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Abstract 

All exstng basc regulator desgn methods are summarzed n ths paper and compared concernng ther

usablty and formal algebrac formulatons. It s systematcally proved that the best usable method s the Youla-

parameterzaton based regulator desgn ntroduced by the authors. It s shown that the Youla regulator desgn

s a very smple procedure, whch s applcable for all knd of (mnmum or non mnmum phase) CT and DT

processes. The computaton of the regulator s very smple, requres only polynomal operatons. For reasonable

desgn goal ths desgn results n an ntegratng regulator. Ths regulator ensures the theoretcal best reachable

closed-loop property of the control system. Youla controller desgn s superor to the other controller desgn

methods, as the equatons gvng the relatonshps between the nput and the output sgnals are lnear n the

parameter Q . For controllng systems wth dead tme ths method gves straghtforward soluton for controller

desgn. The appled method and procedure can be qute nterestng n the educaton od the control system

desgners. 
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Introducton 

The (Lnear Tme Invarant) LTI state-space equatons of a system generally appled n systems and control

theory 

 

 

dx t� �
dt

� Ax t� �� bu t� �
y t� � � cTx t� �� dcu t� �

 (1) 

 

Here u and y are the nput and output sgnals of the process, and x s the state vector. The matrces of the

system are A,b,cT ,d . Snce ths paper manly treats SISO systems, n n -order case, matrx A means a n � n� �
square matrx, whch s the so-called state matrx, b s a column vector of n � 1� � sze,   c

T s a row vector of

1 � n� � sze, and dc
s scalar. 

 

The classcal model of the dynamc LTI processes, the transfer functon P s� � s defned by the rato of the
LAPLACE transforms of the output and nput sgnals, whch can be easly derved from the state equaton (1) 

 

  (2) 

 

where  

 

  (3) 

 

The roots of equaton are called poles; the roots of are called zeros. A contnuous-tme (CT)

lnear process s stable, f all roots of the polynomal are located on the left-hand sde of the complex

plane. Concernng the order of the polynomals and t should be noted that the number of the state

varables s n , m s the order of the polynomal , and for physcally realzable systems the relaton m ≤ n

exsts. The dfference between the order of the numerator and denomnator pT � n − m s called pole access.

If pT >0 then P s� � s strctly proper, f pT =0 then the transfer functon s proper. In the practce arbtrary

relaton 0 ≤ pT ≤ n mght occur. 
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Basc Regulator Desgn Methods 

Control Loops wth State Feedback 

 

It was shown formerly how processes are represented n state-space. In many cases ths knd of descrpton s

avalable only and the transfer functon of the controlled system s unavalable. Ths partly explans why control

desgn methodology drectly based on state-space descrpton has been evolved. Let us consder 

 

  (4) 

 

whch corresponds to (1) for the case of dc � 0 . Ths does not volate the generalty, because t s very rare for

the model to contan a proportonal channel drectly affectng the output. The block scheme of (4) and the

classcal state-feedback s shown n Fg. 1, where the thck lnes present vector varables and r denotes the

reference sgnal. 

 

Fgure 1: Lnear regulator wth state feedback 

 

In the closed-loop the state vector s fed back wth the lnear proportonal vector   k
T accordng to the expresson  

 

 u � kr r − kT x  (5) 

 

Based on Fg. 1 the state equaton of the complete closed system can be easly wrtten as 

 

 

dx

dt
� A − bkT� � x � kr br

y � cT x

 (6) 

 

.e., wth the state feedback the dynamcs represented by the orgnal system matrx A s modfed by the

dyadc product bkT to
  

A − bkT� � . 
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The transfer functon of the closed-loop control s 

 

  (7) 

 

whch derves from the comparson of equatons vald for the LAPLACE transforms, U s� � � kr R s� � − kT X s� �
(see (6)) and Y s� � � cT X s� � (see (4)) usng the matrx nverson lemma. Note that the state feedback leaves
the zeros of the process untouched and only the poles of the closed-loop system can be desgned by   k

T . 

 

The so-called calbraton factor kr
s ntroduced n order to make the gan of Try equal to unty (Try 0� � � 1).

The open loop s obvously not of type one, so t cannot provde zero error and unty statc transfer gan. It can

be ensured only f the condton 

 

 kr �
−1

cT A − bkT� �−1
b
�

kT A−1b − 1

cT A−1b
 (8) 

 

s fulflled. The above specal control loop s called state feedback. 

 

Pole placement by state feedback 

 

The most natural desgn method of state feedback s the so-called pole placement. In ths case the feedback

vector   k
T needs to be chosen to make the characterstc equaton of the closed-loop equal to the prescrbed,

so-called desgn polynomal , .e., 

 

  (9) 

 

The soluton always exsts f the process s controllable. (It s reasonable f the order of s equal to that of

) In the exceptonal case when the transfer functon of the controlled system s known, the canoncal state

equatons can be drectly wrtten. Based on the controllable canoncal form the system matrces are 
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ú
ú
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ú

     ;     cc
T � b1 ,b2 ,… ,bn

éë ùû     ;       
bc � 1,0,… ,0éë ùû

T
 (10) 

Consderng the specal forms of Ac
and bc

, t can be seen that the desgn equaton (9) results n 

 

 kT � kc
T � r1 − a1 ,r2 − a2 ,… ,rn − an

éë ùû  (11) 

 

ensurng the characterstc equaton ( ), .e., the prescrbed poles. The choce of the calbraton factor

can be determned by smple calculaton 

 

 kr �
an � rn − an� �

bn

�
rn

bn

 (12) 

 

Based on equatons (7), (8) and (9) t can be seen that n the case of state feedback pole placement the closed-

loop transfer functon results n 

 

  (13) 

 

The most common case of state feedback s when not the transfer functon but the state-space form of the

control system s gven. It has to be observed that all controllable systems can be descrbed n a controllable

canoncal form by usng the transformaton matrx
  
Tc � Mc

c Mc� �−1
. Ths lnear transformaton also refers to

the feedback vector 

 

  (14) 

 

The desgn relatng to the controllable canoncal form (10), together wth the lnear transformaton relatonshp

correspondng to the frst row of the non-controllable form (14), s known as the BASS-GURA algorthm. The

algorthm n the second row of (14) s called ACKERMANN method after ts elaborator. 

 

In the BASS-GURA algorthm, the nverse of the controllablty matrx Mc
needs to be determned by the

general system matrces A and b on the one hand and the controllablty matrx Mc
c of the controllable

canoncal form, on the other. Snce ths latter term depends only on the coeffcents ai
n the denomnator of

the process transfer functon, the denomnator needs to be calculated: . Snce



Inernatonal Conference on Advances in Technology, Educaton and Science 
 

159 | Proceedings Book

0,0,… ,1éë ùûMc
-1 s the last row of the nverse of the controllablty matrx, and also need to be calculated;

the ACKERMANN method does not need the calculaton of . 

 

 

(a) 

 

(b) 

 

(c) 

Fgure 2: Equvalent schemes to the state feedback desgn usng transfer functons and polynomals 

 

It s worth mentonng that the state feedback formally corresponds to a conventonal PD control and therefore

over-actuatng peaks are expected at the nput of the process because the pole placement tres to make the

process faster. In practce, however, the actuator usually lmts the ampltude of the peaks, whch needs to be

taken nto account durng the desgn of the poles of the characterstc polynomal . 

 

It can be clearly seen that state feedback formally corresponds to a seral compensaton

(Fg. 2a). The real operaton and effect of the state feedback can be easly understood by the equvalent block

schemes usng the transfer functons shown n Fg. 2. The “regulator” Rf s� �of the closed-loop s n the
feedback lne (Fg. 2b). The transfer functon of the closed-loop s 

 

  (15) 

 

where 



Inernatonal Conference on Advances in Technology, Educaton and Science

 

160 | Proceedings Book

  (16) 

 

and the calbraton factor s 

 

 kr �
kT A−1b − 1

cT A−1b
�

1� Kk 0� � P 0� �
P 0� �  (17) 

 

Gven the block schemes of Fg. 2 t can be stated that the state feedback also stablzes the unstable terms,

snce due to the effect of the polynomal there s a pole placement for any process, so wth

the stable the stablzaton s fulflled. The feedback polynomal formally corresponds to   k
T . The

fact that the numerator of the process s present n the denomnator of Kk s� � needs specal consderaton.
The regulator can be appled only for mnmum phase (nverse stable) processes, where the roots of are

stable. As a consequence of ths specal character of the state feedback, however, here s not substtuted

by ts model , but the method tself realzes the exact . 

 

Pole Placement wth Pole Cancellaton  

 

Consder the closed control system shown n Fg. 3, where the regulator s used to place the poles

of the closed control system accordng to the characterstc equaton , ( s the desgn polynomal) by

the cancellaton of the process poles. To do ths, needs to be expressed by the equaton . The

complementary senstvty functon of the closed-loop s 

 

  (18) 

 

The regulator s 

 

  (19) 

 

and actually corresponds to an deal YOULA regulator (see later) wth reference model . Ths

regulator places the poles n and leaves the zeros n untouched, f they are nverse stable.  
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A usual pole cancelng regulator s the PI(D) regulator, where n case of PI regulator the transfer functon of

the regulator s C s� � � kc

1� sTI

sTI

, and n case of PID regulator

  

C s� � � kc

1� sTI

sTI

1� sTD

1� sTD
'
, where TD � TD

' . 

 

Fgure 3: Pole cancelng regulator 

 

A specal case of pole cancellaton s the use of the PI(D) controllers where generally not the whole

denomnator of the process s cancelled. PI controller cancels the bggest tme constant term of the process and

n ts denomnator X(s) ntroduces an ntegratng effect. PID controller cancels the two bggest tme constant

terms of the process and ntroduces n ts denomnator an ntegratng effect and a smaller tme constant. The

gan kc of the controller s desgned to ensure stablty and good phase margn for the control system. 

 

Pole Placement wth Feedback Regulator 

 

An other soluton when the regulator s put n the feedback s shown n Fg. 4. 

 

Now the task s agan to place the poles of the closed system accordng to the equaton ( s the desgn

polynomal). To do ths, needs to be determned from the equaton . The complementary

senstvty functon of the closed system s 

 

  (20) 

 

and thus ths regulator places the poles n and leaves the zeros n untouched, f they are nverse stable. 

 

The characterstc equaton of the closed system has the form and t does not depend on the unstable

property of the process. 
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Fgure 4: Regulator n the feedback 

The block dagram n Fg. 5. can be redrawn as Fg. 2c. (The state feedback methods are dscussed n detal n

Secton 2.1, and the same control prncple s represented n Fg. 2c among the schemes showng the equvalent

transfer functon representatons for state feedback.) 

 

Fgure 5: The regulator feeds back the nternal sgnal of the process 

 

Pole Placement wth Characterstc Polynomal Desgn 

 

The characterstc polynomal of the closed-loop control can be drectly desgned by algebrac methods. In

Fg. 6 the regulator s the quotent of two polynomals. Under certan condtons, the (Dophantne

Equaton) DE can be solved for and . Thus from the characterstc equaton the

regulator can be drectly determned. 

 

 

Fgure 6: Drect control desgn on the bass of the characterstc polynomal 

 

The complementary senstvty functon of the closed system s  

 

  (21) 

 

and thus ths regulator also places the poles n and leaves the zeros n untouched, but n the nomnator

appears, whch depends on the desred propertes and also on DE. 

 

Thus the characterstc equaton of the closed system has the form and t does not depend on the unstable

character of the process. 

 

Regulators Based on YOULA Parameterzaton 
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The YOULA parameter, as a matter of fact, s a stable (by defnton), regular transfer functon 

 Q s� � � C s� �
1�C s� � P s� �    or shortly   Q �

C

1�CP
 (22) 

where C s� � s a stablzng regulator, and P s� � s the transfer functon of the stable process. 
It follows from the defnton of the YOULA parameter that the structure of the realzable and stablzng

regulator n the YOULA-parameterzed (sometmes called Q -parameterzed) control loop s fxed: 

 

 C s� � � Q s� �
1− Q s� � P s� �    or shortly   C �

Q

1− QP
 (23) 

 

The senstvty and complementary senstvty functons of the closed control system are lnear n Q and are

calculated by (24). It s nterestng to observe that the YP regulator of (23) can be realzed by a smple control

loop wth postve feedback as shown n Fg. 7. 

 

 

Fgure 7: Realzaton of a YP regulator 

 

AYOULA-parameterzed (YP) closed-loop s shown n Fg. 8. 

 

Fgure 8: YOULA-parametrzed closed-loop 

 

The All-Realzable-Stablzng (ARS) regulator has the form of (23). 

 

The closed-loop transfer functon or Complementary Senstvty Functon (CFS) s 

 

 T �
CP

1�CP
� QP  (24) 

 

whch s lnear n the YOULA parameter Q . It s well known that the YP regulator corresponds to the classcal
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IMC (Internal Model Control) structure. 

The relatonshps between the most mportant sgnals of the closed system can be obtaned wth smple

calculatons 

 

u � Qr − Qyn

e � 1− QP� � r − 1− QP� � yn � Sr − Syn

y � QPr � 1− QP� � yn � Tr � Syn

 (25) 

 

The effect of r and yn
on u and e s completely symmetrcal (not consderng the sgn). Thus the nput of

the process depends only on the external sgnals and Q s� � . 
 

The IMC form of the control system s shown n Fg.9. Reference sgnal flter and dsturbance flter can be

ntroduced to make dfferent transfer propertes for reference sgnal trackng and dsturbance rejecton (Fg.

10, Fg.11). 

)(sP
-

( )Q s

ny

r e yu

( )P s

( )Q s

YOULA 
PARAMETER PROCESS

INTERNAL MODEL

- 

CONTROLLER

+

+

 

Fgure 9: IMC form of YOULA parameterzaton 

1P−
+

−

r y
u

ny

rR P P+ −

−

u

nR

P P+ −

 

Fgure 10: IMC form of YOULA parameterzaton wth reference and dsturbance flters 

1
nR P

−
+

−

r y
u

ny

r

n

R

R
P P+ −

−

u

P P+ −

Fgure 11: IMC form of YOULA parameterzaton wth flters 
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From the equaton (24) t can be seen that the YOULA parameterzaton has the transfer functon QPr

concernng the reference sgnal trackng. If the KB parameterzaton s ntroduced as shown n fgure Fg. 8,

then the YOULA parameterzaton can be extended for TDOF control systems. To do ths, let us smply apply a

parameter Qr
for the desgn of the trackng propertes, and connect t n seral to the KB-parameterzed loop,

so the block dagram of Fg. 12 s obtaned. 

 

 

Fgure 12: Two-degree-of-freedom verson of the YP control loop 

 

The overall transfer characterstcs for ths system are 

 

u � Qr yr − Qyn

e � 1− Qr P� � yr − 1− QP� � yn � 1− Tr� � yr − Syn (26)

y � Qr Pyr � 1− QP� � yn � Tr yr � 1− T� � yn � Tr yr � Syn

 

 

where the trackng propertes can be desgned by choosng Qr
n Tr � Qr P , and the nose rejecton propertes

by choosng Q n T � QP. These two propertes can be handled separately. The reference sgnal of the whole

system s denoted by yr
. The condtons for Qr

are the same as for Q . The meanng of Tr
s analogous to the

meanng of the complementary senstvty functon T of the one-degree-of-freedom control loop for trackng. 

 

Comparson of the Prevously Dscussed Desgn Methods 

Control loops wth state feedback 

 

The most mportant advantage of the state feedback regulator s that the calculaton of the feedback vector s

very smple. The most mportant dsadvantage s that the nternal state varables, necessary for the feedback

are usually not avalable n the practcal tasks. Ths s why the observer topology s generally necessary to ths

method. Unfortunately, ths topology s not so smple to compute. Another mportant dsadvantage s that ths

regulator assgns the pole of the closed-loop system, unfortunately t leaves the numerator of the process

untouched n T . It s mportant to know that from the methods dscussed n ths paper ths s the only method

whch s applcable for unstable processes. 
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Pole placement wth pole cancellaton  

 

The most mportant advantage of ths method s that t s very smple to calculate the regulator. The

dsadvantage s that ths regulator assgns the poles of the closed-loop system, unfortunately t also leaves the

numerator of the process untouched n T . 

Pole placement wth feedback regulator 

 

Ths method practcally can be evaluated on the smlar way as the prevous method. Unfortunately the most

mportant dsadvantage s that n a practcal task t s very rare that the regulator s n the feedback lne. 

 

Pole placement wth characterstc polynomal desgn 

 

Ths method s a lttle bt more complex than the pole cancellaton method, because the calculaton of the

regulator needs the soluton of a DE. The dsadvantage s that ths regulator assgns the pole of the closed-loop

system, unfortunately t also leaves the numerator of the process untouched n T and puts another polynomal

n the numerator of T . Ths polynomal comes from the soluton of the DE, so t s not easy to desgn. 

 

Regulators based on YOULA parameterzaton 

 

Ths method s the smplest, because t needs only basc polynomal operatons to calculate the regulator. A

further advantage s that the result of the desgn s the best reachable T even for nvarant process zeros, too. 

 

Except the state feedback regulator, the other methods are applcable only for stable processes. 

 

Computaton of the Optmal YOULARegulator 

 

Let us assume the transfer functon of the process n the followng factorzed form 

 

 P s� � � P� s� � P s� �
−
� P� s� � P

−
s� � e−sTd  (27) 

 

or shortly 

 

 P � P�P
−
� P�P

−
e−sTd  (28) 

 

where P� s stable, and ts nverse s also stable (Inverse Stable: IS) and realzable (ISR). The nverse of P
−
s

unstable (Inverse Unstable: IU) and not realzable (Non Realzable: NR), .e., (IUNR). P
−
s nverse unstable
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(IU). Here, n general, the nverse of the dead-tme part e−sTd s not realzable, because t would be an deal

predctor. 

In polynomal form a delay free process s gven by 

 

  (29) 

 

where and contan the nverse stable and nverse unstable zeros, respectvely. 

If the reference model, formulatng our desgn goal s 

 

  (30) 

 

then the optmal YOULA parameter s 

 

  (31) 

 

Usng ths parameterzaton the optmal YOULA regulator can be calculated as 

 

  (32) 

 

The transfer functon of the closed-loop system s 

 

  (33) 

 

whch s the best reachable result for the case of nverse unstable zeros. Ths result explans the name:

“uncancellable” for the nverse unstable factors of the numerator of the process. 

 

For the two-degree-of-freedom verson of the YOULA regulator (see Fg. 9) an addtonal reference model 

 

  (34) 

 

must also be calculated. 
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It can be well seen n ths secton that the computaton of the YOULA regulator requres only very smple

polynomal operatons (addtons and multplcatons). 

 

Examples 

Example 1. Let the CT process be gven by a non-mnmum phase transfer functon 

 

 P s� � � 1� sτ1� � 1− sτ2� �
1� sT1� � 1� sT2� � 1� sT3� �  (35) 

 

where T1 � 10sec ; T2 � 5sec ; T3 � 2sec ; τ1 � 6sec and τ2 � 4sec, where and  

 

The selected reference model s 

 

  (36) 

 

where Tn1 � 5sec ; τn1 � 0 . 

 

The optmal YOULA regulator can be calculated as 

 

  (37)  

 

Usng the numercal values the regulator s 

 

 C s� � � 1�17s � 80s2 �100s3

s 1� 6s� � 1� 2.273s � 4.454s2� �  (38) 

 

The overall transfer functon of the closed-loop system s 

 

  (39) 

 

Because usually the reference model has unty gan, .e. 

 

  (40) 
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t follows, that T 0� � � 1 has also unty gan. 

The usual normalzaton of the process polynomal means that and (whle ) t

can be easly checked that the YOULA regulator s always an ntegratng regulator for (40). 

Example.2. The CT process s now gven by the transfer functon  

 

 

  

P s� � � 6

s�1� � s� 2� � s� 3� �  (41) 

 

Let us desgn regulators wth all the dscussed methods and compare ther behavor. 

Pole placement wth state feedback. 

 

Let the prescrbed poles of the closed loop system obtaned by state feedback be: −6; −3� 4 � i ; −3− 4 � i .

Thus the prescrbed characterstc polynomal s 

 

 R s� � � s3 �12s2 � 61s�150  (42) 

 

The controllable canoncal form of the state equaton s: 

 

 
A �

−6 −11 −6
1 0 0
0 1 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú
; b �

1
0
0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

c � 0 0 6éë ùû; d � 0

 (43) 

 

Fgure 13. Step response wth state feedback control 

 

The state feedback vector calculated accordng to (11) s 

 

 k � 6 50 144éë ùû
T

 (44) 
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and the value of the calbraton factor calculated accordng to (8) s 25. The calculatons can be also supported

by MATLAB control toolbox. The step response of the plant and of the controlled system s shown n Fg. 13. 

 

 

Pole placement wth pole cancellaton 

 

Accordng to (19) 

 

  (45) 

In order to elmnate steady state error let us dvde the characterstc polynomal R by a factor whch ensures

that ts constant term wll be equal to , so the controller wll be of ntegral type. 

 

 
  
Rm s� � � s3 �12s2 � 61s�150� � / 25 (46) 

 

So the transfer functon of the controller s 

 

 C s� � � s3 � 6s2 �11s� 6

0.04s3 � 0.48s2 � 2.44s
 (47) 

 

The step response s shown n Fg. 14 and the control sgnal s gven n Fg. 15. 

 

 

Fgure 14. Step response wth pole cancellaton 

 



Inernatonal Conference on Advances in Technology, Educaton and Science 
 

171 | Proceedings Book

 

Fgure 15. Control sgnal n case of pole cancellaton 

 

It s seen that over-exctaton n the control sgnal ensures acceleraton of the output sgnal. Of course there s

a practcal lmt of the control sgnal provded by the actuator.  

 

Pole placement wth feedback regulator 

 

In ths soluton the overall transfer functon s gven by (20). Agan, to ensure unty transfer gan the

characterstc polynomal R should be normalzed to have the same constant term as . 

 

YOULA parameterzed regulator desgn 

 

Let the transfer functon of the reference sgnal flter be 

 

 Rr s� � � 150

s3 �12s2 � 61s�150
 (48) 

 

whch ensures the poles of the characterstc equaton as shown n pont a./. 

Let the transfer functon of the nose flter be  

 

 Rn s� � � 64

s� 4� �3
�

64

s3 �12s2 � 48s� 64
 (49) 

 

The YOULA parameter s 

 

 Q s� � � Rn s� �P−1 s� � � 64

6

s�1� � s� 2� � s� 3� �
s3 �12s2 � 48s� 64

 (50) 

 

The output sgnal as response to a unt step reference sgnal and the output sgnal as a response to unt step

dsturbance s shown n Fg. 16. 
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Fgure 16: Unt step reference sgnal trackng and dsturbance rejecton of the YOULA parameterzed

controller 

 

Example 3. Let the CT process be gven by a non-mnmum phase transfer functon 

 

  (51) 

 

where T1 � 10sec ; T2 � 5sec ; T3 � 2sec ; τ1 � 6sec and τ2 � 4sec, where and

. 

Furthermore and Q s� � � Rn s� �P�−1 s� � should be proper. 

The selected reference model s 

 

 (52) 

 

where Tn1 � 2sec and Tn2 �1sec. Then 

 

 Q s� � � 1

1� 2s� � 1� s� �
1�10s� � 1�5s� � 1� 2s� �

1� 6s
�

1�10s� � 1�5s� �
1� s� � 1� 6s� �  (53) 

 

and  

 

 C s� � � 0.1428
1�10s� � 1�5s� � 1� 2s� �
s 1� 0.2857� � 1� 6s� �  (54) 

 

  

T s� � � 1− 4s

1� s� � 1� 2s� �  (55) 
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The step response of the plant and of the controlled system s shown n Fg.17. 

 

Fgure 17: YOULA control of a non-mnmum phase plant 

 

It s seen that the output s settled faster, but n the frst nstants the output goes to negatve values. Wth

reference sgnal flter the output can be further modfed. 

 

Because usually the reference model has unty gan, .e. 

 

  (56) 

 

it follows, that T 0� � � 1 has also unity gain. 

 

The usual normalzaton of the process polynomal means that and (whle ) t

can be easly checked that the YOULA regulator s always an ntegratng regulator for (55). 

 

Example 4 Investgate now a dscrete-tme (DT) case, when the pulse transfer functon of the process s a

second order system 

 

 G z� � � −0.32 z −1.25� �
z − 0.8� � z − 0.6� � � G− z� �G� z� �  (57) 

 

where ( ) 1 25

0 25

z .
G z

.−
−

=
−

 is the non-cancellable part containing a zero outside of the unit circle and 

 

 

  

G� z� � � −0.25⋅−0.32

z − 0.8� � z − 0.6� � �
0.08

z − 0.8� � z − 0.6� �  (58) 

 

is the cancellable part of the pulse transfer function. 
 

The noise reference model is 
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Rn z� � � 0.6

z − 0.4
 (59) 

 

The relationships given for continuous systems are valid for the pulse transfer functions of the discrete systems 
as well. The YOULA parameter is 
 

 Q z� � � Rn z� �G�
−1 z� � � 0.6

z − 0.4

z − 0.8� � z − 0.6� �
0.08

� 7.5
z − 0.8� � z − 0.6� �

z − 0.4
 (60) 

 

and the optimal YOULA regulator can be computed now as 
 

 C z� � � Q z� �
1−Q z� �G z� � �

2.2059 z − 0.8� � z − 0.6� �
z −1

 (61) 

 

Fg. 18 shows the unt step response of the plant and of the controlled system. 

 

Figure 18. Unit step responses of the plant and the controlled system 
 

Example.5 Discrete YOULA controller of a system with dead time 
 

The transfer function of the continuous process is 
 

 ( ) ( )( )
301

1 5 1 10
sP s e

s s
−=

+ +
 (62) 

 

The samplng tme s 1secsT = . The reference sgnal and dsturbance flters are obtaned by samplng the

systems gven by transfer functons  

 

  
Rr s� � � 1

1� 2s
and

  
Rn s� � � 1

1� 4s
(63)
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Design the YOULA controller and give the output and control signals in the sampling points. 
 

The pulse transfer function of the process P(s) is: 
 

 ( ) ( )
( ) ( )

300.0090559 0.9048

0.9048 0.8187

z
G z z

z z
−+

=
− −

 (64) 

Let us separate it to the cancellable G� z� �  and the non-cancellable G− z� �  factors. G− z� �  should be 

normalized for transfer gain 1. 
 

The pulse transfer functions are given with the shift operator 1z− :  
 

 

G− z� � � 1� 0.9048z−1

1.9048

G� z� � � 0.0090559 ⋅1.9048z−1

1− 0.9048z−1� � 1− 0.8187z−1� �
 (65) 

 

The pulse transfer functons of the flters: 

 

Rr z� � � 0.39347z−1

1− 0.6065z−1
     and     Rn z� � � 0.2212z−1

1− 0.7788z−1
 (66) 

 

The YOULA parameter s gven by 

 

 Q z� � � Rn

G�

�12.82
1− 0.9048z−1� � 1− 0.8187z−1� �

1− 0.7788z−1
 (67) 

 

Concluson 

It was shown that the YOULA regulator desgn s a very smple procedure, whch s applcable for all knd of

(mnmum or non mnmum phase) CT and DT processes. The computaton of the regulator s very smple,

requres only polynomal operatons. 

 

For reasonable desgn goal ths desgn results n an ntegratng regulator. Ths regulator ensures the theoretcal

best reachable closed-loop property of the control system. 

 

YOULA controller desgn s superor to the other controller desgn methods, as the equatons gvng the

relatonshps between the nput and the output sgnals are lnear n the parameter Q . For controllng systems

wth dead tme ths method gves straghtforward soluton for controller desgn. The appled methods and

procedures are very useful n the educaton of the control system desgners.
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