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Abstract 

All exstng basc regulator desgn methods are summarzed n ths paper and compared concernng ther

usablty and formal algebrac formulatons. It s systematcally proved that the best usable method s the Youla-

parameterzaton based regulator desgn ntroduced by the authors. It s shown that the Youla regulator desgn

s a very smple procedure, whch s applcable for all knd of (mnmum or non mnmum phase) CT and DT

processes. The computaton of the regulator s very smple, requres only polynomal operatons. For reasonable

desgn goal ths desgn results n an ntegratng regulator. Ths regulator ensures the theoretcal best reachable

closed-loop property of the control system. Youla controller desgn s superor to the other controller desgn

methods, as the equatons gvng the relatonshps between the nput and the output sgnals are lnear n the

parameter Q . For controllng systems wth dead tme ths method gves straghtforward soluton for controller

desgn. The appled method and procedure can be qute nterestng n the educaton od the control system

desgners. 
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Introducton 

The (Lnear Tme Invarant) LTI state-space equatons of a system generally appled n systems and control

theory 

 

 

dx t� �
dt

� Ax t� �� bu t� �
y t� � � cTx t� �� dcu t� �

 (1) 

 

Here u and y are the nput and output sgnals of the process, and x s the state vector. The matrces of the

system are A,b,cT ,d . Snce ths paper manly treats SISO systems, n n -order case, matrx A means a n � n� �
square matrx, whch s the so-called state matrx, b s a column vector of n � 1� � sze,   c

T s a row vector of

1 � n� � sze, and dc
s scalar. 

 

The classcal model of the dynamc LTI processes, the transfer functon P s� � s defned by the rato of the
LAPLACE transforms of the output and nput sgnals, whch can be easly derved from the state equaton (1) 

 

  (2) 

 

where  

 

  (3) 

 

The roots of equaton are called poles; the roots of are called zeros. A contnuous-tme (CT)

lnear process s stable, f all roots of the polynomal are located on the left-hand sde of the complex

plane. Concernng the order of the polynomals and t should be noted that the number of the state

varables s n , m s the order of the polynomal , and for physcally realzable systems the relaton m ≤ n

exsts. The dfference between the order of the numerator and denomnator pT � n − m s called pole access.

If pT >0 then P s� � s strctly proper, f pT =0 then the transfer functon s proper. In the practce arbtrary

relaton 0 ≤ pT ≤ n mght occur. 
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Basc Regulator Desgn Methods 

Control Loops wth State Feedback 

 

It was shown formerly how processes are represented n state-space. In many cases ths knd of descrpton s

avalable only and the transfer functon of the controlled system s unavalable. Ths partly explans why control

desgn methodology drectly based on state-space descrpton has been evolved. Let us consder 

 

  (4) 

 

whch corresponds to (1) for the case of dc � 0 . Ths does not volate the generalty, because t s very rare for

the model to contan a proportonal channel drectly affectng the output. The block scheme of (4) and the

classcal state-feedback s shown n Fg. 1, where the thck lnes present vector varables and r denotes the

reference sgnal. 

 

Fgure 1: Lnear regulator wth state feedback 

 

In the closed-loop the state vector s fed back wth the lnear proportonal vector   k
T accordng to the expresson  

 

 u � kr r − kT x  (5) 

 

Based on Fg. 1 the state equaton of the complete closed system can be easly wrtten as 

 

 

dx

dt
� A − bkT� � x � kr br

y � cT x

 (6) 

 

.e., wth the state feedback the dynamcs represented by the orgnal system matrx A s modfed by the

dyadc product bkT to
  

A − bkT� � . 
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The transfer functon of the closed-loop control s 

 

  (7) 

 

whch derves from the comparson of equatons vald for the LAPLACE transforms, U s� � � kr R s� � − kT X s� �
(see (6)) and Y s� � � cT X s� � (see (4)) usng the matrx nverson lemma. Note that the state feedback leaves
the zeros of the process untouched and only the poles of the closed-loop system can be desgned by   k

T . 

 

The so-called calbraton factor kr
s ntroduced n order to make the gan of Try equal to unty (Try 0� � � 1).

The open loop s obvously not of type one, so t cannot provde zero error and unty statc transfer gan. It can

be ensured only f the condton 

 

 kr �
−1

cT A − bkT� �−1
b
�

kT A−1b − 1

cT A−1b
 (8) 

 

s fulflled. The above specal control loop s called state feedback. 

 

Pole placement by state feedback 

 

The most natural desgn method of state feedback s the so-called pole placement. In ths case the feedback

vector   k
T needs to be chosen to make the characterstc equaton of the closed-loop equal to the prescrbed,

so-called desgn polynomal , .e., 

 

  (9) 

 

The soluton always exsts f the process s controllable. (It s reasonable f the order of s equal to that of

) In the exceptonal case when the transfer functon of the controlled system s known, the canoncal state

equatons can be drectly wrtten. Based on the controllable canoncal form the system matrces are 
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 Ac �

−a1 −a2 … −an−1 −an

1 0 … 0 0

0 1 0 0

0 0 0 1 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

     ;     cc
T � b1 ,b2 ,… ,bn

éë ùû     ;       
bc � 1,0,… ,0éë ùû

T
 (10) 

Consderng the specal forms of Ac
and bc

, t can be seen that the desgn equaton (9) results n 

 

 kT � kc
T � r1 − a1 ,r2 − a2 ,… ,rn − an

éë ùû  (11) 

 

ensurng the characterstc equaton ( ), .e., the prescrbed poles. The choce of the calbraton factor

can be determned by smple calculaton 

 

 kr �
an � rn − an� �

bn

�
rn

bn

 (12) 

 

Based on equatons (7), (8) and (9) t can be seen that n the case of state feedback pole placement the closed-

loop transfer functon results n 

 

  (13) 

 

The most common case of state feedback s when not the transfer functon but the state-space form of the

control system s gven. It has to be observed that all controllable systems can be descrbed n a controllable

canoncal form by usng the transformaton matrx
  
Tc � Mc

c Mc� �−1
. Ths lnear transformaton also refers to

the feedback vector 

 

  (14) 

 

The desgn relatng to the controllable canoncal form (10), together wth the lnear transformaton relatonshp

correspondng to the frst row of the non-controllable form (14), s known as the BASS-GURA algorthm. The

algorthm n the second row of (14) s called ACKERMANN method after ts elaborator. 

 

In the BASS-GURA algorthm, the nverse of the controllablty matrx Mc
needs to be determned by the

general system matrces A and b on the one hand and the controllablty matrx Mc
c of the controllable

canoncal form, on the other. Snce ths latter term depends only on the coeffcents ai
n the denomnator of

the process transfer functon, the denomnator needs to be calculated: . Snce
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0,0,… ,1éë ùûMc
-1 s the last row of the nverse of the controllablty matrx, and also need to be calculated;

the ACKERMANN method does not need the calculaton of . 

 

 

(a) 

 

(b) 

 

(c) 

Fgure 2: Equvalent schemes to the state feedback desgn usng transfer functons and polynomals 

 

It s worth mentonng that the state feedback formally corresponds to a conventonal PD control and therefore

over-actuatng peaks are expected at the nput of the process because the pole placement tres to make the

process faster. In practce, however, the actuator usually lmts the ampltude of the peaks, whch needs to be

taken nto account durng the desgn of the poles of the characterstc polynomal . 

 

It can be clearly seen that state feedback formally corresponds to a seral compensaton

(Fg. 2a). The real operaton and effect of the state feedback can be easly understood by the equvalent block

schemes usng the transfer functons shown n Fg. 2. The “regulator” Rf s� �of the closed-loop s n the
feedback lne (Fg. 2b). The transfer functon of the closed-loop s 

 

  (15) 

 

where 
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  (16) 

 

and the calbraton factor s 

 

 kr �
kT A−1b − 1

cT A−1b
�

1� Kk 0� � P 0� �
P 0� �  (17) 

 

Gven the block schemes of Fg. 2 t can be stated that the state feedback also stablzes the unstable terms,

snce due to the effect of the polynomal there s a pole placement for any process, so wth

the stable the stablzaton s fulflled. The feedback polynomal formally corresponds to   k
T . The

fact that the numerator of the process s present n the denomnator of Kk s� � needs specal consderaton.
The regulator can be appled only for mnmum phase (nverse stable) processes, where the roots of are

stable. As a consequence of ths specal character of the state feedback, however, here s not substtuted

by ts model , but the method tself realzes the exact . 

 

Pole Placement wth Pole Cancellaton  

 

Consder the closed control system shown n Fg. 3, where the regulator s used to place the poles

of the closed control system accordng to the characterstc equaton , ( s the desgn polynomal) by

the cancellaton of the process poles. To do ths, needs to be expressed by the equaton . The

complementary senstvty functon of the closed-loop s 

 

  (18) 

 

The regulator s 

 

  (19) 

 

and actually corresponds to an deal YOULA regulator (see later) wth reference model . Ths

regulator places the poles n and leaves the zeros n untouched, f they are nverse stable.  
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A usual pole cancelng regulator s the PI(D) regulator, where n case of PI regulator the transfer functon of

the regulator s C s� � � kc

1� sTI

sTI

, and n case of PID regulator

  

C s� � � kc

1� sTI

sTI

1� sTD

1� sTD
'
, where TD � TD

' . 

 

Fgure 3: Pole cancelng regulator 

 

A specal case of pole cancellaton s the use of the PI(D) controllers where generally not the whole

denomnator of the process s cancelled. PI controller cancels the bggest tme constant term of the process and

n ts denomnator X(s) ntroduces an ntegratng effect. PID controller cancels the two bggest tme constant

terms of the process and ntroduces n ts denomnator an ntegratng effect and a smaller tme constant. The

gan kc of the controller s desgned to ensure stablty and good phase margn for the control system. 

 

Pole Placement wth Feedback Regulator 

 

An other soluton when the regulator s put n the feedback s shown n Fg. 4. 

 

Now the task s agan to place the poles of the closed system accordng to the equaton ( s the desgn

polynomal). To do ths, needs to be determned from the equaton . The complementary

senstvty functon of the closed system s 

 

  (20) 

 

and thus ths regulator places the poles n and leaves the zeros n untouched, f they are nverse stable. 

 

The characterstc equaton of the closed system has the form and t does not depend on the unstable

property of the process. 
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Fgure 4: Regulator n the feedback 

The block dagram n Fg. 5. can be redrawn as Fg. 2c. (The state feedback methods are dscussed n detal n

Secton 2.1, and the same control prncple s represented n Fg. 2c among the schemes showng the equvalent

transfer functon representatons for state feedback.) 

 

Fgure 5: The regulator feeds back the nternal sgnal of the process 

 

Pole Placement wth Characterstc Polynomal Desgn 

 

The characterstc polynomal of the closed-loop control can be drectly desgned by algebrac methods. In

Fg. 6 the regulator s the quotent of two polynomals. Under certan condtons, the (Dophantne

Equaton) DE can be solved for and . Thus from the characterstc equaton the

regulator can be drectly determned. 

 

 

Fgure 6: Drect control desgn on the bass of the characterstc polynomal 

 

The complementary senstvty functon of the closed system s  

 

  (21) 

 

and thus ths regulator also places the poles n and leaves the zeros n untouched, but n the nomnator

appears, whch depends on the desred propertes and also on DE. 

 

Thus the characterstc equaton of the closed system has the form and t does not depend on the unstable

character of the process. 

 

Regulators Based on YOULA Parameterzaton 
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The YOULA parameter, as a matter of fact, s a stable (by defnton), regular transfer functon 

 Q s� � � C s� �
1�C s� � P s� �    or shortly   Q �

C

1�CP
 (22) 

where C s� � s a stablzng regulator, and P s� � s the transfer functon of the stable process. 
It follows from the defnton of the YOULA parameter that the structure of the realzable and stablzng

regulator n the YOULA-parameterzed (sometmes called Q -parameterzed) control loop s fxed: 

 

 C s� � � Q s� �
1− Q s� � P s� �    or shortly   C �

Q

1− QP
 (23) 

 

The senstvty and complementary senstvty functons of the closed control system are lnear n Q and are

calculated by (24). It s nterestng to observe that the YP regulator of (23) can be realzed by a smple control

loop wth postve feedback as shown n Fg. 7. 

 

 

Fgure 7: Realzaton of a YP regulator 

 

AYOULA-parameterzed (YP) closed-loop s shown n Fg. 8. 

 

Fgure 8: YOULA-parametrzed closed-loop 

 

The All-Realzable-Stablzng (ARS) regulator has the form of (23). 

 

The closed-loop transfer functon or Complementary Senstvty Functon (CFS) s 

 

 T �
CP

1�CP
� QP  (24) 

 

whch s lnear n the YOULA parameter Q . It s well known that the YP regulator corresponds to the classcal
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IMC (Internal Model Control) structure. 

The relatonshps between the most mportant sgnals of the closed system can be obtaned wth smple

calculatons 

 

u � Qr − Qyn

e � 1− QP� � r − 1− QP� � yn � Sr − Syn

y � QPr � 1− QP� � yn � Tr � Syn

 (25) 

 

The effect of r and yn
on u and e s completely symmetrcal (not consderng the sgn). Thus the nput of

the process depends only on the external sgnals and Q s� � . 
 

The IMC form of the control system s shown n Fg.9. Reference sgnal flter and dsturbance flter can be

ntroduced to make dfferent transfer propertes for reference sgnal trackng and dsturbance rejecton (Fg.

10, Fg.11). 

)(sP
-

( )Q s

ny

r e yu

( )P s

( )Q s

YOULA 
PARAMETER PROCESS

INTERNAL MODEL

- 

CONTROLLER

+

+

 

Fgure 9: IMC form of YOULA parameterzaton 

1P−
+

−

r y
u

ny

rR P P+ −

−

u

nR

P P+ −

 

Fgure 10: IMC form of YOULA parameterzaton wth reference and dsturbance flters 

1
nR P

−
+

−

r y
u

ny

r

n

R

R
P P+ −

−

u

P P+ −

Fgure 11: IMC form of YOULA parameterzaton wth flters 
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From the equaton (24) t can be seen that the YOULA parameterzaton has the transfer functon QPr

concernng the reference sgnal trackng. If the KB parameterzaton s ntroduced as shown n fgure Fg. 8,

then the YOULA parameterzaton can be extended for TDOF control systems. To do ths, let us smply apply a

parameter Qr
for the desgn of the trackng propertes, and connect t n seral to the KB-parameterzed loop,

so the block dagram of Fg. 12 s obtaned. 

 

 

Fgure 12: Two-degree-of-freedom verson of the YP control loop 

 

The overall transfer characterstcs for ths system are 

 

u � Qr yr − Qyn

e � 1− Qr P� � yr − 1− QP� � yn � 1− Tr� � yr − Syn (26)

y � Qr Pyr � 1− QP� � yn � Tr yr � 1− T� � yn � Tr yr � Syn

 

 

where the trackng propertes can be desgned by choosng Qr
n Tr � Qr P , and the nose rejecton propertes

by choosng Q n T � QP. These two propertes can be handled separately. The reference sgnal of the whole

system s denoted by yr
. The condtons for Qr

are the same as for Q . The meanng of Tr
s analogous to the

meanng of the complementary senstvty functon T of the one-degree-of-freedom control loop for trackng. 

 

Comparson of the Prevously Dscussed Desgn Methods 

Control loops wth state feedback 

 

The most mportant advantage of the state feedback regulator s that the calculaton of the feedback vector s

very smple. The most mportant dsadvantage s that the nternal state varables, necessary for the feedback

are usually not avalable n the practcal tasks. Ths s why the observer topology s generally necessary to ths

method. Unfortunately, ths topology s not so smple to compute. Another mportant dsadvantage s that ths

regulator assgns the pole of the closed-loop system, unfortunately t leaves the numerator of the process

untouched n T . It s mportant to know that from the methods dscussed n ths paper ths s the only method

whch s applcable for unstable processes. 
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Pole placement wth pole cancellaton  

 

The most mportant advantage of ths method s that t s very smple to calculate the regulator. The

dsadvantage s that ths regulator assgns the poles of the closed-loop system, unfortunately t also leaves the

numerator of the process untouched n T . 

Pole placement wth feedback regulator 

 

Ths method practcally can be evaluated on the smlar way as the prevous method. Unfortunately the most

mportant dsadvantage s that n a practcal task t s very rare that the regulator s n the feedback lne. 

 

Pole placement wth characterstc polynomal desgn 

 

Ths method s a lttle bt more complex than the pole cancellaton method, because the calculaton of the

regulator needs the soluton of a DE. The dsadvantage s that ths regulator assgns the pole of the closed-loop

system, unfortunately t also leaves the numerator of the process untouched n T and puts another polynomal

n the numerator of T . Ths polynomal comes from the soluton of the DE, so t s not easy to desgn. 

 

Regulators based on YOULA parameterzaton 

 

Ths method s the smplest, because t needs only basc polynomal operatons to calculate the regulator. A

further advantage s that the result of the desgn s the best reachable T even for nvarant process zeros, too. 

 

Except the state feedback regulator, the other methods are applcable only for stable processes. 

 

Computaton of the Optmal YOULARegulator 

 

Let us assume the transfer functon of the process n the followng factorzed form 

 

 P s� � � P� s� � P s� �
−
� P� s� � P

−
s� � e−sTd  (27) 

 

or shortly 

 

 P � P�P
−
� P�P

−
e−sTd  (28) 

 

where P� s stable, and ts nverse s also stable (Inverse Stable: IS) and realzable (ISR). The nverse of P
−
s

unstable (Inverse Unstable: IU) and not realzable (Non Realzable: NR), .e., (IUNR). P
−
s nverse unstable
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(IU). Here, n general, the nverse of the dead-tme part e−sTd s not realzable, because t would be an deal

predctor. 

In polynomal form a delay free process s gven by 

 

  (29) 

 

where and contan the nverse stable and nverse unstable zeros, respectvely. 

If the reference model, formulatng our desgn goal s 

 

  (30) 

 

then the optmal YOULA parameter s 

 

  (31) 

 

Usng ths parameterzaton the optmal YOULA regulator can be calculated as 

 

  (32) 

 

The transfer functon of the closed-loop system s 

 

  (33) 

 

whch s the best reachable result for the case of nverse unstable zeros. Ths result explans the name:

“uncancellable” for the nverse unstable factors of the numerator of the process. 

 

For the two-degree-of-freedom verson of the YOULA regulator (see Fg. 9) an addtonal reference model 

 

  (34) 

 

must also be calculated. 
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It can be well seen n ths secton that the computaton of the YOULA regulator requres only very smple

polynomal operatons (addtons and multplcatons). 

 

Examples 

Example 1. Let the CT process be gven by a non-mnmum phase transfer functon 

 

 P s� � � 1� sτ1� � 1− sτ2� �
1� sT1� � 1� sT2� � 1� sT3� �  (35) 

 

where T1 � 10sec ; T2 � 5sec ; T3 � 2sec ; τ1 � 6sec and τ2 � 4sec, where and  

 

The selected reference model s 

 

  (36) 

 

where Tn1 � 5sec ; τn1 � 0 . 

 

The optmal YOULA regulator can be calculated as 

 

  (37)  

 

Usng the numercal values the regulator s 

 

 C s� � � 1�17s � 80s2 �100s3

s 1� 6s� � 1� 2.273s � 4.454s2� �  (38) 

 

The overall transfer functon of the closed-loop system s 

 

  (39) 

 

Because usually the reference model has unty gan, .e. 

 

  (40) 
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t follows, that T 0� � � 1 has also unty gan. 

The usual normalzaton of the process polynomal means that and (whle ) t

can be easly checked that the YOULA regulator s always an ntegratng regulator for (40). 

Example.2. The CT process s now gven by the transfer functon  

 

 

  

P s� � � 6

s�1� � s� 2� � s� 3� �  (41) 

 

Let us desgn regulators wth all the dscussed methods and compare ther behavor. 

Pole placement wth state feedback. 

 

Let the prescrbed poles of the closed loop system obtaned by state feedback be: −6; −3� 4 � i ; −3− 4 � i .

Thus the prescrbed characterstc polynomal s 

 

 R s� � � s3 �12s2 � 61s�150  (42) 

 

The controllable canoncal form of the state equaton s: 

 

 
A �

−6 −11 −6
1 0 0
0 1 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú
; b �

1
0
0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

c � 0 0 6éë ùû; d � 0

 (43) 

 

Fgure 13. Step response wth state feedback control 

 

The state feedback vector calculated accordng to (11) s 

 

 k � 6 50 144éë ùû
T

 (44) 
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and the value of the calbraton factor calculated accordng to (8) s 25. The calculatons can be also supported

by MATLAB control toolbox. The step response of the plant and of the controlled system s shown n Fg. 13. 

 

 

Pole placement wth pole cancellaton 

 

Accordng to (19) 

 

  (45) 

In order to elmnate steady state error let us dvde the characterstc polynomal R by a factor whch ensures

that ts constant term wll be equal to , so the controller wll be of ntegral type. 

 

 
  
Rm s� � � s3 �12s2 � 61s�150� � / 25 (46) 

 

So the transfer functon of the controller s 

 

 C s� � � s3 � 6s2 �11s� 6

0.04s3 � 0.48s2 � 2.44s
 (47) 

 

The step response s shown n Fg. 14 and the control sgnal s gven n Fg. 15. 

 

 

Fgure 14. Step response wth pole cancellaton 
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Fgure 15. Control sgnal n case of pole cancellaton 

 

It s seen that over-exctaton n the control sgnal ensures acceleraton of the output sgnal. Of course there s

a practcal lmt of the control sgnal provded by the actuator.  

 

Pole placement wth feedback regulator 

 

In ths soluton the overall transfer functon s gven by (20). Agan, to ensure unty transfer gan the

characterstc polynomal R should be normalzed to have the same constant term as . 

 

YOULA parameterzed regulator desgn 

 

Let the transfer functon of the reference sgnal flter be 

 

 Rr s� � � 150

s3 �12s2 � 61s�150
 (48) 

 

whch ensures the poles of the characterstc equaton as shown n pont a./. 

Let the transfer functon of the nose flter be  

 

 Rn s� � � 64

s� 4� �3
�

64

s3 �12s2 � 48s� 64
 (49) 

 

The YOULA parameter s 

 

 Q s� � � Rn s� �P−1 s� � � 64

6

s�1� � s� 2� � s� 3� �
s3 �12s2 � 48s� 64

 (50) 

 

The output sgnal as response to a unt step reference sgnal and the output sgnal as a response to unt step

dsturbance s shown n Fg. 16. 
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Fgure 16: Unt step reference sgnal trackng and dsturbance rejecton of the YOULA parameterzed

controller 

 

Example 3. Let the CT process be gven by a non-mnmum phase transfer functon 

 

  (51) 

 

where T1 � 10sec ; T2 � 5sec ; T3 � 2sec ; τ1 � 6sec and τ2 � 4sec, where and

. 

Furthermore and Q s� � � Rn s� �P�−1 s� � should be proper. 

The selected reference model s 

 

 (52) 

 

where Tn1 � 2sec and Tn2 �1sec. Then 

 

 Q s� � � 1

1� 2s� � 1� s� �
1�10s� � 1�5s� � 1� 2s� �

1� 6s
�

1�10s� � 1�5s� �
1� s� � 1� 6s� �  (53) 

 

and  

 

 C s� � � 0.1428
1�10s� � 1�5s� � 1� 2s� �
s 1� 0.2857� � 1� 6s� �  (54) 

 

  

T s� � � 1− 4s

1� s� � 1� 2s� �  (55) 
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The step response of the plant and of the controlled system s shown n Fg.17. 

 

Fgure 17: YOULA control of a non-mnmum phase plant 

 

It s seen that the output s settled faster, but n the frst nstants the output goes to negatve values. Wth

reference sgnal flter the output can be further modfed. 

 

Because usually the reference model has unty gan, .e. 

 

  (56) 

 

it follows, that T 0� � � 1 has also unity gain. 

 

The usual normalzaton of the process polynomal means that and (whle ) t

can be easly checked that the YOULA regulator s always an ntegratng regulator for (55). 

 

Example 4 Investgate now a dscrete-tme (DT) case, when the pulse transfer functon of the process s a

second order system 

 

 G z� � � −0.32 z −1.25� �
z − 0.8� � z − 0.6� � � G− z� �G� z� �  (57) 

 

where ( ) 1 25

0 25

z .
G z

.−
−

=
−

 is the non-cancellable part containing a zero outside of the unit circle and 

 

 

  

G� z� � � −0.25⋅−0.32

z − 0.8� � z − 0.6� � �
0.08

z − 0.8� � z − 0.6� �  (58) 

 

is the cancellable part of the pulse transfer function. 
 

The noise reference model is 
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Rn z� � � 0.6

z − 0.4
 (59) 

 

The relationships given for continuous systems are valid for the pulse transfer functions of the discrete systems 
as well. The YOULA parameter is 
 

 Q z� � � Rn z� �G�
−1 z� � � 0.6

z − 0.4

z − 0.8� � z − 0.6� �
0.08

� 7.5
z − 0.8� � z − 0.6� �

z − 0.4
 (60) 

 

and the optimal YOULA regulator can be computed now as 
 

 C z� � � Q z� �
1−Q z� �G z� � �

2.2059 z − 0.8� � z − 0.6� �
z −1

 (61) 

 

Fg. 18 shows the unt step response of the plant and of the controlled system. 

 

Figure 18. Unit step responses of the plant and the controlled system 
 

Example.5 Discrete YOULA controller of a system with dead time 
 

The transfer function of the continuous process is 
 

 ( ) ( )( )
301

1 5 1 10
sP s e

s s
−=

+ +
 (62) 

 

The samplng tme s 1secsT = . The reference sgnal and dsturbance flters are obtaned by samplng the

systems gven by transfer functons  

 

  
Rr s� � � 1

1� 2s
and

  
Rn s� � � 1

1� 4s
(63)



Inernatonal Conference on Advances in Technology, Educaton and Science 
 

175 | Proceedings Book

Design the YOULA controller and give the output and control signals in the sampling points. 
 

The pulse transfer function of the process P(s) is: 
 

 ( ) ( )
( ) ( )

300.0090559 0.9048

0.9048 0.8187

z
G z z

z z
−+

=
− −

 (64) 

Let us separate it to the cancellable G� z� �  and the non-cancellable G− z� �  factors. G− z� �  should be 

normalized for transfer gain 1. 
 

The pulse transfer functions are given with the shift operator 1z− :  
 

 

G− z� � � 1� 0.9048z−1

1.9048

G� z� � � 0.0090559 ⋅1.9048z−1

1− 0.9048z−1� � 1− 0.8187z−1� �
 (65) 

 

The pulse transfer functons of the flters: 

 

Rr z� � � 0.39347z−1

1− 0.6065z−1
     and     Rn z� � � 0.2212z−1

1− 0.7788z−1
 (66) 

 

The YOULA parameter s gven by 

 

 Q z� � � Rn

G�

�12.82
1− 0.9048z−1� � 1− 0.8187z−1� �

1− 0.7788z−1
 (67) 

 

Concluson 

It was shown that the YOULA regulator desgn s a very smple procedure, whch s applcable for all knd of

(mnmum or non mnmum phase) CT and DT processes. The computaton of the regulator s very smple,

requres only polynomal operatons. 

 

For reasonable desgn goal ths desgn results n an ntegratng regulator. Ths regulator ensures the theoretcal

best reachable closed-loop property of the control system. 

 

YOULA controller desgn s superor to the other controller desgn methods, as the equatons gvng the

relatonshps between the nput and the output sgnals are lnear n the parameter Q . For controllng systems

wth dead tme ths method gves straghtforward soluton for controller desgn. The appled methods and

procedures are very useful n the educaton of the control system desgners.
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