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1 Introduction

1.1 Finite group isomorphism

The finite group isomorphism problem (GpI) asks to decide whether two finite groups of order N
are isomorphic or not. Tarjan observed that GpI can be solved in time N logN+O(1) [Mil78], and to
now, only the constant before logN on the exponent has been improved [Ros13].

It has long been known that when the group order N is a power of prime p, namely when the
groups are p-groups, GpI seems the most difficult. Even for p-groups that are “just above” abelian
groups, namely p-groups of class 2 and exponent p,1 no essential progress had not been made, until
the recent breakthrough of Sun [Sun23].

Theorem 1.1 ( [Sun23, Theorem 1.1]). Given two p-groups of class 2 and exponent p of order N ,
there exists an algorithm in time NO((logN)5/6) to decide whether they are isomorphic or not.

Our first result is to improve the running time from [Sun23] as follows.

Theorem 1.2. Let p be an odd prime. Given two p-groups of class 2 and exponent p of order N ,
there exists an algorithm in time N Õ((logN)1/2) to decide whether they are isomorphic or not.

In Theorem 1.2, Õ on the exponent hides a polylogarithmic factor, i.e. Õ((logN)1/2) =
O((logN)1/2 · (log logN)O(1)).

We also broaden the group class for which this running time holds. That is, we extend from
p-groups of class 2 and exponent p to p-groups of Frattini class 2.

A p-group G is of Frattini class 2, if there exists H ≤ G, such that H is central, and both
H and G/H are elementary abelian. p-groups of Frattini class 2 plays an important role in the
enumeration of finite groups [BNV07], as it gives a lower bound on the number of p-groups by the
celebrated work of Higman [Hig60].

Theorem 1.3. Let p be an odd prime. Given two p-groups of Frattini class 2 of order N , there
exists an algorithm in time N Õ((logN)1/2) to decide whether they are isomorphic or not.

1.2 From groups to matrix spaces

A key to several recent works on p-group isomorphism [LQ17,Sun23,GQ24], as well as to this work,
is to examine the following linear algebraic problem.

Let M(n, q) be the linear space of n×n matrices over Fq the finite field of order q. Let GL(n, q)
be the general linear group of degree n over Fq. Recall that a matrix A ∈ M(n, q) is alternating, if
for any v ∈ Fn

q , we have vtAv = 0. The linear space of n×n alternating matrices over Fq is denoted
by Λ(n, q).

Let A,B ≤ Λ(n, q) be two alternating matrix spaces. We say that A and B are congruent2, if
there exists T ∈ GL(n, q) such that A = T tBT := {T tBT | B ∈ B}. The alternating matrix space
congruence problem (Alt-MSC) asks to decide A and B, given by their linear bases, are congruent
or not.

Alt-MSC is closely related to testing isomorphism of p-groups of class 2 and exponent p, because
of Baer’s correspondence [Bae38]. To make this explicit, it is convenient to introduce the following

1A p-group G is of class 2 and exponent p, if the centre Z(G) contains the commutator subgroup [G,G], and every
g ∈ G satisfies that gp = id.

2In [Sun23, LQ17], this was called “isometric”. We choose to use “congruent” as this is in line with the classical
notion of matrix congruence [Mal63].
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notation. For an alternating matrix space A ≤ Λ(n, q) of dimension m, we define its length to be
ℓ = n+m.

Our main technical result is then the following.

Theorem 1.4. Let A,B ≤ Λ(n, q) be two alternating matrix spaces of dimension m, and let ℓ =

n+m be their length. Then there exists an algorithm in time qÕ(ℓ1.5) that decides whether A and B
are congruent.

Theorem 1.4 improves [Sun23, Theorem 1.2], where the running time was qO(ℓ1.8·log q). As solving
GpI for p-groups of class 2 and exponent p in time polynomial in the group order is equivalent
to solving Alt-MSC over Fp of length ℓ in time pO(ℓ) (see [GQ17]), Theorem 1.2 follows from
Theorem 1.4 immediately.

1.3 On the techniques

The overall strategy: reducing to matrix tuple congruence. The algorithm in [Sun23]
for Alt-MSC is a reduction from Alt-MSC to the following problem. Let A = (A1, . . . , Am) and
B = (B1, . . . , Bm) ∈ Λ(n, q)m be two tuples of alternating matrices. We shall call ℓ := n +m the
length of A. They are congruent if there exists T ∈ GL(n, q) such that for all i ∈ [m], Ai = T tBiT .
The alternating matrix tuple congruence problem (Alt-MTC) asks to decide whether two alternating
matrix tuples are congruent.

Roughly speaking, in [Sun23], the algorithm for Alt-MSC of length ℓ over Fq is obtained by
reducing to qO(ℓ1.8·log q)-many instances of Alt-MTC3of length poly(ℓ), and using that Alt-MTC
over finite fields of characteristic ̸= 2 can be solved in deterministic time poly(ℓ, q) in [IQ19].

In this work, we achieve Theorem 1.4 by following the same strategy as in [Sun23]. We devise a
reduction from Alt-MSC of length ℓ over Fq to qÕ(ℓ1.5)-many instances of Alt-MTC of length poly(ℓ).

An outline of Sun’s algorithm. We give an outline of Sun’s algorithm in [Sun23]. Let A,B ≤
Λ(n, q) be two alternating matrix spaces of dimension m. Let (A1, . . . , Am) ∈ Λ(n, q)m be an
ordered basis for A, and (B1, . . . , Bm) ∈ Λ(n, q)m be an ordered basis for B. The question becomes
to compute T ∈ GL(n, q) and C = (ci,j) ∈ GL(m, q), such that ∀i ∈ [m], T tAiT =

∑
j∈[m] ci,jBj .

The first key idea, called matrix space individualisation, is the following. Let L ∈ M(s × n, q)
and R ∈ M(n × s, q), and consider LAR = {LAR | A ∈ A} ≤ M(s, q). If dim(LAR) = dim(A),
then each A ∈ A gets a unique label, namely LAR. A consequence that there exists a canonical
basis of A based on LAR, so we will reduce to the matrix tuple congruence problem.

However, it is possible that dim(LAR) < dim(A), that is, K := {A ∈ A | LAR = 0} is a
non-trivial subspace of A. Fortunately, it can be shown that, for appropriate choices of s, random
L and R yield K that consists of matrices of low rank. This leads to the second key idea: as K is a
low-rank matrix space, it can be arranged in a format that every A ∈ K has the last few rows and
columns being non-zero. This is referred to as the low-rank matrix characterisation in [Sun23].

Given the above, Sun applied matrix space individualisation and low-rank matrix character-
isation to three directions of the n × n × m tensor (A1, . . . , Am). This gives a so-called semi-
canonical tensors associated with A. To decide isomorphism between semi-canonical tensors, the
semi-canonicity ensures that the underlying transformation matrices must be of a certain format.
Such structural restrictions lead to a special form of matrix tuple congruence problem, solvable by
using the algorithm from [IQ19].

3Note that some technicality appears here, namely the Alt-MTC instances have some restrictions on the congruence
matrices; see Section 4.3.
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Sharpening some key techniques in [Sun23]. Our algorithm follows the strategy of Sun’s
algorithm, and it improve the two novel techniques proposed in [Sun23] to near optimal (up to a
logarithmic factor).

The first one is the matrix space individualisation. Briefly speaking, for an alternating matrix
space A ≤ Λ(n, q), we use L ∈ M(s×n, q) and R ∈ M(n×s, q), and label each A ∈ A by the smaller
matrix LAR. For the sake of the second technique, we also need that K = {A ∈ Λ(n, q) | LAR = 0}
consists of matrices of rank ≤ r, where r is a parameter and will be determined later. Here we need
s, the size parameter of L and R, to be upper bounded by some function of r. We improve this
upper bound over that in [Sun23, Lemma 3.2] (as seen in Lemmas 3.3 and 3.4), and the number of
individualisations (the number of rows of L and the number of columns of R) is optimal, matching
the random sampling lower bound (Remark 4.3).

The second one is the so-called low-rank matrix space characterisation. Recall that from the
first step we obtained K ≤ Λ(n, q) which consists of matrices of rank ≤ r. The purpose of the

second technique is to put every A ∈ K in the form of
[
0 A2

A3 A4

]
where 0 is of size c× e, such that

(n− c) + (n− e), the sum of the number of rows in A3 and the number of columns in A2, is upper
bounded by some function of r. We improve this upper bound over from O(r2) in [Sun23, Lemma
4.6] to Õ(r), which is optimal up to a logarithmic factor (Remark 4.6).

Connections with other problems. We realise some connections of the results and techniques
in [Sun23] with some problems that have received considerable attention and utilising some recent
powerful results.

First, we observe that the low-rank matrix space characterisation as in [Sun23] is closely related
to non-commutative ranks of matrix spaces. Non-commutative ranks of matrix spaces has been
studied since the 1970s [Coh75,FR04], and recently received considerable attention in computational
complexity [HW15,Mul17]. Some recent works show that non-commutative ranks of matrix spaces
can be computed in deterministic polynomial time [GGdOW20, IQS18,HH21]. The so-called low-
rank matrix space characterisation in [Sun23] is in fact an upper bound of the non-commutative
rank of a matrix space in terms of its maximum rank. This has been known over large enough
fields [Fla62,FR04], while [Sun23, Lemma 4.6] works over any field.

Second, we note that the alternating matrix tuple congruence problem (Alt-MTC) obtained
in [Sun23] has certain restrictions on the congruence matrix structure. This suggests a new family
of “restricted” alternating matrix tuple congruence problems, and it is interesting to systematically
examine current techniques in [IQ19] for these problems.

Simplifications of the algorithm in [Sun23]. Besides improving some key techniques in [Sun23],
we also simplify the algorithm in several ways.

First, our improvement of [Sun23, Lemma 4.6] makes use some classical results about non-
commutative ranks as in [Fla62,FR04, IQS18]. We also make use of the fact that non-commutative
ranks can be computed in polynomial time to simplify the algorithm.

Second, we simplify the algorithm in [Sun23] by applying individualisation and refinement, and
low-rank matrix space characterisation, in one direction, instead of applying these to three directions
as in [Sun23]. As a result, the resulting semi-canonical tensors (Section 3.3) have a simpler structure.
This is made possible by starting with the matrix space equivalence problem (MSE).

Definition 1.5 (Matrix space equivalence problem (MSE)). Given two matrix spaces A,B ≤
M(n1 × n2, q) of dimension n3, decide if there exist L ∈ GL(n1, q) and R ∈ GL(n2, q), such that
A = LtBR = {LtBR | B ∈ B}.

For A ≤ M(n1 × n2, q) of dimension n3, ℓ = n1 + n2 + n3 is called the length of A. It
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was recently shown in [GQ23b] that solving Alt-MSC of length ℓ over Fq reduces to solving MSE
of length O(ℓ) over Fq. This justifies working with MSE instead of Alt-MSC. The results and
techniques in [GQ23b] also play an important role in Theorem 1.3. We remark that [GQ23b] falls
into the Tensor Isomorphism complexity class framework initiated in [GQ23a].

Third, in [Sun23], some gadgets are designed to enforce these structural restriction on the
congruence matrices of the Alt-MTC problem. Here, we show that one restricted Alt-MTC problem
in this setting can be solved efficiently by a short reduction to the key technical problem, called the
∗-symmetric element decomposition problem, solved in [IQ19].

Structure of the paper. After presenting some preliminaries in Section 2, we prove Theorem 1.4
in Section 3, modulo some technical results that will be proved in Section 4. Finally we prove
Theorem 1.3 in Section 5.

2 Preliminary

Notations. For n ∈ N, [n] := {1, 2, . . . , n}. Unless otherwise stated, the base of logarithm is 2.

Vector spaces. Let F be a field. Let Fn be the linear space of length-n column vectors over F. We
use bi to denote the ith standard basis vector of Fn. For a prime power q, we use Fq to denote the
finite field of order q. Let GL(n,F) be the general linear group of degree n over F.

Matrix spaces. We use M(n1 × n2,F) for the linear space of n1 × n2 matrices over F, and let
M(n, q) := M(n × n,Fq). A matrix space A is a subspace of M(n1 × n2,F), denoted by A ≤
M(n1×n2,F). A matrix A ∈ M(n, q) is alternating, if for any v ∈ Fn

q , we have vtAv = 0. The linear
space of n× n alternating matrices over Fq is denoted by Λ(n, q).

Matrix space equivalence relations. Let A,B ≤ M(n1 × n2,F). Let L ∈ M(s × n1,F) and
R ∈ M(n2 × t,F). Then LAR := {LAR | A ∈ A} ≤ M(s × t,F). We say that A,B are equivalent,
if there exist P ∈ GL(n1,F) and Q ∈ GL(n2,F), such that A = P tBQ. We say that A and B are
congruent, if there exists T ∈ GL(n,F), such that A = T tBT .

Matrix tuples. We use M(n1×n2,F)n3 to denote the linear space of n3-tuples of n1×n2 matrices,
and let M(n, q)k := M(n× n,Fq)

k. Given a matrix tuple A = (A1, . . . , An) ∈ M(n1 × n2,F)n3 , and
two matrices P ∈ M(s× n1,F) and Q ∈ M(n2 × t,F), PAQ := (PA1Q, . . . , PAnQ) ∈ M(s× t,F)n.
The definitions of matrix tuple equivalence, conjugacy and congruence are similar to those for matrix
spaces as above.

Canonical ordered bases of vector and matrix spaces. Let U ≤ Fn and d = dim(U). We say
that an ordered basis (u1, . . . , ud) ∈ Ud is a canonical basis of U , if there exists a polynomial-time
algorithm that, given any ordered basis (u′1, . . . , u′d) of U , outputs (u1, . . . , ud). Viewing (u1, . . . , ud)
as an n×d matrix over F, this is the canonical form problem for GL(d,F) acting on M(n×d,F) from
the right. For d-dimensional spaces in Fn, this problem is efficiently solvable by performing Gaussian
elimination on the columns of matrices M(n× d,F), which gives the reduced column echelon form
as a canonical basis.

Let Q ≤ M(s,F) be a matrix space. We can view M(s,F) as Fs2 by sending A ∈ M(s,F) to
vA ∈ Fs2 by concatenating the columns of A. A canonical linear basis of Q ≤ M(s,F) can then be
obtained by using the canonical basis algorithm for Fs2 in the last paragraph.

Ranks of matrix spaces. Let A ≤ M(n,F). The maximum rank of A is mrk(A) := max{rk(A) |
A ∈ A}. For U ≤ Fn, the image of U under A is A(U) := span{∪A∈AA(U)}. For g ∈ N, we say
that U is a g-shrunk subspace of A, if dim(U) − dim(A(U)) ≥ g. The non-commutative corank
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of A ≤ M(n,F) is defined as co-ncrk(A) := max{g ∈ N | ∃g-shrunk subspace of A}. The non-
commutative rank of A ≤ M(n,F) is defined as ncrk(A) := n− co-ncrk(A).

Canonical shrunk subspaces. Let K ≤ M(n,F) with co-ncrk(K) = g. Then there exists a unique
g-shrunk subspace of K of the smallest dimension [IMQ22, Proposition 7]. This will be called the
canonical g-shrunk subspace. The algorithm in [IQS18] computes this canonical g-shrunk subspace
of K (see the paragraph after the proof of [IMQ22, Proposition 7]).

Tensors. A 3-way array or a tensor of size n1 × n2 × n3 is A = (ai,j,k) where i ∈ [n1], j ∈ [n2], and
k ∈ [n3], and ai,j,k ∈ F. Let T(n1 × n2 × n3,F) be the linear space of n1 × n2 × n3 tensors over F.
Let T(n,F) := T(n× n× n,F).

Let A = (ai,j,k) ∈ T(n1 × n2 × n3,F) be a tensor. We can slice A along one direction and obtain
a matrix tuple, and the matrices in this tuple are then called slices. For example, slicing along
the first coordinate, we obtain its horizontal matrix tuple (A1, . . . , An1) ∈ M(n2 × n3,F)n1 , where
Ai(j, k) = A(i, j, k) are called horizontal slices. Similarly, by slicing along the second coordinate, we
obtain its vertical matrix tuple which is an n2-tuple of n1 × n3 matrices, and the matrices in this
tuple are called vertical slices. By slicing along the third coordinate, we get its frontal matrix tuple,
which is an n3-tuple of n1 × n2 matrices, and the matrices in this tuple are called frontal slices.

3 Algorithm for alternating matrix space congruence

In this section we prove Theorem 1.4, which is obtained by combining Theorem 3.2 with Theorem 3.1.

3.1 From matrix space congruence to matrix space equivalence

Let A,B ≤ Λ(n, q), and suppose m = dim(A) = dim(B). Let ℓ = n+m be their length. Our goal
is to devise an algorithm to test whether A and B are congruent in time qÕ(ℓ1.5).

To this end, as indicated in Section 1.3, we shall study the matrix space equivalence problem
(MSE) as in Definition 1.5. Recall that for A ≤ M(n1 × n2, q) of dimension n3, the length of A is
defined as ℓ = n1 + n2 + n3.

Our focus on MSE is justified by the following result from [GQ23b].

Theorem 3.1 ( [GQ23b, Theorem 1.10]). There is a reduction from Alt-MSC of length ℓ over Fq

to MSE of length O(ℓ) over Fq in time poly(ℓ, log q).

Theorem 3.1 implies that for any constant 1 ≤ c ≤ 2, an algorithm solving MSE of length ℓ over
Fq in time qÕ(ℓc) implies an algorithm solving Alt-MSC of length ℓ over Fq in time qÕ(ℓc).

We now state our result for matrix space equivalence.

Theorem 3.2. There is a qÕ(ℓ1.5)-time algorithm for testing equivalence of matrix spaces of length
ℓ over Fq.

A simplification: from cuboids to cubes. Recall that we want to test if two matrix spaces
A,B ≤ M(n1×n2, q) of dimension n3 are equivalent. A minor simplification is to reduce to the case
when A′,B′ ≤ M(n, q) of dimension n where n = max{n1, n2, n3} (Proposition 4.11 in Section 4.4).
Note that the lengths of A′ and B′ are linear in the lengths of A and B, so working with A′ and B′

is fine for proving Theorem 3.2.
In the following, we assume that we have A,B ≤ M(n, q) of dimension n. We wish to test if

there exist P,Q ∈ GL(n, q), such that P tAQ = B.
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3.2 Sun’s techniques and our improvements

We review two techniques from Sun’s algorithm [Sun23] and introduce our improvements, and
explain how they affect the final running time of the algorithm. Let A ≤ M(n, q) be a matrix space
of dimension n.

Technique 1: Individualisation by left-right restrictions. The first is an individualisation-
type technique. That is, for L ∈ M(s× n, q) and R ∈ M(n× s, q), define ker(A, L,R) := {A ∈ A |
LAR = 0} ≤ A and im(A, L,R) = {LAR | A ∈ A} ≤ M(s, q). Once L and R are fixed, we compute
a canonical linear basis of im(A, L,R).

The purpose of a canonical linear basis is to assign the every element in the quotient space
A/ ker(A, L,R) a unique “label”. This leaves the ambiguity caused by ker(A, L,R), so we need the
second technique, namely making use of low-rank matrices. For this purpose, we require L and R to
satisfy that (1) ker(A, L,R) consists of matrices of rank ≤ r where r is sufficiently smaller than n,
and (2) the size s for L ∈ M(s×n, q) and R ∈ M(n×s, q) is upper bounded by some function r. The
existence of such L and R with these properties is ensured by a probabilistic argument in [Sun23].

Lemma 3.3 ( [Sun23, Lemma 3.2]). Let A ≤ M(n, q) be a matrix space of dimension n. Fix some
r ∈ [n], and let

s = ⌈32 ·max{n log q√
r

,
√
r}⌉. (1)

Then there exist L ∈ M(s × n, q) and R ∈ M(n × s, q), such that ker(A, L,R) consists of matrices
of rank ≤ r.

We improve the parameters in Lemma 3.3 and put it as a probabilistic statement as follows.
The proof of the following lemma is in Section 4.1.

Lemma 3.4. Let A ≤ M(n, q) be a matrix space of dimension n. Fix some r ∈ [n], and let

s = ⌈3 ·max{n
r
, r}⌉. (2)

Then with at least probability of 1 − 1
qr , uniformly randomly sampled L ∈ M(s × n, q) and R ∈

M(n× s, q) satisfy that ker(A, L,R) consists of matrices of rank ≤ r.

Note that Lemma 3.4 allows us to choose r = ⌈
√
n⌉ which gives s = O(

√
n). On the other hand,

to achieve s = O(
√
n) in [Sun23, Lemma 3.2] requires r = O(n) which is not useful for the next

step. Lemma 3.4 also gets rid of the log q factor of n√
r

as in Equation 1, which in [Sun23] affects
the final exponent on the logN as in Theorem 1.1.

Technique 2: Low-rank matrix space characterisation. From the above, we obtain K :=
ker(A, L,R) ≤ M(n, q) which consists of matrices of rank ≤ r, where r is small compared with
n. Then there exists U ≤ Fn

q of dimension e, such that K(U) is of dimension d, and letting
g := dim(U) − dim(K(U)) = e − d, h := n − g is a function in r. Non-commutative ranks (ncrk),
non-commutative coranks (co-ncrk), and maximum ranks (mrk) for matrix spaces are defined in
Section 2.

In [Fla62], Flanders showed that when the field order q ≥ r+1, then h = n−g ≤ 2r (see [FR04]).
When the field order can be small, the following was shown in [Sun23].

Lemma 3.5 ( [Sun23, Lemma 4.6]). Let K ≤ M(n,F). Suppose mrk(K) = r. Then ncrk(K) ≤
O(r2).

We improve the parameters in Lemma 3.5 in the following lemma, whose proof is in Section 4.2.

6



Lemma 3.6. Let K ≤ M(n,F). Suppose mrk(K) = r. Then ncrk(K) ≤ O(r log r).

Summarising the improvements and the final running time. The two improvements in
Lemmas 3.4 and 3.6 contribute to the reduction from qO(ℓ1.8·log q) in [Sun23, Theorem 1.2] to qÕ(ℓ1.5)

in Theorem 1.4 as follows. Recall that s is the size parameter of the individualising matrices, and
h = ncrk(K) is the non-commutative rank of K.

Briefly speaking, as shown in Section 3.5, the main factor in the running time is qO((s+h)n).
In [Sun23], because of Lemmas 3.3 and 3.5, the relations between r, s and h lead to setting r = ⌈n0.4⌉,
so s = O(max{n · log q/

√
r,
√
r}) = O(n0.8 log q), and h = O(r2) = O(n0.8). This gives the running

time qO(n1.8·log q). Here, because of Lemmas 3.4 and 3.6, the relations between r, s and h lead to
setting r = ⌈

√
n⌉, so s = O(max{n/r, r}) = O(

√
n), and h = O(r log r) = Õ(

√
n). This gives the

running time qÕ(n1.5).

3.3 Semi-canonical tensors of matrix spaces

We use the two techniques in Section 3.2 to associate A ≤ M(n, q) with certain tensors A ∈ T(n, q)
in a specific format, such that those (P,Q, S) ∈ GL(n, q) × GL(n, q) × GL(n, q) preserving this
format needs to satisfy certain structural constraints.

In the following, we use a parameter r which is the target rank. It will be set as ⌈
√
n⌉ based on

the discussion at the end of Section 3.2.

Semi-canonical tensors. Let A ≤ M(n, q) be of dimension n. For L ∈ M(s × n, q) and R ∈
M(n × s, q), let K = ker(A, L,R) ≤ A and Q = im(A, L,R) ≤ M(s, q). Let a = dim(K) and
b = dim(Q), so a+ b = n. We can then arrange an ordered linear basis (A1, . . . , An) ∈ M(n, q)n of
A, such that K = span{A1, . . . , Aa}.

Suppose mrk(K) ≤ r. Let g = co-ncrk(K), and h = ncrk(K) = n − g. Let U ≤ Fn
q be the

canonical shrunk subspace of K (Section 2). Let e := dim(U), f := n− e, d := e− g = dim(K(U)),
and c := n − d. By left and right multiplying suitable change-of-basis matrices, we can assume
U = span{b1, . . . ,be}, and K(U) = {bc+1, . . . ,bn}, and get an n×n matrix tuple A = (A1, . . . , An).

For i ∈ [n], let Ai =

[
Ai,1 Ai,2

Ai,3 Ai,4

]
, where Ai,1 ∈ M(c× e,F). Then for i ∈ [a], Ai,1 = 0.

Because of the canonical basis of im(A, L,R) and the canonical shrunk subspace U of K, following
[Sun23], we call this A a semi-canonical tensor associated with A, L, and R. The shape of A is then
(a, b, c, d, e, f) ∈ N6 as above – that is, a = dim(K), e = dim(U) where U is the canonical shrunk
subspace, and d = dim(K(U)), and b = n − a, f = n − e, and c = n − d. Figure 1 illustrates the
form of a semi-canonical tensor with parameters in its shape.

a
b

c

d

fe

O

Figure 1: A semi-canonical tensor.

Briefly speaking, L ∈ M(s×n, q) and R ∈ M(n× s, q)
satisfying mrk(ker(A, L,R)) ≤ r will result in a semi-
canonical tensor. This tensor is obtained by applying
appropriate change-of-basis matrices along the three di-
rections, so that K = ker(A, L,R) is spanned by the first
few frontal slices, the canonical shrunk subspace U of K
is spanned by the first few standard basis vectors, and the
image of U under K is spanned by the last few standard
basis vectors.

Structural restrictions on the equivalence matri-
ces. Suppose L ∈ M(s × n, q) and R ∈ M(n × s, q)
give rise to two semi-canonical 3-way arrays A and B from
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A ≤ M(n, q) as above. Suppose we wish to test equivalence between A and B respecting L and R.
This means that the canonical objects associated with L and R need to be respected too. Therefore,
the equivalence matrices (P,Q, S) ∈ GL(n, q)×GL(n, q)×GL(n, q) need to satisfy the following:

1. S preserves the canonical basis of im(A, L,R),

2. Q preserves the canonical shrunk subspace U of K, and

3. P preserves the image of the canonical shrunk subspace of K.

As we have arranged that ker(A, L,R) = span{A1, . . . , Aa} and (LAa+1R, . . . , LAnR) is the canon-

ical ordered basis of im(A, L,R), S is of the form
[
S1 S2

0 Ib

]
, where S1 is of size a× a. As we have

arranged the canonical shrunk subspace U of K to be span{b1, . . . ,be}, Q is of the form
[
Q1 Q2

0 Q4

]
,

where Q1 is of size e × e. As we have arranged K(U) to be span{bc+1, . . . ,bn}, P is of the form[
P1 0
P3 P4

]
, where P1 is of size c× c.

Observe that
[
Q2

Q4

]
is of size n × f , and

[
P3 P4

]
is of size d × n. And recall that d + f =

(n− e) + (e− g) = n− g = ncrk(K).

3.4 Testing equivalences between semi-canonical tensors

Based on the discussions in Section 3.3, the following problem is crucial.

Problem 3.7. Suppose we are given two 3-way arrays A and B in T(n, q). Let A = (A1, . . . , An)
be the frontal matrix tuple of A, and B = (B1, . . . , Bn) be the frontal matrix tuple of B. For i ∈ [n],

let Ai =

[
Ai,1 Ai,2

Ai,3 Ai,4

]
, where Ai,1 is of size c × e. Similarly, i ∈ [n], let Bi =

[
Bi,1 Bi,2

Bi,3 Bi,4

]
, where

Bi,1 is of size c× e. For i ∈ [a], Ai,1 = Bi,1 = 0. Let d = n− c, f = n− e, and b = n− a.
The problem is to decide equivalence of A and B under the action of (P,Q, S) ∈ GL(n, q) ×

GL(n, q)×GL(n, q), where P =

[
P1 0
P3 P4

]
with P1 ∈ GL(c, q), Q =

[
Q1 Q2

0 Q4

]
where Q1 ∈ GL(e, q),

and S =

[
S1 S2

0 Ib

]
where S1 ∈ GL(a, q).

We will reduce Problem 3.7 to the following conditioned alternating matrix tuple congruence
(Cond-Alt-MTC) problem. To introduce this problem, it is convenient to introduce the following.
Let n ∈ N. For n1, . . . , ns ∈ Z+ with n1 + · · · + ns = n, let D(n1, . . . , ns,F) ≤ GL(n,F) be the
group of invertible block-diagonal matrices with the block sizes being n1, . . . , ns. For t ∈ N, let

I(n : t,F) ≤ GL(n,F) be the group consisting of invertible matrices of the form
[
S1 S2

0 It

]
. Let

DI(n1 : t1, . . . , ns : ts,F) be the group of invertible block-diagonal matrices with the block sizes
being n1, . . . , ns, and each block consisting of matrices from T (ni : ti,F).

Problem 3.8 (Conditioned alternating matrix tuple congruence (Cond-Alt-MTC)). Given the lin-
ear bases of A and B ∈ Λ(n, q), decide if they are congruent by a matrix from I(n1 : t1, . . . , ns : ts,F).

In Section 4.3, we show the following.
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Lemma 3.9. There is a polynomial-time algorithm for the conditioned alternating matrix tuple
congruence problem over finite fields.

Based on the above, we can solve Problem 3.7.

Theorem 3.10. There exists an algorithm solving Problem 3.7 in time q(d+f)n · poly(n, log q).

Proof. Note that
[
Q2

Q4

]
is of size n × f , and

[
P3 P4

]
is of size d × n. As we can accommodate

a multiplicative factor of q(d+f)n, we can enumerate all matrices of the form
[
Q2

Q4

]
where Q4 is

invertible, and
[
P3 P4

]
where P4 is invertible. For each fixed

[
Q2

Q4

]
and

[
P3 P4

]
, by applying

appropriate change of basis matrices, we can assume that P =

[
P1 0
0 Id

]
with P1 ∈ GL(c, q),

Q =

[
Q1 0
0 If

]
where Q1 ∈ GL(e, q).

We now examine the action of P =

[
P1 0
0 Id

]
, Q =

[
Q1 0
0 If

]
, and S =

[
S1 S2

0 Ib

]
on A. Recall

that the frontal matrix tuple of A is

( [ 0 A1,2

A1,3 A1,4

]
, . . . ,

[
0 Aa,2

Aa,3 Aa,4

]
,

[
Aa+1,1 Aa+1,2

Aa+1,3 Aa+1,4

]
, . . . ,

[
An,1 An,2

An,3 An,4

] )
.

We then consider the following three sub-arrays of A.

The first one is A′ ∈ T(n× f × n, q), whose frontal slices are
( [A1,2

A1,4

]
,

[
A2,2

A2,4

]
, . . . ,

[
An,2

An,4

] )
. As

Q =

[
Q1 0
0 If

]
, the action of (P,Q, S) on its vertical slices is trivial. So let its vertical matrix tuple

be A′ = (A′
1, . . . , A

′
f ) ∈ M(n, q)f , with P acting on its left, and S acting on its right.

The second one is A′′ ∈ T(d × e × n, q), whose frontal slices are (A1,3, A2,3, . . . , An,3). As

P =

[
P1 0
0 Id

]
, the action of (P,Q, S) on its horizontal slices is trivial. So let its horizontal matrix

tuple be A′′ = (A′′
1, . . . , A

′′
d) ∈ M(e× n, q)d, with Q1 ∈ GL(e, q) acting on its left, and S acting on

its right.
The third one is A′′′ ∈ T(c × e × b, q), whose frontal slices are (Aa+1,1, Aa+2,1, . . . , An,1). As

S =

[
S1 S2

0 Ib

]
and A1,1 = · · · = Aa,1 = 0, the action of (P,Q, S) on its frontal slices is trivial. So

let its frontal matrix tuple be A′′′ = (A′′′
1 , . . . , A

′′′
b ) ∈ M(c× e, q)b, with P1 ∈ GL(c, q) acting on its

left and Q1 ∈ GL(e, q) acting on its right.
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A′
1

f many slices

A′ A′′

d many slices

A′′′

b man
y slic

es

A′′
1

A′′′
1

Figure 2: Construction of matrix tuples from semi-canonical tensors.

We perform the above array decomposition to B to obtain three matrix tuples B′, B′′, and B′′′.
This leads to three matrix tuple equivalence instances with correlated actions as follows.

• Input: Three pairs of matrix tuples: A′,B′ ∈ M(n, q)f , A′′,B′′ ∈ M(e × n, q)d, and A′′′,B′′′ ∈
M(c× e, q)b.

• Output: “Yes” if there exist P1 ∈ GL(c, q), Q1 ∈ GL(e, q), and S =

[
S1 S2

0 Ib

]
∈ GL(n, q), such

that the following holds. Let P =

[
P1 0
0 Id

]
∈ GL(n, q). Then P tA′S = B′, Qt

1A
′′S = B′′,

and P t
1A

′′′Q1 = B′′′. “No” if no such P1, Q1, and S exist.

We assemble the above three matrix tuple equivalence instances into one alternating matrix tuple
congruence instance as follows. Let Ã = (Ã1, . . . , Ãf+d+b) ∈ Λ(2n + e, q)f+d+b be as follows. For

i ∈ [f ], Ãi =

 0 0 A′
i

0 0 0
−A′t

i 0 0

, where A′
i ∈ M(n, q). For i ∈ [f +1, f +d], Ãi =

0 0 0
0 0 A′′

i−f

0 −A′′t
i−f 0

,

where A′′
i ∈ M(e × n, q). For i ∈ [f + d + 1, f + d + b], Ãi =

 0 A′′′
i−f−b 0

−A′′′
i−f−b 0 0

0 0 0

, where

A′′′
i ∈ M(c×e, q). Do the same for B′, B′′, and B′′′ to obtain B̃ ∈ Λ(2n+e, q)f+d+b. We then need to

test the congruence of alternating matrix tuples Ã and B̃ under the action of T ∈ diag(P1, Id, Q1, S)

where S =

[
S1 S2

0 Ib

]
. This is an instance of Cond-Alt-MTC, which can be solved in polynomial

time by Lemma 3.9. This concludes the proof.

3.5 Algorithm description

We now briefly summarise the contents from Section 3.2 to Section 3.4. Recall that we wish to
test if A,B ≤ M(n, q) of dimension n are equivalent or not. In Section 3.2, we introduced two key
techniques (individualisation by left and right matrices, low-rank matrix space characterisation)
from [Sun23] and our improvements. In Section 3.3, by utilising the two techniques, given appropri-
ate left and right individualising matrices L ∈ M(t× n, q) and R ∈ M(n× t, q), we obtain a tensor
called a semi-canonical tensor A ∈ T(n, q) of A w.r.t. L and R. Because of the canonical objects in
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this procedure, we see that there are structural restrictions on the equivalence matrices of two semi-
canonical tensors A, B ∈ T(n, q) of A from the same L and R. In Section 3.4, we study the tensor
equivalence with structural restriction problem from the previous step. We show that this problem
reduces to the conditioned alternating matrix tuple congruence problem, with some conditions on
the congruence matrices. This problem can be solved in polynomial time (Section 4.3).

Based on the above, an algorithm for testing equivalence of A,B ∈ M(n, q) is as follows.

1. Compute a semi-canonical tensor A of A w.r.t. L ∈ M(s×n, q) and R ∈ M(n× s, q), with the
target rank being r. Let the shape of A be (a, b, c, d, e, f).

2. Enumerate all L′ ∈ M(s× n, q) and R′ ∈ M(n× s, q) and compute a semi-canonical tensor B
of B w.r.t. L′ and R′. For each B of the same shape as A, test if A and B are equivalent in the
sense of Problem 3.7, which can be solved in time q(d+f)n · poly(n, log q) by Theorem 3.10. If
for some B the algorithm in Theorem 3.10 reports “Yes”, then return “Yes”.

3. Return “No”.

To compute a semi-canonical tensor on the A side with the target rank r, we can do the following.

1. First, randomly sample L ∈ M(s × n, q) and R ∈ M(n × s, q), where s = ⌈3 · max{n
r , r}⌉

by Lemma 3.4. Let K := ker(A, L,R). Set a := dim(K), and b := n − a. Test whether
mrk(K) ≤ r, by going over all the matrices in K, in time qa · poly(n, log q). By Lemma 3.4,
the probability of mrk(K) ≤ r is lower bounded by 1− 1

qr

2. Second, we have K := ker(A, L,R) such that a = dim(K) and mrk(K) ≤ r. By a basis
change, we arrange a matrix tuple (A1, . . . , An), such that (1) A = span{A1, . . . , An}, (2)
K := ker(A, L,R) = span{A1, . . . , Aa}, and (3) (LAa+1R, . . . , LAnR) is the canonical ordered
basis of im(A, L,R). This canonical ordered basis of im(A, L,R) can be computed efficiently
as described in Section 2.

3. Third, let g = co-ncrk(K), and h = ncrk(K) = n−g. Compute the canonical shrunk subspace
U of K by the algorithm in [IQS18] (see Section 2). By Lemma 3.6, h ≤ O(r log r). Let
e := dim(U), f := n− e, d := e− g = dim(K(U)), and c := n− d. By applying suitable basis
changes, we can set U = span{b1, . . . ,be}, and K(U) = {bc+1, . . . ,bn}. This then gives us a
semi-canonical tensor of A w.r.t. L and R.

To enumerate semi-canonical tensors on the B side follows the same steps, so we omit here.

Correctness. We need to argue that A and B are equivalent if and only if the above algorithm
returns “Yes”. First, if the algorithm returns “Yes”, then this means that there is a series of matrices
multiplying on the three directions of A to arrive at B, so A and B are equivalent. Second, suppose
A and B are equivalent, namely there exist P,Q ∈ GL(n,F) such that A = P tBQ. Recall that L
and R are the left and right individualising matrices which we fixed on the A side. Then the left and
right individualising matrices LP t and QR on the B side will give rise to a semi-canonical tensor
B that are related by the special equivalence matrices as defined in Problem 3.7. As Theorem 3.10
solves Problem 3.7, the algorithm will return “Yes”.

Running time. To compute a semi-canonical tensor of A takes poly(n, log q) time. To enumerate
L′ ∈ M(s×n, q) and R′ ∈ M(n×s, q) takes qsn time. To solve Problem 3.7 takes q(d+f)n·poly(n, log q)
time. Therefore the total running time is upper bounded by q(s+d+f)n · poly(n, log q) time. Recall
that r = ⌈

√
n⌉. By Lemma 3.4, s = O(r). By Lemma 4.5, d + f = ncrk(K) ≤ O(r log r) =

O(
√
n log n). Therefore, the total running time is bounded by qÕ(n1.5).
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4 Technical results to support Theorem 3.2

4.1 On the individualisation step

Lemma 4.1. Suppose A ∈ M(m × n, q) is of rank at least r. For uniformly randomly sampled
L ∈ M(s×m, q) and R ∈ M(n× s, q), Pr[LAR = 0 ∈ M(s, q)] ≤ 1

qr(s−1)−(r+1)2/4
.

Proof. First of all, we prove Pr[rk(A) = r, LAR = 0 ∈ M(s, q)] ≤ 1

qr(s−1)−(r+1)2/4
. Without loss of

generality, we may assume A =

[
Ir 0
0 0

]
. Let L =

[
L1 L2

]
, where L1 ∈ M(s×r, q), and R =

[
R1

R2

]
,

where R1 ∈ M(r × s, q). Then Pr[rk(A) = r, LAR = 0 ∈ M(s, q)] = Pr[L1R1 = 0 ∈ M(s, q)].
Observe that

Pr[L1R1 = 0 ∈ M(s, q)] =
∑

0≤k≤min{r,s}

Pr[L1R1 = 0 | rk(R1) = k] · Pr[rk(R1) = k]

≤ r · max
0≤k≤min{r,s}

{Pr[L1R1 = 0 | rk(R1) = k] · Pr[rk(R1) ≤ k]} .

Now let us focus on Pr[L1R1 = 0 | rk(R1) = k] · Pr[rk(R1) ≤ k], where 0 ≤ k ≤ min{r, s}.
First, we have Pr[L1R1 = 0 | rk(R1) = k] = q(r−k)·s

qrs = 1
qks

.
Second, to upper bound Pr[rk(R1) ≤ k], we can equivalently consider when R1 has a column

space of dimension ≤ k. Then it is straightforward to see that
(
r
k

)
q
· qks is an upper bound for the

number of r× s matrices of rank ≤ k. Here,
(
r
k

)
q

is the Gaussian binomial coefficient which counts
the number of k-dimensional subspaces of Fr

q, and qks accounts for the possibilities of choosing s

many column vectors from each k-dimensional subspace. Using the bound
(
r
k

)
q
≤ qk(r−k)+k [BNV07,

Proposition 3.16], it follows that Pr[rk(R1) ≤ k] ≤ qk(r−k)+k

qrs · qks.
Based on the above, we have Pr[L1R1 = 0 | rk(R1) = k]·Pr[rk(R1) ≤ k] ≤ 1

qks
· 1

qrs+k2−kr−k
·qks =

1

qrs+k2−kr−k
. Note that 1

qrs+k2−kr−k
achieves maximum at k = (r + 1)/2, with the value 1

qrs−(r+1)2/4
.

It follows that

Pr[rk(A) = r, LAR = 0 ∈ M(s, q)] ≤ r · max
0≤k≤min{r,s}

{Pr[L1R1 = 0 | rk(R1) = k] · Pr[rk(R1) ≤ k]}

≤ r

qrs−(r+1)2/4

≤ qr

qrs−(r+1)2/4
=

1

qr(s−1)−(r+1)2/4
.

To complete the proof, we claim that for uniformly randomly sampled L ∈ M(s × m, q) and
R ∈ M(n × s, q), Pr[rk(A′) ≥ r, LA′R = 0 ∈ M(s, q)] ≤ Pr[rk(A) = r, LAR = 0 ∈ M(s, q)]. Again,

without loss of generality, we assume A′ =

[
Ir′ 0
0 0

]
where r′ ≥ r. Let L =

[
L′
1 L′

2

]
, where L′

1 ∈

M(s× r′, q), and R =

[
R′

1

R′
2

]
, where R′

1 ∈ M(r′ × s, q). Then Pr[rk(A′) = r′, LA′R = 0 ∈ M(s, q)] =

Pr[L′
1R

′
1 = 0 ∈ M(s, q)]. Now it suffices to show that for any r′ ≥ r, Pr[L′

1R
′
1 = 0] ≤ Pr[L1R1 = 0]

for uniformly randomly sampled L1 ∈ M(s × r, q), R1 ∈ M(r × s, q), L′
1 ∈ M(s × r′, q) and R′

1 ∈
M(r′ × s, q). This can be done by further partitioning L′

1 ∈ M(s× r′, q) and R′
1 ∈ M(r′ × s, q), i.e.,

letting L′
1 =

[
L′′
1 L′′

2

]
where L′′

1 ∈ M(s × r, q), and R′
1 =

[
R′′

1

R′′
2

]
where R′′

1 ∈ M(r × s, q). Thus,
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Pr[L′
1R

′
1 = 0] = Pr[L′′

1R
′′
1 + L′′

2R
′′
2 = 0] ≤ Pr[L′′

1R
′′
1 = 0] = Pr[L1R1 = 0]. This concludes the

proof.

Proposition 4.2. Let A ≤ M(m×n, q) be a matrix space of dimension d. Let s = 2+ ⌈dr +
(r+1)2

4r ⌉.
Then with probability at least 1− 1

qr , uniformly randomly sampled L ∈ M(s×m, q) and R ∈ M(n×s, q)
satisfy that for any A ∈ A of rank ≥ r, LAR is not zero.

Proof. Suppose L and R are uniformly randomly sampled matrices. By union bound and Lemma 4.1,
Pr[∃A ∈ A, rk(A) ≥ r, LAR = 0] ≤ qd · Pr[rk(A) ≥ r, LAR = 0] ≤ qd

qr(s−1)−(r+1)2/4
. Therefore, when

s = 2+ ⌈dr +
(r+1)2

4r ⌉, Pr[∀A ∈ A, rk(A) ≥ r, LAR ̸= 0] ≥ 1− qd

qr(s−1)−(r+1)2/4
≥ 1− 1

qr , which ensures
such L and R with the desired probability.

Lemma 3.4, restated. Let A ≤ M(n, q) be a matrix space of dimension n. Fix some r ∈ [n], and
let

s = ⌈3 ·max{n
r
, r}⌉. (3)

Then with probability at least 1 − 1
qr , uniformly randomly sampled L ∈ M(s × n, q) and R ∈

M(n× s, q) satisfy that ker(A, L,R) consists of matrices of rank ≤ r.

Proof of Lemma 3.4. By Proposition 4.2, it suffices to show that 3 ·max{n
r , r} ≥ 2 + n

r + (r+1)2

4r for
all n ≥ 2.

If n
r ≥ r, then 3 · n

r − (2 + n
r + (r+1)2

4r ) ≥ 2r − 2− (r+1)2

4r , which is positive for all r ≥ 2. When
r = 1, 3 ·max{n

r , r} − (2 + n
r + (r+1)2

4r ) = 3n− (n+ 3) ≥ 0 for all n ≥ 2.
If n

r ≤ r, then 3r − (2 + n
r + (r+1)2

4r ) ≥ 2r − 2− (r+1)2

4r , which is positive for all r ≥ 2.

Remark 4.3. The parameters in Lemma 3.4 are near optimal in the following sense. Consider an
n-dimensional A ≤ M(n, q), such that every A ∈ A is of rank r := ⌈

√
n⌉. By increasing by 1 if

needed, assume that r is even. Then the number of r/2-dimensional subspaces contained in ker(A)

for some A ∈ A could be as many as qn ·
(n−r/2

r/2

)
q
= qn · q(n−r)r/2+Θ(r) = q(n−r/2)r/2+3n/4+Θ(r),

which is much larger than
(

n
r/2

)
q
= q(n−r/2)r/2+Θ(r), the number of r/2-dimensional subspaces in

Fn
q . From this perspective, the best we can hope for the size s in L and R is cr for some constant

c > 1, and this is indeed achievable by Lemma 3.4.

4.2 Non-commutative and commutative ranks over small fields

Let A ≤ M(n,F) be a matrix space. Recall that the maximum rank and the non-commutative
ranks of A, mrk(A) and ncrk(A), were defined in Section 2. We recall some previous results. First
observe that mrk(A) ≤ ncrk(A). We are interested in upper bounding ncrk(A) by mrk(A).

When the field order is large, the following was known.

Theorem 4.4 ( [Fla62, Lemma 1]; see [FR04, Corollary 2]). Let K ≤ M(n,F). Suppose mrk(K) = r
and |F| ≥ r + 1. Then ncrk(K) ≤ 2r.

Lemma 3.6, restated. Let K ≤ M(n,F). Suppose mrk(K) = r. Then ncrk(K) ≤ O(r log r).

Proof of Lemma 3.6. Because of Theorem 4.4, we only need to show this for the case of |F| ≤ r.
Our strategy is to use extension fields of F.

In the following, F is a finite field of order s.
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Suppose K ≤ M(n,F) is of dimension m, and A1, . . . , Am ∈ M(n,F) form a linear basis of K. Let
E be an extension field of F of degree d. Let KE = {α1A1+· · ·+αmAm | ∀i ∈ [m], αi ∈ E} ≤ M(n,E).
To distinguish K and KE, we shall write K as KF in the following.

Note that |E| = |F|d = sd. Let d = ⌈log(r)⌉ + 1, so |E| = sd ≥ 2⌈log(r)⌉+1 ≥ r + 1. By
Theorem 4.4, ncrk(KE) ≤ 2 ·mrk(KE). As the non-commutative rank remains the same over field
extensions (see [IQS18, Lemma 5.3]), we have

ncrk(KF) = ncrk(KE) ≤ 2 ·mrk(KE). (4)

Our goal is to upper bound mrk(KE) by r = mrk(KF). This is achieved by the following lemma,
whose proof is put in Section 4.2.1.

Lemma 4.5. Let F be a field and E be an extension field of F of degree d. Let K ≤ M(n,F), and
KE = K ⊗F E. Then mrk(KE) ≤ mrk(K) · d.

Back to our setting, we combine Lemma 4.5, d = ⌈log(r)⌉+ 1, and Equation 4 to obtain

ncrk(KF) = ncrk(KE) ≤ 2 ·mrk(KE) ≤ 2 ·mrk(KF) · d = O(r log r).

This concludes the proof.

Remark 4.6. Note that Lemma 3.6 is optimal up to a logarithmic factor, because of the basic fact
that mrk(KF) ≤ ncrk(KF).

4.2.1 Proof of Lemma 4.5

Proof of Lemma 4.5. We may write K as KF for clarity in the following. Let r = mrk(KF) and
r̃ = mrk(KE). Our goal is to show that r̃ ≤ r · d.

Suppose A1, . . . , Am ∈ M(n,F) form a linear basis of KF. So KF = {c1A1 + · · · + cmAm | ∀i ∈
[m], ci ∈ F}, and KE = {γ1A1 + · · · + γmAm | ∀i ∈ [m], γi ∈ E}. As r̃ = mrk(KE), there exist
β1, . . . , βm ∈ E, such that B = β1A1 + · · ·+ βmAm is of rank r̃.

As E is an extension field of F of degree d, there exists {α1, . . . , αd} ⊆ E as an F-linear basis
of E. We can then write, for every i ∈ [m], βi =

∑
j∈[d] ai,jαj , ai,j ∈ F. It follows that B =

β1A1 + · · · + βmAm =
∑

i∈[m](
∑

j∈[d] ai,jαj)Ai =
∑

j∈[d](
∑

i∈[m] ai,jAi)αj . For j ∈ [d], let Cj =∑
i∈[m] ai,jAi, which is in KF. So B =

∑
j∈[d] αjCj . By the subadditivity of matrix ranks, r̃ =

rk(B) ≤
∑

j∈[d] rk(Cjαj). So there exists some k ∈ [d], such that rk(Ck) = rk(Ck · αk) ≥ r̃/d. As
Ck ∈ KF, we have r ≥ rk(Ck) ≥ r̃/d. This concludes the proof.

4.3 Solving conditioned alternating matrix tuple congruence

In this section, we give an algorithm for the conditioned alternating matrix tuple congruence problem
(Cond-Alt-MTC) to prove Lemma 3.9. We first reduce to the block-diagonal group setting (i.e.
resolving I(n : t, q) components), using a technique from [Sun23]. We then solve the block-diagonal
alternating matrix tuple congruence directly by a simple reduction to a problem solved in [IQ19].

4.3.1 Reducing the block-diagonal Alt-MTC problem

Our problem in this subsection is to test if A,B ∈ Λ(n, q)m are congruent under DI(n1 : t1, . . . , ns :
ts, q). We will construct A′,B′ ∈ Λ(n + 3, q)m

′ , such that A and B are congruent by DI(n1 :
t1, . . . , ns : ts, q) if and only if A′, B′ are congruent by D(n1, . . . , ns, 3, q). To achieve this, the
following facts are useful.
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Lemma 4.7. 1. Let u1, u2, v1, v2 ∈ Fn. Then u1u
t
2 − u2u

t
1 is a scalar multiple of v1vt2 − v2v

t
1 if

and only if span{u1, u2} = span{v1, v2}.

2. Let u1, u2, u3 ∈ Fn. Suppose u1u
t
2 − u2u

t
1 = b1b

t
2 − b2b

t
1, u1u

t
3 − u3u

t
1 = b1b

t
3 − b3b

t
1, and

u2u
t
3−u3u

t
2 = b2b

t
3−b3b

t
2. Then there exists λ ∈ {1,−1} ⊆ F, such that u1 = λb1, u2 = λb2,

and u3 = λb3.

3. Let u ∈ Fn, and i ∈ [3, n]. Suppose b1u
t−ubt

1 = b1b
t
i −bib

t
1 and b2u

t−ubt
2 = b2b

t
i −b2b

t
1.

Then u = bi.

Proof. (1) is classical and can be verified easily.
For (2), we have span{u1, u2} = span{b1,b2}, span{u1, u3} = span{b1,b3}, and span{u2, u3} =

span{b2,b3} by (1). Therefore, u1 ∈ span{b1,b2}∩span{b1,b3}, so u1 = αb1. Similarly, u2 = βb2,
and u3 = γb3. We further note that αβ = βγ = αγ = 1, which gives α = β = γ = 1 or
α = β = γ = −1.

For (3), we have span{b1, u} = span{b1,bi} and span{b2, u} = span{b2,bi} by (1). Therefore,
u ∈ span{b1,bi} ∩ span{b2,bi} by (1). It follows that u = αbi. Comparing the coefficients of
b1u

t − ubt
1 = b1b

t
i − bib

t
1, we further have α = 1, so u = bi.

Based on Lemma 4.7, we construct A′ = (A′
1, . . . , A

′
m) ∈ Λ(n+ 3, q)m

′ , where m′ = m+ 3 + 2 ·
(t1 + · · ·+ ts), from A = (A1, . . . , Am) ∈ Λ(n, q)m as follows.

• For i ∈ [m], A′
i =

[
Ai 0
0 0

]
.

• A′
m+1 = bn+1b

t
n+2 − bn+2b

t
n+1, A′

m+2 = bn+1b
t
n+3 − bn+3b

t
n+1, and A′

m+3 = bn+2b
t
n+3 −

bn+2b
t
n+3.

• Suppose i ∈ [n] satisfies bt
iT = bt

i for any T ∈ DI(n1 : t1, . . . , ns : ts,F). Note that such an i
belongs to an identity component in the definition of DI(n1 : t1, . . . , ns : ts,F), and there are
t1 + · · ·+ ts such i. For each such i, add b1b

t
i − bib

t
1 and b1b

t
i − bib

t
1 to the A′ tuple.

Proposition 4.8. Let A ∈ Λ(n,F)m and A′ ∈ Λ(n + 3,F)m′ be as above. Similarly construct
B′ ∈ Λ(n+3,F)m′ from B ∈ Λ(n,F)m. Then A and B are congruent under DI(n1 : t1, . . . , ns : ts,F)
if and only if A′ and B′ are congruent under D(n1, . . . , ns, 3,F).

Proof. The only if direction is easy to verify. For the if direction, suppose T ∈ D(n1, . . . , ns, 3,F)
satisfies that T tA′T = B′. By the constructions of A′

m+i and B′
m+i for i = 1, 2, 3 and Lemma 4.7

(2), the last three rows of T are λ ·

bt
n+1

bt
n+2

bt
n+3

 where λ ∈ {1,−1}. Then by the constructions of the last

2(t1, . . . , ts) matrices in A′ and B′ and Lemma 4.7. (3), for every i ∈ [n] in an identity component
in the definition of DI(n1 : t1, . . . , ns : ts,F), we have the ith row of T is λ ·bt

i . By multiplying λ in

case it is −1, we have that T =

[
T ′ 0
0 I3

]
for some T ′ ∈ DI(n1 : t1, . . . , ns : ts,F), and this T ′ is a

congruence matrix from A to B. This concludes the proof.

4.3.2 Solving the block-diagonal Alt-MTC problem

Our problem in this subsection is to test if A, B ∈ Λ(n, q)m are congruent under D(n1, . . . , ns, q). We
solve this by reducing to an algorithmic problem about ∗-algebras that was solved in [IQ19]. Here
we give a concise and self-contained description.
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To start with, instead of finding T ∈ D(n1, . . . , ns, q) such that T tAT = B, we first compute
T, S ∈ D(n1, . . . , ns, q) such that T tA = BS, if such S and T exist. This is the matrix tuple
equivalence problem under D(n1, . . . , ns, q).

Proposition 4.9. Let q be an odd prime power. To test if A,B ∈ M(n, q)m are equivalent under
D(n1, . . . , ns, q) can be solved in deterministic polynomial time. If A and B are equivalent, then the
algorithm returns T, S ∈ D(n1, . . . , ns, q) such that T tA = BS.

Proof. Similar to [IQ19, Proposition 3.2]. For Ai ∈ M(n,F), construct Ãi =

[
0 Ai

0 0

]
∈ M(2n,F).

Similarly construct B̃i.

Then set Ã0 = B̃0 =

[
In 0
0 0

]
. For i ∈ [s], let Cn+i = diag(0n1 , . . . ,0ni−1 , Ii,0ni+1 , . . . ,0ns).

Then for i ∈ [s], set Ã′
i = B̃′

i =

[
Cn+i 0
0 0

]
, and Ã′′

i = B̃′′
i =

[
0 0
0 Cn+i

]
∈ M(2n,F). Consider

Ã = (Ã0, Ã1, . . . , Ãm, Ã′
1, . . . , Ã

′
s, Ã

′′
1, . . . , Ã

′′
s) and B̃ = (B̃0, B̃1, . . . , B̃m, B̃′

1, . . . , B̃
′
s, B̃

′′
1 , . . . , B̃

′′
s ) ∈

M(2n,F)1+m+2s. It can be verified that A,B are diagonal equivalent if and only if Ã and B̃ are
conjugate. The latter problem is called the module isomorphism problem and can be decided in
deterministic polynomial time [BL08, IKS10].

Note that if A and B are congruent under D(n1, . . . , ns, q), then they must be equivalent under
D(n1, . . . , ns, q). In this case, Proposition 4.9 gives us T, S ∈ D(n1, . . . , ns, q) such that T tA = BS.
If S = T−1 then we are done. If not, we need the following ∗-algebra machinery for D(n1, . . . , ns, q),
following [BW12, IQ19].

Some ∗-algebra background. For A ∈ Λ(n, q)m, define

DAdj(A, n1, . . . , ns) = {T, S ∈ diag(n1, . . . , ns, q) | T tA = AS},

called the adjoint algebra corresponding to D(n1, . . . , ns, q). It can be verified that this is a subalge-
bra of M(n, q)⊕M(n, q)op.4 Because A consists of alternating matrices, DAdj(A, n1, . . . , ns) comes
with an involutive anti-automorphism ∗ as follows: for (T, S) ∈ DAdj(A, n1, . . . , ns), (T, S)∗ =
(S, T ).

For A ∈ Λ(n, q)m, let RKer(A) = {u ∈ Fn | ∀A ∈ A, Au = 0}. For i ∈ [s], let Ui = span{bi |
i ∈ [n1 + · · · + ni + 1, n1 + · · · + ni+1]. If for every i ∈ [s], RKer(A) ∩ Ui = 0, we say that A is
diagonally non-degenerate. If A is diagonally degenerate, then we can obtain its non-degenerate
part A′ ≤ Λ(n′, q)m by restricting to complement subspaces of RKer(A) ∩ Ui. It is easy to show
the following.

Proposition 4.10. 1. A and B are diagonally congruent if and only if their non-degenerate
parts A′ and B′ are diagonally congruent.

2. A is diagonally non-degenerate if and only if the projection of DAdj(A, n1, . . . , ns) to the first
component is surjective.

Proposition 4.10 (1) allows us to focus on the non-degenerate setting, and Proposition 4.10 (2)
allows us to view DAdj(A, n1, . . . , ns) ⊆ M(n, q) (instead of M(n, q)⊕M(n, q)op), and the ∗ operation
is defined as: for T ∈ DAdj(A, n1, . . . , ns), T ∗ is the unique S ∈ M(n, q) such that T tA = AS.

4M(n, q)op is the opposite matrix algebra where the multiplication ◦ is defined as A ◦B = BA where BA denotes
the normal matrix multiplication.
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Getting back from ∗-algebras. Recall that we obtained T, S ∈ D(n1, . . . , ns, q) such that T tA =
BS. We then utilise DAdj(A, n1, . . . , ns) as follows. Let E = T−1S−1. By the same proof of [IQ19,
Claim 3.3], E ∈ DAdj(A, n1, . . . , ns), and E∗ = E. By the same proof of [IQ19, Proposition 3.4], A
and B are diagonally congruent if and only if there exists X ∈ DAdj(A, n1, . . . , ns) such that there
exists X∗X = E. This ∗-symmetric decomposition problem admits a deterministic poly(n,m, log q)-
time or a randomised poly(n,m, q)-time solution over finite fields of odd characteristics [IQ19]. This
then give a solution to the diagonal alternating matrix tuple congruence problem as desired.

4.4 From cuboids to cubes

Proposition 4.11. There is a polynomial-time reduction from matrix space equivalence for n3-
dimensional matrix spaces in M(n1×n2,F) to that for n-dimensional matrix spaces in M(n,F) with
n ≤ max{n1, n2, n3}.

Proof. Let A ≤ M(n1×n2,F). The left common kernel of A is LKer(A) = {u ∈ Fn1 | ∀A ∈ A, utA =
0}. The right common kernel of A is RKer(A) = {u ∈ Fn2 | ∀A ∈ A, Au = 0}. We say that A
is degenerate, if its left or right common kernel is non-trivial. Suppose A = span{A1, . . . , Am}
where Ai ∈ M(n1 × n2,F). If dim(LKer(A)) = d and dim(RKer(A)) = e, then let n′

1 = n1 − d
and n′

2 = n2 − e. Then there exist L ∈ GL(n1,F) and R ∈ GL(n2,F), such that for every i ∈ [m],

LAiR =

[
A′

i 0
0 0

]
where A′

i ∈ M(n′
1 × n′

2,F). We call A′ = span{A′
1, . . . , A

′
m} ≤ M(n′

1 × n′
2,F) the

non-degenerate part of A.
Let A,B be two n3-dimensional spaces in M(n1 × n2,F). Clearly, for A and B to be equivalent,

their left (resp. right) kernels must be of the same dimension. Therefore, if they are degenerate,
we compute their non-degenerate parts A′,B′ ≤ M(n′

1 × n′
2,F). It is easy to show that A and

B are equivalent if and only if A′ and B′ are equivalent. We therefore assume that A and B are
non-degenerate in the following.

Now let A = span{A1, . . . , An3} ≤ M(n1×n2,F). Let A be an n1×n2×n3 tensor, whose frontal
matrix tuple is (A1, . . . , An3). Similarly, let B = span{B1, . . . , Bn3}, and let B be an n1 × n2 × n3

tensor, whose frontal matrix tuple is (B1, . . . , Bn3).

Suppose n3 = max{n1, n2, n3}. Then we set n = n3, set n × n matrices A′
i =

[
Ai 0
0 0

]
, and

consider A′ = span{A′
1, . . . , A

′
n}. So A′ is an n-dimensional matrix space in M(n,F). Similarly, do

this for B to obtain an n-dimensional matrix space B′ in M(n,F). Then we have that A and B are
equivalent if and only if A′ and B′ are equivalent.

Suppose n1 = max{n1, n2, n3}. Then we set n = n1, and slice A along the first coordinate to get
its horizontal tuple (A′

1, . . . , A
′
n) ∈ M(n2 × n3,F)n. Let A′ = span{A′

1, . . . , A
′
n} ≤ M(n2 × n3,F),

and do the same for B to get B′ ≤ M(n2×n3,F). It is clear that A and B are equivalent if and only
if A′ and B′ are equivalent. We can then pad 0’s to make A′′ ≤ M(n,F) and B′′ ≤ M(n,F) as in
the last paragraph so that A′ and B′ are equivalent if and only if A′′ and B′′ are equivalent.

The case of n2 = max{n1, n2, n3} is the same as n1, by replacing horizontal slices with vertical
slices. This concludes the proof.

4.5 Strengthening to computing the coset of isomorphisms

Let A,B ≤ M(n, q). The algorithm in Section 3.5 decides whether A and B are equivalent in time
qÕ(n1.5). In this section, we explain that this algorithm can be combined with results in [BW12] to
compute the coset of equivalences in the same running time.
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For this we need some notations. For A,B ≤ M(n, q), let Iso(A,B) = {(P,Q) ∈ GL(n, q) ×
GL(n, q) | P tAQ = B}. Let Aut(A) = {(P,Q) ∈ GL(n, q) × GL(n, q) | P tAQ = A}. Note that
Aut(A) is a subgroup of GL(n, q)×GL(n, q), and Iso(A,B) is a coset of Aut(A).

As customary in computing with groups, a coset C of a subgroup H ≤ G is represented by a
coset representative and a generating set of H. The algorithm in Section 3.5 returns an equivalence
in Iso(A,B). To see this, we start with the fact that the algorithms for Alt-MTC [IQ19] returns
an explicit congruence matrix (see [IQ19, Theorem 1.7]). Then it is routine to check that this
congruence matrix as a solution to the block-diagonal Alt-MTC can be transformed to an equivalence
from A to B.

Therefore, the remaining task is to compute a generating set for Aut(A). This can also be done
similarly as above, by running the algorithm in Section 3.5 for A and A. At the bottom, we need
the polynomial-time algorithms for computing a generating set of the group of congruence matrices
for alternating matrix tuples in [BW12]. We then collect these at most qÕ(n1.5)-many cosets, and
transform them into a generating set of size at most qO(n) using Sims’ algorithm (cf. [Ser03]). Much
smaller generating sets can be obtained by e.g. more advanced algorithms dealing with matrix
groups [BBS09], but this is not necessary for the purpose of this article.

5 On Frattini class 2 group isomorphism

We will first introduce the linear algebraic problem underlying testing isomorphism of p-groups of
Frattini class 2, and show that this problem can be reduced to Alternating Matrix Space Isometry.
We will then review the reduction from Frattini class 2 group isomorphism to this linear algebraic
problem.

5.1 Inhomogeneous alternating matrix space congruence

Recall the definition of alternating matrix space congruence (Alt-MSC): given A,B ≤ Λ(n, q), decide
if there exists T ∈ GL(n, q), such that A = T tBT .

We now introduce the following inhomogeneous version of Alt-MSC, called Inhomogeneous Alter-
nating Matrix Space Congruence (Inhom-Alt-MSC), as follows. Consider Λ∗(n, q) := Fn

q ⊕Λ(n, q) =
{(v,A) | v ∈ Fn

q , A ∈ Λ(n, q)}. Note that Λ∗(n, q) is a linear space over Fq of dimension n +
(
n
2

)
.

Then T ∈ GL(n, q) has a natural action ◦ on Λ∗(n, q) by sending (v,A) ∈ Λ∗(n, q) to T ◦ (v,A) :=
(Tv, T tAT ).

Subspaces of Λ∗(n, q) are called inhomogeneous alternating matrix spaces. For T ∈ GL(n, q)
and A ≤ Λ∗(n, q), let T ◦ A := {T ◦ (v,A) | (v,A) ∈ A}. Then Inhom-Alt-MSC is the problem of
deciding, given A,B ≤ Λ∗(n, q), whether there exists T ∈ GL(n, q) such that A = T ◦ B. Such such
T exists, then A and B are said to be congruent.

We show that Inhom-Alt-MSC reduces to Alt-MSC. For this we use the following definition and
result from [GQ23b].

Definition 5.1 (Block-diagonal alternating matrix space congruence, BDiag-Alt-MSC). Given
A,B ≤ Λ(n, q) and n = n1 + n2, decide if there exists T = diag(T1, T2) ∈ D(n1, n2, q), such
that A = T tBT .

Theorem 5.2 ( [GQ23b]). There exists a polynomial-time algorithm that, given m-dimensional
A,B ≤ Λ(n, q) and n = n1 + n2, outputs (m+1)-dimensional A′ and B′ ≤ Λ(n′, q) with n′ = O(n),
such that A and B are congruent by D(n1, n2, q) if and only if A′ and B′ are congruent by GL(n′, q).
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Note that Theorem 5.2 is about matrix space congruence, not the matrix tuple congruence as
discussed in Section 4.3.

We can then formulate Inhom-Alt-MSC as an instance of BDiag-Alt-MSC but with a further
restriction. Let A ≤ Λ∗(n, q), and suppose (v1, A1), . . . , (vm, Am) form a linear basis of A. Then for

i ∈ [m], construct Ãi =

[
Ai vi
−vti 0

]
, and let Ã = span{Ã1, . . . , Ãm} ≤ Λ(n+1, q). Similarly, starting

from B ≤ Λ∗(n, q), construct B̃ ≤ Λ(n+ 1, q) in the same way. The following lemma is easy, so we
omit its proof.

Lemma 5.3. Let A,B ≤ Λ∗(n, q) and Ã, B̃ ≤ Λ(n+1, q) be as above. Then A and B are congruent

if and only if Ã and B̃ are congruent by some T =

[
T ′ 0
0 1

]
∈ GL(n+ 1, q) where T ′ ∈ GL(n, q).

We can state the main result in this subsection as follows.

Proposition 5.4. Inhom-Alt-MSC for m-dimensional A,B ≤ Λ∗(n, q) can be solved in time qÕ((n+m)1.5).

Proof. Given A,B ≤ Λ∗(n, q), construct m-dimensional Ã, B̃ ≤ Λ(n+ 1, q) as in Lemma 5.3. Then
construct (m+1)-dimensional Ã′, B̃′ ≤ Λ(n′, q) using Theorem 5.2, with the block sizes being n1 = n
and n2 = 1.

By Lemma 5.3, A and B are congruent if and only if Ã and B̃ are congruent by

T =

[
T ′ 0
0 1

]
∈ GL(n+ 1, q) (5)

where T ′ ∈ GL(n, q).
By Theorem 5.2, we have Ã′ and B̃′ are congruent if and only if Ã and B̃ are congruent by

S =

[
S′ 0
0 λ

]
∈ GL(n+ 1, q) where S′ ∈ GL(n, q).

The difference between λ in the lower-right corner of S, and 1 in the lower-right corner of T ,
is what we need to overcome now. For this, we use the observation that the coset of congruence
matrices can be computed for Ã′ and B̃′ (see Section 4.5). As the reduction in Theorem 5.2 also
allows for translating cosets from one solution to another [GQ23b], this then gives us a congruence

matrix S =

[
S′ 0
0 λ

]
from Ã to B̃, and a generate set for the group Aut(Ã) := {R =

[
R′ 0
0 γ

]
|

RtÃR = A}. Let Aut1(Ã) = {γ | ∃R′ ∈ GL(n, q), diag(R′, γ) ∈ Aut(Ã)}, which is a subgroup of
F×
q , the multiplicative group of Fq. Note that a generating set for Aut1(Ã) can be easily obtained

from a generating set for Aut(Ã) by restricting to the lower-right corner entries. The question of
the existence of T as in Equation 5 becomes to decide if λ−1 is in Aut1(Ã). This is solvable easily
in time O(q) as we can list elements in Aut1(Ã) in this time bound.

This concludes the proof.

5.2 Testing isomorphism of p-groups of Frattini class 2

We collect some basic facts about p-groups of Frattini class 2, which are mostly from [BNV07].
Let G be a group. The Frattini subgroup Φ(G) of G is the characteristic subgroup defined as

the intersection of maximal subgroups of G.
If G is a p-group, then G/Φ(G) is elementary abelian, and Φ(G) = Gp[G,G] where Gp is the

subgroup generated by {xp | x ∈ G} [BNV07, Lemma 3.12]. In particular, Φ(G) is generated by xp

and [x, y] for x, y ∈ G. These lead to the following.
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Proposition 5.5. Let G be a p-group given by its Cayley table. Then there exist a polynomial-time
algorithm to compute Φ(G).

A p-group G is of Frattini class 2 (or Φ class 2 for short), if there exists H ≤ G, such that H is
central, and both H and G/H are elementary abelian, or equivalently, if Φ(G) is elementary abelian
and is contained in Z(G). These lead to the following.

Proposition 5.6. Let G be a p-group given by its Cayley table. Then there exist a polynomial-time
algorithm to decide if G is of Frattini class 2.

The free p-group of Φ class 2 with n generators, denoted by FΦ-2,p,n, is the quotient of the free
group Fn with n generators by the relations xp

2 , [x, y]p, and [x, y, z].
Let G be a p-group of Frattini class 2. Suppose G/Φ(G) ∼= Zn

p . As Φ(G) = Gp[G,G] and it is
elementary abelian, Φ(G) ≤ Zn

p ⊕ Λ(n, p).

Proposition 5.7. Let G be a p-group of Frattini class 2, given by its Cayley table. Then there exist
a polynomial-time algorithm to compute an isomorphism from Φ(G) to a subgroup of Zn

p ⊕ Λ(n, p).

Proof. First, compute Φ(G) via Proposition 5.5. Suppose that G/Φ(G) ∼= Zn
p and Φ(G) ∼= Zm

p . Let
g1, . . . , gn be a set of group elements such that giG generate G/Φ(G). Let h1, . . . , hm be a set of
generators of Φ(G). View hi as a linear basis of Zm

p , we can compute gpi , [gi, gj ] as vectors in Zm
p .

This gives us an m× (n+
(
n
2

)
) matrix S over Fp. It can be seen that the rows of S gives a subgroup

of Zn
p ⊕ Λ(n, p), to which Φ(G) is naturally isomorphic.

Let T ∈ Aut(G/Φ(G)) ∼= GL(n, p). Then the induced action of T on Φ(G) sends (v,A) ∈
Zn
p ⊕ Λ(n, p) to (Tv, T tAT ).

Suppose G1, G2 are two p-groups of Frattini class 2, with Gi/Φ(Gi) ∼= Zn
p for i = 1, 2. Fur-

thermore, suppose Φ(G1) and Φ(G2) are identified as subspaces of Zn
p ⊕Λ(n, p) by Proposition 5.7.

Then G1 and G2 are isomorphic, if and only if there exists T ∈ GL(n, p) such that T sends Φ(G1)
to Φ(G2) as subspaces. This follows from [BNV07, Lemma 4.3], viewing Φ(Gi) as the dual space of
the subspace in the quotient of the free p-group of Φ class 2 with n generators.

Based on the above, we have the following.

Lemma 5.8. Suppose G1, G2 are two p-groups of Frattini class 2 of order pℓ, given by their Cayley
tables. Then we can construct two inhomogeneous alternating matrix spaces A1,A2 of length ℓ, such
that G1

∼= G2 if and only if A1 and A2 are congruent as inhomogeneous alternating matrix spaces.

Theorem 1.3 is then obtained by combining Lemma 5.8 with Proposition 5.4.
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