < �} are pairwise distinct. An alternating trail is an alternating path if the vertices 
x0, . . . , xn are pairwise different apart from the pair {x0, x1}.

The proof of Theorem 4.4 is based on the following Lemma.

Lemma 4.5. Let D∗ = D + 1+p
+q for some 1 ≤ p, q ≤ n, where D satisfies inequality (46). 

If G is a graph with vertex set V = {v1, . . . vn} and with degree sequence D∗, moreover 
Γ(vp) = Γ(vq) (that is their neighborhoods coincide), then there exists an alternating 
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trail of odd length 1, 3, 5 or 7 between vp and vq, which contains one more edges than 
non-edges.

Proof of Lemma 4.5. Suppose for the contrary, that there is no such alternating trail. 
We will describe the structure of G. First, observe that either vp = vq or the edge vpvq
is missing (otherwise there is an alternating trail of length 1). Let

S = {vp, vq}, X = Γ(vp), Y = {y ∈ V : |X \ Γ(y)| ≥ 2}, Z = Γ(Y ) \X. (47)

Observe the following facts:

(i) The set X is a clique (otherwise there is an alternating trail of length 3, namely 
vp → X → X → vq).

(ii) The set Y is an independent set.
Indeed, if {y0, y1} ∈ [Y ]2 ∩ E, then |X \ Γ(yi)| ≥ 2 for i < 2 implies that there 

is {x0, x1} ∈ [X]2 such that {xi, yi} /∈ E for i < 2. Thus vp, x0, y0, y1, x1, vq is an 
alternating trail of length 5.

(iii) The set Z is a clique.
Indeed, if {z0, z1} ∈ [X]2 \E, then there are y0, y1 ∈ Y such that {zi, yi} ∈ E for 

i < 2, but we can not guarantee that y0 �= y1. Since |X \Γ(yi)| ≥ 2 for i < 2, there 
is {x0, x1} ∈ [X]2 such that {xi, yi} /∈ E for i < 2. Thus vp, x0, y0, z0, z1, y1, x1, vq
is an alternating trail of length 7, but not necessarily a path.

(iv) The induced bipartite graph G[X, Z] is complete.
Indeed, if x ∈ X and z ∈ Z with {x, z} /∈ E, then pick first y ∈ Y with 

{y, z} ∈ E. Since |X \ Γ(y)| ≥ 2, we can pick x′ ∈ X such that x′ �= x and 
{x′, y} /∈ E. Then xp, x, z, y, x′, vq is an alternating trail of length 5.

(v) The sets {vp, vq}, X, Y, Z are pairwise disjoint.

Let

K = X ∪ Z and R = V \ (K ∪ Y ∪ S).

We have |K| + |Y | + |R| + |S| = |V | = n. Putting together (i), (iii) and (iv), we obtain

(vi) K is a clique.

Write k = |K|. We will estimate the sum of the degrees of the vertices in K. To start 
with, write

k∑
di ≥

∑
deg(v) =
i=1 v∈K
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∑
v∈K

|Γ(v) ∩K| +
∑
v∈S

|Γ(v) ∩K| +
∑
v∈R

|Γ(v) ∩K| +
∑
y∈Y

|Γ(y) ∩K| (48)

Since K is a clique,
∑
v∈K

|Γ(v) ∩K| = k · (k − 1). (49)

Since Γ(v) = X ⊂ K for v ∈ S, we have
∑
v∈S

|Γ(v) ∩K| = |S||X|. (50)

Since |X \ Γ(v)| ≤ 1 for v ∈ R, we have
∑
v∈R

|Γ(v) ∩K| ≥ |R|(|X| − 1). (51)

By the construction, Γ(Y ) ⊂ K, so
∑
y∈Y

|Γ(y) ∩K| ≥ |Y | · dn. (52)

Putting together, we have

k∑
i=1

di ≥ k · (k − 1) + |S| · |X| + |R| · (|X| − 1) + |Y | · dn. (53)

Since |X| = deg(vp) ≥ dn + (3 − |S|), we obtain

k∑
i=1

di ≥ k · (k − 1) + |S| · (dn + 3 − |S|) + |R|(dn + 2 − |S|) + |Y |dn. (54)

Observe that |R| + |Y | + |S| = n − k. Clearly |S| = 1 or |S| = 2.
If |S| = 1, then

|S| · (dn + 3 − |S|) + |R|(dn + 2 − |S|) + |Y |dn = dn + 2 + (|R| + |Y |)dn + |R| =

(|R| + |Y | + |S|)dn + 2 + |R| = (n− k)dn + 2. (55)

If |S| = 2, then

|S| · (dn + 3 − |S|) + |R|(dn + 2 − |S|) + |Y |dn = 2(dn + 1) + (|R| + |Y |)dn =

(|R| + |Y | + |S|)dn + 2 = (n− k)dn + 2. (56)



18 P.L. Erdős et al. / Advances in Applied Mathematics 163 (2025) 102805
So in both case, from (54) we obtain

k∑
i=1

di ≥ k · (k − 1) + (n− k)dn + 2, (57)

which contradicts (46). So we proved Lemma 4.5. �
The proof of Theorem 4.4 from Lemma 4.5 is similar to the proof of [11, Theorem 8.1]
from [11, Lemma 1].
Assume that G′ is a graph such that the degree sequence of G′ is D′ = D+1+i

+j for some 
1 ≤ i < j ≤ n.

If ΓG′(vi) = ΓG′(vj), then we can apply Lemma 4.5 for G = G′, p = i and q = j

to obtain an alternating trail P of odd length 1, 3, 5 or 7 between vi and vj , which 
contains one more edges than non-edges. Flipping edges and non-edges along the trail P
we obtain a graph G† which is a realization of D.

If ΓG′(vi) �= ΓG′(vi), then there is an alternating trail Q of length 2 between vi and 
vj . Assume that Q = vivmvj , where vivm is an edge, and vmvj is a non-edge. Flipping 
edges along trail Q we obtain a graph G∗ with degree sequence

D∗ = D′ + 1+j
−i = D + 1+i

+j + 1−i
+j = D + 1+j

+j .

Now we can apply Lemma 4.5 for G = G∗ with p = q = j to obtain an alternating 
trail P of odd length 1, 3, 5 or 7 from vj to vj , which contains one more edges than 
non-edges. Flipping edges and non-edges along the trail P we obtain a graph G† which 
is a realization of D.

How much information should we use to obtain back G′ from G†? We need to know 
if we were in case ΓG′′(vi) = ΓG′′(vj) or in case ΓG′′(vi) �= ΓG′′(vj).

If ΓG′′(vi) = ΓG′′(vj), we should know P . The trail P contains at most 8 vertices, so 
this is at most n8 possibilities.

If ΓG′′(vi) �= ΓG′′(vj), we should know P and Q. Since the first and the last element 
of P are the same, we have at most n7 possibilities for P . Knowing P we can compute 
G∗, and we also know vi or vj . We should know Q. We know one vertex (vi or j) from 
Q. So knowing P we have n2 possibilities for Q. Knowing Q we can compute G′′. We 
should know which endpoint of Q is vi and which is vj . In this case we have at most 
2 · n2 · n7 = 2 · n9 possibilities.

Putting together, for a given G∗ we have at most n8 + 2 · n9 ≤ 3 · n9 possibilities for 
G†. �

The next theorem gives us a method to prove that a simple region D[ϕ] is P-stable. 
Namely, it is enough to prove that LEG(n, Σ, c1, c2) satisfies (46) from Theorem 4.4
whenever ϕ(n, Σ, c1, c2) holds.
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Theorem 4.6. If n > c1 ≥ c2 and nc1 ≥ Σ ≥ nc2 are natural numbers, Σ is even, then 
the following are equivalent:

(1) LEG(n, Σ, c1, c2) satisfies (46) from Theorem 4.4,
(2) every D ∈ D(n, Σ, c1, c2) satisfies (46) from Theorem 4.4.

Proof. To show that (1) implies (2), let D = (d1, . . . , dn) be an arbitrary element 
of D(n, Σ, c1, c2), and fix 1 ≤ k ≤ n. Write LEG(n, Σ, c1, c2) = (e1, . . . , en). Then, ∑k

i=1 di ≤
∑k

i=1 ei, and 
∑k

i=1 ei ≤ k(k − 1) + (n − k)en + 1 because LEG(n, Σ, c1, c2)
satisfies (46). Putting together these two inequalities we obtain

k∑
i=1

di ≤ k(k − 1) + (n− k)en + 1 = k(k − 1) + (n− k)c2 ≤ k(k − 1) + (n− k)dn + 1,

which implies that (46) holds for D and k. �
By (P2), the simple region D[ϕGS] = D[ε8/9] is P-stable. We also proved that D[ϕε] is 
fully graphic for ε > 0. The next question is very natural.

Problem 4.7. Is the simple region D[ϕε] P-stable for ε > 0?

4.2. Construction of P -stable families with special properties

We demonstrate the existence of a fully graphic simple region, whose P-stability can 
be derived from Theorem 4.4, whereas application of [11, Theorem 8.3] does not yield 
its P-stability.

Theorem 4.8. The simple region

D0 =
⋃

{D(2m, 4m,m, 1) : m ≥ 4} (58)

is fully graphic and P-stable, although D0 ∩D[ϕ∗
JMS ] = ∅.

Proof. First, observe that

Dm := (m)2(3)1(1)2m−3 = LEG(2m, 4m,m, 1). (59)

Lemma 4.9. For m ≥ 4, Dm does not satisfy the ϕ∗
JMS inequality.

Proof. Indeed, n = 2m, c1 = m, c2 = 1, Σ = 4m, so

LHSϕ∗ −RHSϕ∗ =

JMS JMS
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(Σ − c2n)(c1n− Σ) − (c1 − c2)[(Σ − c2n)(n− c1 − 1) + (c1n− Σ)c2] =

4(m2 − 2m)m− [2((m− 1)m + m2 − 2m)(m− 1)] = 2m2 − 6m,

which is positive for m ≥ 4, so we proved the Lemma. �
Lemma 4.10. Dm is graphic.

Proof. By the Tripathi-Vijay Theorem 3.2, we should check only EG2 and EG3 for Dm. 
But

2∑
i=1

di = 2m < 2 + (2 + (2m− 3) · 1) = 2(1 − 2) +
2m∑
i=3

min(di, 2), (EG2)

and

3∑
i=1

di = 2m + 3 = 6 + (2m− 3) · 1 = 3(3 − 1) +
2m∑
i=4

min(di, 3). � (EG3)

Lemma 4.11. Dm satisfies (46) from Theorem 4.4.

Proof. If k = 1, 2, 3, inequality (46) is the following:

d1 = m ≤ 1(1 − 0) + (2m− 1)1 + 1 (k = 1)

d1 + d2 = 2m < 2(2 − 1) + (2m− 2)1 + 1, (k = 2)

d1 + d2 + d3 = 2m + 3 ≤ 3(3 − 1) + (2m− 3)1 + 1. (k = 3)

(60)

If k ≥ 3, then EGk implies EGk+1, because, the LHS is increased by 1, and the RHS is 
increased by 2k − 1. �

The lemmas together prove the theorem. �
5. Large fully graphic regions in very simple P-stable regions

In the first two subsections we review the necessary facts about split graphs and 
Tyshkevich product.

5.1. Split graphs

A G = (V, E) graph is a split graph if its vertices can be partitioned into a clique and 
an independent set. Split graphs were introduced by Földes and Hammer ([7]).

Split graphs are recognizable from their degree sequences:
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Theorem 5.1 (Hammer and Simeone, 1981 [10], Tyshkevich, Melnikov and Kotov [15]). 
Assume that G is a graph with degree sequence D = (d1, . . . , dn), where d1 ≥ d2 ≥ · · · ≥
dn. Let m be the largest value of i, such that di ≥ i − 1. Then G is a split graph if and 
only if

m∑
i=1

di = m(m− 1) +
n∑

i=m+1
di.

Remark 5.2. Consequently, if one realization of a degree sequence D is a split graph, 
then all realizations of D are split graphs as well. Such a degree sequence is referred as
split degree sequence.

We will write G = ((U, W ), E) to mean that G is a split graph with vertex set U∪W , U
is a clique and W is an independent set. Let us remark that U and W are not necessarily 
unique.

Theorem 5.3. If D(n, c1, c2) is not fully graphic, then D(n, c1, c2) contains a split degree 
sequence.

Proof. Fix a non-graphic D ∈ D(n, c1, c2). Write Σ =
∑

D. By Corollary 2.8 the se-
quence LEG(n, Σ, c1, c2) is not graphic.

Lemma 5.4. There is c2 ≤ � ≤ c1 such that

�c1 > �(�− 1) + (n− �)c2. (61)

Proof of the Lemma. Write LEG(n, Σ, c1, c2) = (d1, . . . , dn) = ((c1)k, a, (c2)n−2), where 
c2 ≤ a ≤ c1.

By the Tripathi-Vijay Theorem 3.2, either EGk or EGk+1 fails. By Proposition 2.2
property (EG�) holds for each � ≤ c2 or � > c1. So we can assume that c2 ≤ k < c1.
Case 1: If (EGk) fails, then

k∑
i=1

di > k(k − 1) +
n∑

i=k+1

min(di, k), (62)

and so

kc1 > k(k − 1) + min(a, k) + (n− k − 1)c2, (63)

therefore

kc1 > k(k − 1) + (n− k)c2. (64)
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Case 2: If (EGk+1) fails, then

k+1∑
i=1

di > (k + 1)k +
n∑

i=k+2

min(di, k), (65)

and so

kc1 + a > (k + 1)k + (n− k − 2)c2, (66)

therefore

(k + 1)c1 > (k + 1)k + (n− k − 1)c2. (67)

So either � = k or � = k + 1 has the following property: c2 ≤ � ≤ c1 and

�c1 > �(�− 1) + (n− �)c2. (68)

So we proved the Lemma. �
Let

σ = (n− �)c2, c = 	σ/�
, α = σ − �c. (69)

Then

(n− �)c2 = σ = α(c + 1) + (�− α)c.

Consider the following degree sequence

D = (� + c)α(� + c− 1)�−α(c2)n−� (70)

Lemma 5.5. The previous degree sequence is D ∈ D(n, c1, c2), and it is a graphic split 
sequence.

Proof. First observe that D is graphic. Really, it has a realization G = 〈V, E〉 on the 
vertex set V = {vj : j < �} ∪ {wk : k < n − �} with

E =
{
(vi, vj) : i < j < �

}
∪
{
(vi mod �, wi mod (n−�)) : i < σ

}
. (71)

Next observe that � is the largest j such that dj ≥ j − 1. Moreover,
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�∑
i=1

di = (� + c)α + (� + c− 1)(�− α) = σ + �(�− 1)

= �(�− 1) + c2(n− �) = �(�− 1) +
n∑

i=�+1

di.

Thus the degree sequence D is a split degree sequence by Theorem 5.1. �
This completes the proof of Theorem 5.3. �
5.2. Tyshkevich product

Definition 5.6 (Tyshkevich [16]). Let G = (〈U, W 〉; E) be a split graph and H = (V, F ) be 
an arbitrary graph. We define the composition graph K = G ◦H as follows: K consists of 
a copy of G, and a copy of H and of all the possible new edges (u, v) where u ∈ U, v ∈ V . 
More formally,

V (K) = U ∪W ∪ V and E(K) = E ∪ F ∪ {(u, v) : u ∈ U, v ∈ V }.

Observe that the first operand in this operation is always a split graph.
Barrus [6, Theorem 3.5] proved the following (see also [1, Theorem 6]):

Theorem 5.7 (Barrus). Assume that G = (〈U, W 〉; E) is a split graph and H = (V, F ) is 
an arbitrary graph. Let K = G ◦H. Then

|G(d(K))| = |G(d(G))| · |G(d(H))|. (72)

5.3. How to obtain “not P-stable” from “not almost fully graphic”?

Theorem 5.8. Assume that

D =
⋃
k∈N

D(nk, ck,1, ck,2) and D′ =
⋃
k∈N

D(n′
k, c

′
k,1, c

′
k,2)

are very simple degree sequence regions. If D is not almost fully graphic, then D′ is not 
P-stable provided:

(1) limk→∞(n′
k − nk)/ ln(n′

k) = +∞,
(2) c′k,2 ≤ ck,2,
(3) c′k,1 ≥ ck,1 + (n′

k − nk).

Proof. We will use a construction, which is similar to the one Jerrum, McKay and 
Sinclair derived in [11, Lemma 8.1], and based on the result [4, Corollary 6.2].
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Fig. 1. The unique realization of hm.

Lemma 5.9. For each natural number m ≥ 1 the following sequence

hm = (2m− 1, 2m− 2, . . . ,m + 1,m,m,m− 1, . . . , 2, 1), (73)

has exactly one realization Hm = (V, E) on the vertex set V = {v1, . . . , v2m}, namely

E = {(i, j) : m + 1 ≤ i < j ≤ 2m} ∪ {(i, j) : 1 ≤ i ≤ m < j ≤ 2m, i + j ≤ 2m + 1}.

However the sequence

h′
m = hm + 1+2m

+m = (2m− 1, 2m− 2, . . . ,m + 1,m + 1,m− 1,m− 2, . . . , 2,2) (74)

has at least Θ(eδm) realizations for some δ > 0. (See Fig. 1.)

Proof. It is easy to see that the degree sequence hm has exactly one realization (or see, 
for example, [11, Lemma 8.1]).

The calculation concerning the number of realizations of h′
m follows from [4, Corol-

lary 6.2], which claims that the bipartite degree sequence ((m, m − 1, . . . , 2, 2), ((m, m −
1, . . . , 2, 2)) has

Θ
((

3 +
√

5
2

)m
)

realizations. �
Let I = {k ∈ N : D(nk, ck,1, ck,2) contain a non-Erdős-Gallai sequence}. By the as-

sumption of Theorem, the set I is infinite. Replacing D with 
⋃
{D(nk, ck,1, ck,2) : n ∈ I}, 

we can assume that every D(nk, ck,1, ck,2) contains a non-Erdős-Gallai sequence. There-
fore, by Theorem 5.3, every D(nk, ck,1, ck,2) contains a split degree sequence Dk. Let Gk

be the unique realization of Dk. Furthermore, for each k let H∗
k = Hn′

k−nk
be the unique 

realization of the graphic degree sequence hn′ −n .

k k
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Let ek be the degree sequence of the Tyshkevich product Gk ◦ Hk. Clearly ek ∈
D(m′

k, c
′
k,2, c

′
k1) by the construction. Then, by Theorem 5.7, ek has exactly one realization 

because both dk and hn′
k−nk

have exactly one realization.
However, for some i and j, the sequence ek + 1+i

+j has at least

C · eδ(n′
k−nk)

realizations by Theorem 5.7 and by the second part of the Lemma 5.9.
Let p be an arbitrary polynomial. Then

lim
k→∞

ln
(C · eδ(n′

k−nk)

p(n′
k)

)
≥ lim

k→∞

(
C ′ · (n′

k − nk) − C ′′ · ln(n′
k)
)

= ∞,

by assumption (1) of this Theorem. Thus, the ratio of the number of realizations of ek
and p(k) tends to infinity. So D′ is not P-stable. �
Theorem 5.10. Assume that f, g, h ∈ NN are increasing functions. If the cone region 
D(f, g) is P-stable, then D(f + h, g − h) is almost fully graphic provided

(1) f(n + k) ≤ f(n) + k for each n, k ∈ N,
(2) limn→∞h(n)/ ln(n) = ∞.

Proof of Theorem 5.10. Assume on the contrary that D(f +h, g−h) is not almost fully 
graphic. Let

(i) nk = k, ck,1 = g(nk) − h(nk), ck,2 = f(nk) + h(nk),
(ii) n′

k = nk + h(nk), c′k,1 = g(n′
k) c′k,2 = f(n′

k).

The assumption Theorem 5.10 (2) implies that 5.8(1) holds. The assumption Theo-
rem 5.10 (1) implies that 5.8(2) holds. Finally Theorem 5.10 (1) also implies that 
g(nk,1) ≥ ck,1 + h(nk), and g(n′

k,1) ≥ g(nk,1) because g is monotone. So 5.8(3) holds.
Hence, we can apply Theorem 5.8 to obtain that D(f, g) is not P-stable. �

Corollary 5.11. Assume that 0 ≤ ε2 < ε′2 < ε′1 < ε1 ≤ 1. If the very simple region D :=⋃
n∈N D(n, 	ε1 ·n
, �ε2 ·n�) is P-stable, then the region D′ =

⋃
n∈N D(n, 	ε′1 ·n
, �ε′2 ·n�)

is almost fully graphic.

6. A common bound of the growing rate in P-stable regions

In the literature, various P-stable families of degree sequences are described. It is easy 
to check that in these cases the polynomial p0(n) = n10 has the following property: if 
D is P-stable, then ∂(D) ≤ p0(|D|) for all but finitely many D ∈ D. This observation is 
notable and leads to the following bold conjecture.
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Conjecture 6.1. There is a polynomial p∗(n) such that for each P-stable family D of 
degree sequences (or, just for each P-stable simple region D)

∂(D) ≤ p∗(|D|)

for all but finitely many graphic D ∈ D.

Appendix A. The different definitions of P-stability are really equivalent

Given a degree sequence D of length n, define the following families of degree se-
quences:

D−+ =
{
D + 1−i

+j : 1 ≤ i �= j ≤ n
}
,

D++ =
{
D + 1+i

+j : 1 ≤ i �= j ≤ n
}
,

D+2 =
{
D + 1+i

+i : 1 ≤ i ≤ n
}
.

The families D−− and D−2 are defined analogously. We will use the notation

G(D−+) =
⋃

1≤i
=j≤n

G(D−i
+j)

and the analogous notations for the other cases.
In 1989 Jerrum and Sinclair introduced the so-called Jerrum-Sinclair Markov Chain

(JSMC) in their seminal paper [12] on the approximation of the zero-one permanents. 
Later they used the same Markov chain to sample certain graph realization classes on 
labelled vertices in [13]. They introduced there the notion of P-stability: a family D of 
degree sequences is P-stable if and only if there is a polynomial p(n) such that for each 
graphic sequence D ∈ D with length n we have

|G(D−−) ∪G(D−2)| ≤ p(n) · |G(D)|. (JS)

In 1992 Jerrum, McKay and Sinclair gave more results about P-stable degree sequences 
([11, Subsection 8.2]). However they used there a different definition. They say that a 
family D of degree sequences is P-stable if and only if there is a polynomial p1(n) such 
that for each graphic sequence D ∈ D with length n we have

|G(D−+)| ≤ p1(n) · |G(D)|. (JMS)

The authors made the remark (without proof) that, while the two definitions formally 
are different, they are equivalent.

There has been studied another Markov chain based approach to sample graph re-
alizations for at least three decades, the chain is called switch Markov Chain. In 2022, 
the rapid mixing of the switch Markov chain was proven on P-stable degree sequences, 
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encompassing all simple, bipartite, and directed degree sequences ([5]), providing the 
currently available strongest result. However, that paper presented a third definition for 
P-stability [5, Definition 1.2]. They say that a family D of degree sequences is P-stable if 
and only if there is a polynomial p2(n) such that for each graphic sequence D ∈ D with 
length n we have

|G(D++)| ≤ p2(n) · |G(D)|. (EGMMSS)

The paper states (again, without proof) that this definition is equivalent to the former 
ones.

The following theorem yields immediately that the three definitions of P-stability are 
indeed equivalent.

Theorem 6.2. Assume that D = (d1, . . . , dn) is a graphic degree sequence.

(a) max
(
|G(D++)|, |G(D−−)|

)
≤ n2 ·

(
|G(D+−)| + |G(D)|

)
,

(b) max
(
|G(D+2)|, |G(D−2)|

)
≤ n2 · |G(D+−)|,

(c) |G(D+−)| ≤ (n4 + n2) · min
(
|G(D++)|, |G(D−−)|

)
.

Remark. The proofs for (a) and (b) are straightforward. However, proving (c) presents 
a greater challenge.

Proof. We assume that the vertex set of the realizations is {v1, . . . , vn}.
(a) Assume that G ∈ G(D + 1+i

+j) ⊂ G(D++) for some 1 ≤ i �= j ≤ n. We will define a 
graph G′ ∈ G(D+−) ∪ G(D) such that the symmetric difference of E(G) and E(G′) is 
one edge.

If (vi, vj) ∈ E(G), then let G′ = G − (vi, vj). Then d(G′) = d(G) + 1−i
−j = D, so G′

satisfies the requirements.
Assume that (vi, vj) /∈ E(G). Since degG(vi) = di + 1 ≥ 1, there is a k such that 

vivk is an edge in G. Since (vi, vj) is a non-edge, k �= j. Let G′ = G − vivk. Then 
d(G′) = d(G) + 1−i

−k = D + 1+i
+j + 1−i

−k = D+j
−k, so G′ satisfies the requirements.

From G you can get back G′ provided you know the symmetric difference of E(G)
and E(G′), which is just one pair of vertices. Since there are less than n2 many pairs, for 
any H ∈ G(D+−) ∪ G(D) there are less than n2 many G ∈ G(D++) such that G′ = H. 
So we proved |G(D++)| ≤ n2 ·

(
|G(D+−)| + |G(D)|

)
.

The inequality |G(D−−)|
)
≤ n2 ·

(
|G(D+−)| + |G(D)|

)
can be proved analogously

(b) Assume that G ∈ G(D + 1+i
+i) ⊂ G(D+2) for some 1 ≤ i ≤ n.

We will define a graph G′ ∈ G(D+−) such that the symmetric difference of E(G) and 
E(G′) is one edge. Since degG(vi) = di+2 > 0, there is j such that (vi, vj) ∈ E(G). Then 
G′ = G −(vi, vj) meets the requirements because d(G′) = d(G) +1−i

−j = D+1+i
+i+1−i

−j =
D + 1+i

−j .
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From G you can get back G′ provided you know the symmetric difference of E(G)
and E(G′), which is just one pair of vertices. Since there are less than n2 many pairs, 
for any H ∈ G(D+−) there are less than n2 many G ∈ G(D+2) such that G′ = H. So 
we proved |G(D+2)| ≤ n2 · |G(D+−)|.

The inequality |G(D−2)| ≤ n2 · |G(D+−)| can be proved analogously.
(c) For each G ∈ G(D+−) we will find a G′ ∈ G(D++) such that the symmetric difference 
of E(G) and E(G′) is either an edge, or a path of length 3. Fix i, j such that G ∈
G(D + 1+j

−i ). If there is k �= i, j such that vivk is not an edge, then let

G′ = G + (vi, vj).

Then d(G′) = 1+j
+k, so G′ satisfies the requirements.

So we can assume that vivk ∈ E(G) for k �= i, j. Since the degG(vi) = di − 1 ≤ n − 2, 
we obtain that (vi, vj) /∈ E(G). Let X = ΓG(vj) and write d = |X|. Since degG(vj) =
dj + 1 > 0, we have d ≥ 1.

Claim. There is vk ∈ X such that (vk, v�) /∈ E(G) for some � �= k.

Proof of the claim. Assume on the contrary that (vk, v�) ∈ E(G) for each vk ∈ X and 
� �= k. Thus degG(vk) = n − 1 for each vk ∈ X. Since vi, vj /∈ X, it follows that 
dk = degG(vk) = n − 1 for each vk ∈ X.

Let H be a realization of the graphic sequence D on the vertex set {v1, . . . , vn}. Since 
degH(vk) = dk = n − 1 for each vk ∈ X, and vj /∈ X, it follows that dj = degH(vj) ≥
|X| = d. But |X| = degG(vj) = dj + 1, so dj < |X|. Contradiction, we proved the 
Claim. �

By the Claim, we can fix vk ∈ X such that (vk, v�) /∈ E(G) for some � �= k. Then 
� �= i, j since (vi, vk) and (vj , vk) are edges in G. Let

G′ = G + (vi, vj) − (vj , vk) + (vk, v�).

Then d(G′) = D + 1+j
+� . So G′ satisfies the requirements. Thus we could always define 

G′.
Since there are less than n2 edges and less than n4 many paths of length 3, for any 

H ∈ G(D++) there are less than n2 + n4 many G ∈ G(D+−) such that G′H. So we 
proved |G(D+−)| ≤ (n4 + n2) · |G(D++)|.

The inequality |G(D+−)| ≤ (n4 + n2) · |G(D−−)| can be proved analogously. �
Remark. If D is the constant 0 sequence of length n, then |G(D++)| > 0, but |G(D+−)| =
0 because D+− = ∅, so in 6.2.(a), we can not omit |G(D)| from the RHS of the inequality.
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